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Abstract. Studies of stellar oscillations have a history of several decades. Their im-
portance lies in their information content about the internal stellar structure. Recent
space missions have hugely extended our knowledge about them. However, in order to go
beyond the general characterization of stellar interiors and perform asteroseismic inver-
sions, the identification of many modes is still required. In this respect pulsating stars
in eclipsing binaries offer a unique opportunity, if the effective surface sampling of the
eclipse events can be properly analyzed. Here we present an investigation of new possi-
bilities to perform mode identification in such systems, using parameter fitting driven by
stochastic methods.
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Introduction

Pulsating stars are one of the most important type of variable stars in
stellar astrophysics. The periodic variation of their brightness can be easily
observed from ground observatories or space telescopes. This light variation
is caused by the internal waves generated by self-sustaining processes in a
wide variety of stellar evolutionary stages. Thanks to this, we can determine
in principle the properties of the stellar interior and the absolute physical
parameters (e.g. stellar radius, mass) with a proper analysis, which is the
main task of asteroseismology (Aerts, Christensen-Dalsgaar & Kurtz, 2010).
This field of astronomy has experienced significant advances in recent years
thanks to the high precision photometry missions (e.g. MOST, Kepler).

The mode identification of the stellar pulsations is a crucial step in the
analysis. It is an especially hard task because the pulsation patterns cannot
be directly seen on the surface of distant stars. There are several methods
for solving this challenge of determining the degree ¢ and azimuthal order
m of the modes for each frequency. For single stars this involves a sophisti-
cated analysis of either the brightness, or, better, high-resolution spectral
feature variations. Another interesting possibility is the so-called eclipse to-
mography, which requires an eclipsing stellar companion for the pulsating
star. In this case the other component is periodically mapping the surface
of the pulsating star. In a good geometric configuration, the modulation
of amplitude and phase variations can be distinguished between different
(¢,m) mode numbers (Fig. 1). This method, termed Dynamic Eclipse Map-
ping, was presented by Biro, I. B. 2011, 2000, and successfully applied to
an eclipsing binary system by Bir6 I. B., Békon A. 2017.

Thanks to the high precision measurement of Kepler, a new era has
begun in the observational astronomy. The properties of stars can be in-
ferred in unprecedented details, and new challenges and questions have been
found in different territories of observational astrophysics. From our view-
point, one of the biggest challenges is the hundreds of frequencies found in
the Fourier spectra of pulsating stars. The modulation of these frequency
components can make the task of eclipse tomography very difficult.
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Fig. 1. An example of the modulation effect of the eclipses on the pulsations. Left panel: a
full lightcurve of an eclipsing binary system (e=0.485; w=0.29) with a pulsating secondary
component. The light contribution of the secondary component is also shown vertically
shifted upwards. Right panel: the amplitude modulations due to the eclipse of various
(¢,m) nonradial oscillation patterns. The secondary eclipse region is highlighted with gray
in both panels.

A second key issue is that the developed fitting methods search for one
solution only. Specifically, the aim of Dynamic Eclipse Mapping is to find
the simplest pulsating pattern of the stellar disc consistent with the obser-
vations. Another method, the Direct Fitting, obtains the best fit of spherical
harmonics for each frequency. None of them provides any information about
the relevance and the probabilities of the (¢,m) solutions specifically.

In this paper we present a novel method to solve the challenges outlined
above. To our best knowledge, there is no other attempt to date addressing
this problem. In Sec. 1 we describe the methods and their implementation.
In Sec. 2 we present the result and discussion of tests carried out so far. In
Sec. 3 we summarize our conclusions.

1. Methods

One of the common choices for this type of problem is Markov-chain Monte
Carlo (MCMC). It has a large number of implementations, with the com-
mon aim to achieve ergodic sampling of the parameter space in terms of
the posterior probability distribution. The ergodic property ensures that
the joint aposteriori distribution of the parameters is proportional to the
sample density in the parameter space. In addition, we can also incorpo-
rate apriori information about the parameters via the well-known Bayes’
theorem.

We choose the Metropolis-Hastings algorithm because it is easily avail-
able in almost any programming language. This algorithm carries out ran-
dom steps in the parameter space, accepting or rejecting the new parameter
set depending on conditions crafted to ensure an ergodic sampling of the
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posterior distribution. Although it is implemented in various Python pack-

ages, we wrote our own implementation, because the nonradial mode num-

l()|ers|, are)restricted to integer numbers, and they have a special constraint
m| < ¥).

We have also considered another commonly used stochastic method,
the Gibbs sampling, as an alternative for performing this task. The Gibbs
sampling is used for restricted parameter spaces, it has a simpler algorithm,
but requires more steps and thus more execution time, because it tries every
possible value for each parameter while keeping the others fixed. The chosen
parameter is randomly weighted according to the aposteriori probability of
the possible values. It is also implemented by us, in order to have the same
output as MCMC.

