What extent are visual double stars really binaries to?

R. Pavlović ${ }^{1}$, Z. Cvetković ${ }^{1}$, G. Damljanović ${ }^{1}$, M. D. Jovanović ${ }^{1}$, S. Boeva ${ }^{2}$, G. Latev ${ }^{2}$
${ }^{1}$ Astronomical Observatory, Volgina 7, 11060 Belgrade, Serbia
2^{2} Institute of Astronomy and NAO, Bulgarian Academy of Sciences, BG-1784, Sofia rpavlovic@aob.rs

(Submitted on 30.09.2019 Accepted on 28.11.2019)

Abstract

On the basis of CCD frames, collected from 2013 till now and obtained with the telescopes of ASV and NAOR, of visual double stars for which there exist orbital or linear elements, we have identified both components in the Gaia DR2 Catalogue. Since that catalogue contains precisely determined parallaxes for both components, we have compared them in order to establish exactly how close to each other they really are in space. Thus, the question of which double stars are really binaries, i.e. gravitationally bound pairs, can be answered more reliably.

Key words: double stars

Introduction

From the double stars observed at National Astronomical Observatory Rozhen (NAOR) and Astronomical Station Vidojevica (ASV) within 2013 - 2019 we have extracted 179 pairs for which there exist both calculated orbital elements given in the Sixth Catalog of Orbits of Visual Binary Stars (Hartkopf et al. 2001) or linear elements given in the Catalog of Rectilinear Elements (Hartkopf et al. 2011) and Gaia DR2 (Gaia Collaboration et al. 2016,2018) parallaxes for both components. Our CCD frames have served to identify pair components in the Gaia DR2 Catalogue.

Fig. 1. The overlapping interval $\Delta \pi$ of parallaxes of double star system. The quantities denoted as A concern the primary, those denoted as B concern the secondary component of a binary.

We compare the component parallaxes $\left(\pi_{A}, \pi_{B}\right)$ including the parallax errors $\left(\sigma_{\pi_{A}}, \sigma_{\pi_{B}}\right)$ and calculate the overlapping interval (Fig. 1) according to the following equation

$$
\begin{equation*}
\Delta \pi=\min \left(\pi_{A}+\sigma_{\pi_{A}}, \pi_{B}+\sigma_{\pi_{B}}\right)-\max \left(\pi_{A}-\sigma_{\pi_{A}}, \pi_{B}-\sigma_{\pi_{B}}\right) \tag{1}
\end{equation*}
$$

In the case of parallax overlapping, i.e. $\Delta \pi>0$, the components may be regarded as sufficiently close to each other so that probably they form a
binary. However, in the case of no overlapping, i.e. $\Delta \pi<0$, the components are mutually distant so that such a pair is most likely optical, i.e. there is no physical binary. This criterion is not sufficient to establish the nature of a double star. Additional criteria, based on analysis of positions, velocities and masses of the components, would have to be used, but such data are available only for a small number of stellar pairs.

1 Short statistics of overlapping parallaxes

In our observational material we have segregated 179 stellar pairs for which the parallaxes are given in the Gaia DR2 Catalogue. For 64 of them there are orbital elements available, whereas for 118 ones there are linear elements available. In the case of three pairs there are both orbital and linear elements available.

From the 64 pairs with calculated orbital elements, for $36(56.25 \%)$ parallax overlapping $(\Delta \pi>0)$ has been found, whereas in the case of 28 (43.75%) the parallaxes do not overlap $(\Delta \pi<0)$. These 64 pairs are presented in Table 1. WDS designation and discovery designation on whose basis it is possible to identify each pair are given in Columns 1 and 2. Column 3 contains the orbit grade. For the three pairs which also have a linear solution to orbits, grade designation (L) is added. Columns 4-7 contain the parallaxes of the primary $\left(\pi_{A}\right)$, the secondary $\left(\pi_{B}\right)$ and their errors $\left(\sigma_{\pi_{A}}, \sigma_{\pi_{B}}\right)$. In the last column the overlapping value $(\Delta \pi)$, is given which is obtained following relation (1).

As can be seen from Table 1, for most of the orbits the grade is 4 or 5 . According to the Worley-Heintz criterion (as quoted from the Fourth Cata\log grade 4 is "preliminary = individual elements entitled to little weight, and may be subject to substantial revisions". Grade 5 is "indeterminate $=$ the elements may not even be approximately correct. The observed arc is usually too short, with little curvature, and frequently there are large residuals associated with the computations". In Table 1 there are three binaries where the grade of orbital elements is 2 , "good $=$ most of a revolution, well observed, with sufficient curvature to give considerable confidence in the derived elements. No major changes in the elements likely". In other words, we are sure that in the case of a pair with grade 2 the components are gravitationally bound. A simple calculation shows that if we used the 3σ rule, the parallaxes would overlap.

A similar conclusion is also valid for the only one binary from Table 1 where the grade is 3 , meaning "reliable $=$ at least half of the orbit defined, but the lesser coverage (in number or distribution) or data consistency leaves the possibility of larger errors than in Grade 2".

From the 118 pairs with linear elements, for $112(94.92 \%)$ there is no parallax overlapping, as could be expected in the case of linear pairs, whereas for six $6(5.08 \%)$ the parallaxes overlap. These pairs are given in Table 2. In order to examine the overlapping of parallaxes (distances), once more, we have also used the catalogue by Bailer-Jones et al. (2018) - "Distances to 1.33 billion stars in Gaia DR2". The columns in the upper part of Table 2 are the same as in Table 1, only that of orbits grade is omitted,
whereas in the lower part of Table 2 the minimum $r_{l o}$ and maximum $r_{h i}$ distances of the components

Table 1. Double stars which have calculated orbital elements.

WDS	Discover	Orbit					
designation	designation		(mas)	(mas)	(mas)	(mas)	(mas)
00057 + 4549	ST" 547 AB	4	86.8735	0.0484	86.9402	0.0588	0.0405
$00152+2722$	J 868	5, L	1.8935	0.0527	3.5488	0.0441	-1.5585
$00321+6715$	VYS 2AB	5	101.4335	0.4733	100.4054	0.0701	-0.4847
$00521+1036$	STF 67	4	8.9917	0.0549	8.9372	0.3136	0.1098
$01032+2006$	LDS 873	5	62.6270	0.0425	62.1000	0.2033	-0.2812
$01467+3310$	STF 158AB	5	9.6544	0.0469	9.5512	0.1216	0.0653
$02291+6724$	STF 262 AB	5	21.9604	0.3332	21.7036	0.1392	