Each implementation assumes that the pulsational pattern can be de-
scribed by spherical harmonics. This is a strong restriction, because there
should not be any distortion in the equilibrium state of the star (e.g. fast
rotation, tidal distortion). This restriction could be, however, easily relaxed
in the future, by allowing more general amplitude profiles — at the expense
of introducing additional parameters, of course.

According to Bayes’ theorem the aposteriori probability density distri-
bution (pdf) is proportional to the likelihood of the parameters, multiplied
by their apriori pdf. For normally distributed measurement errors the like-
lihood is expressed by the the chi-squared function as

1

£lp) =a- e (~3¢(0)). 1)

where x? is the sum of squared residuals, and a is a normalization constant.
In the absence of any apriori information we have a uniform prior, and the
posterior pdf is in essence the likelihood L.

Both methods have a common key issue, that is the treatment of the
discrete variables £ and m. Besides being discrete, there is a specific con-
straint between them (|m| < £). We tried several ways to find the one that
best suits our purpose:

— The first one was the use of £ and m mode numbers as normal variables
independently, which we called classical variables in the following part
of our paper.

— The second one was treating the pair of (¢, m) numbers, fully describing
the mode, as a set of category variables. For the criterion of their order-
ing we used the deviation of their amplitude modulation during eclipse,
compared to that of the radial case (0,0). (The ordering is required in
order to have distances defined between two variables, crucial for the
sampling methods in computing the next step of the chain.)

Beside the programs of MCMC & Gibbs, we have also created some
auxiliary routines to do the analysis of the Markov chains. Calculating
and inspecting the autocorrelation of parameters is essential in order to
assess the reliability of the chains. For the visualization of the joint as well
as the marginalized posterior distributions it is customary to use corner
plots. They contain information about the most probable parameter values
and correlations between them. We created a modified version of this plot
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for several reasons. The biggest change is using a colorbar to encode the
sampling number of the individual modes. An example is given in Fig. 2.
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Fig.2. An example for the modified corner-type plots. The joint posterior distribution
inferred from the Markov-chain is in the left bottom figure. The colors encode how many
times each mode appears in the chain, which is proportional to their posterior probability.
It can be easily seen that ¢ = 2 and m = 0 is the most probable oscillation mode in this
particular example. Diagonally running are the marginal distributions of the mode degree
and azimuthal order, shown with black-colored bars. The cyan color is used for showing
the highest number of sampling of the parameter.

Several synthetic lightcurves were modeled in order to check the reliabil-
ity of the algorithm. The modeled systems were detached eclipsing binary
systems, with the secondary components nonradially pulsating simultane-
ously in 1, 2, 3 and 4 frequencies. The nonradial pulsations were selected
with ¢ between 1 and 4. The total number of lightcurves was about 100,
which were inspected with the created programs described above.

In order to further explore the limits of our programs, after the ini-
tial tests we modeled a lightcurve of an eclipsing binary system with the
secondary component pulsating in 16 simultaneous modes with various fre-
quencies (Fig. 3). There were two kinds of accomplished tests. The first
was a full simultaneous MCMC, which means that all the parameters were
sampled. The second one was a manually conducted whitening process sim-
ilar to the methods used in the harmonic analysis of multiperiodic signals,
where the individual peaks are fitted and subtracted in decreasing order
of amplitude from the signal. The difference here was that we grouped the
frequencies in packs, so that frequencies within a pack had the same order
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Fig. 3. The lightcurve used for the comprehensive test of our method using MCMC and
Gibbs algorithm. The number of frequencies are 8, and there was another number of
sinusoids which is considered as a noise.

of contribution to the lightcurve; then the pack with the highest contribu-
tion was sampled, after which its result was subtracted from the lightcurve
before turning to the next pack. At any stage, the unprocessed frequencies
were assigned the mode numbers (0,0) as a default assumption.

2. Results and conclusions

The results of the selected runs is summarized in Tab. 1 and 2. The tables
compare the selected runs for the given (¢,m) nonradial mode numbers, the
variable types which were adapted (cl = classical, ca = ordered categorical
variable), and the top 3 candidates (¢,m) with the percentages compared
to the total elements of the Markov chain.

The first key point derived from the results was that the selectivity is
preserved. The selectivity means that specific (¢,m) nonradial pulsations
have characteristic modulations from which the mode numbers can be the
most easily determined by the inverse methods. This property remained for
the MCMC and Gibbs, with high probability (~80-90%) of the considered
(£;m).

The second remark is that similar modulations of typical (¢,m) nonra-
dial modes (e.g. (1,0) and (2,1)) have similar probabilities. This property
is actually the aim which we wanted to achieve, because the possibility of
other nonradial oscillations for a given frequency could be assigned a prob-
ability. In general the original input mode numbers were among the top
three candidates.
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0.2 (%) | No.3 %)
1) 1) (18.3)] (2,0) (17.0)
1) , 95)|(1,1) (18.73)
2) 2,0) (21.3) | (1,1) (14.8)
) ca ||(2,2) (37.53)|( )| (2.0) (16.2)
2

2)

o (3,2) (90.5) J(6.1) | (2-1) (2.3)
ca  ||(3,2) (99.88)] (2,1) (0.05) | (2,-2) (0.04)

Table 1. Selected results from the run of MCMC, tested on the dataset with 1 frequency.
In each column can be found in order from left to right: the given (¢,m) nonradial mode

number, the variable type which was adapted (cl = classical, ca = ordered categorical
variable), and the top 3 candidate (¢,m) with the percentages of Markov chain.

(¢,m) Var. type|| N.o.1 (%) | N.o.2 (%) | N.o.3 (%)
1) [[(00) (51.83) [ (2,2) (15.5) [(1,1) (11.2)
(11)  ca || (2:2) (20.61) |(2,0) (18.97)|(1,1) (17.5)
22 d (0,0) (46.8) [(2,2) (28.9) (1,1) (14.3)
(22) ca | (2,2) (39.4) |(11) (17.31) ] (2,0) (16.1)
B2 d B2 (100) ] :

(32) ca |(3,2) (99.70)| (2,1) (0.06) | (2,-2) (0.03)

Table 2. Selected results from the run of Gibbs sampling, tested on the dataset with
1 frequency. In each column can be found in order from left to right: the given (¢,m)
nonradial mode number, the variable type which was adapted (cl = classical, ca = ordered
categorical variable), and the top 3 candidate (¢,m) with the percentages of Markov chain.

The third conclusion was that the use of ordered category variables is
more suited to our problem than the classical ones, especially in the case of
Gibbs sampling. A plausible explanation could be that the Gibbs algorithm
cannot sample sufficiently the parameter space with constraints specified
between parameter sets.

The ability of assigning probabilities to possible nonradial mode num-
bers for each frequency can be very useful for later work, as well. In direct
modeling, the oscillation modes are given just in a probabilistic way at
specified frequency ranges. This information can be compared in order to
check the validity of the known pulsating models. Naturally, we should
study many eclipsing binaries with pulsating components in order to get
reliable results.

Shortcomings were also found during the analysis of the Markov chains.
The biggest issue can be that specific mode numbers, e.g. (1,0) cannot be
found by MCMC with category variables. The cause for this key problem
could be due to the ordering, because some mode numbers are in the second
half of the list. This issue can be solved by using improved alternative
orderings of the categories, for example sorting by the amplitudes of the
oscillations on the stellar surface. Obviously, more investigation is required
in this direction.

Another challenge is that as the number of the pulsation modes included



A stochastic sampling method for the analysed of eclipsed pulsations

in the analysis increases, the sampling for the modes with smaller ampli-
tudes become less reliable, when compared to the larger amplitude modes.
The reason for this is yet unclear, but we could tackle this shortcoming by
the whitening procedure mentioned in Sec. 1, involving fitting of frequencies
grouped in sets of similar amplitudes.

3. Summary

We have successfully applied MCMC and Gibbs sampling algorithms for
obtaining probability information on the modes of nonradial oscillations of
components of eclipsing binaries. Although the parameter sets were well
restricted because of the integer values of (¢,m), we managed to solve them
with the proper handling of the variables. The new programs were tested
with lightcurves modeled with different nonradial modes.

After executing the required tests, the following key points were found:

— the selectivity of the method remained (oscillation modes with well dis-
tinguishable modulations have clearly the highest probability, giving
back the true, original modes),

— in the case of ambiguous mode numbers, probability can be assigned to
different modes.

These conclusions show that the main goal of our work was accomplished
in large part. Some refinement is necessary (fine tuning in MCMC or other
ordering method of categoric variable), but the results are promising.

We plan to further develop the code by including an automatic whitening
process. This means that all the modeling and subtraction mechanisms,
which were conducted manually as written in Sec. 1, will be done by a frame
code that drives the algorithms used so far. This core program is needed for
the larger problem, which attempts to solve the issue of the large number
of parameters for frequencies with considerably differing amplitudes.

We plan to apply the existing and/or future programs to analyze eclips-
ing binary systems observed by the Kepler space mission. So far we have
investigated only one system (KIC 3858884), but in the near future we
would like to study other systems as well. Presumably the TESS survey
mission will also provide further systems of interest.
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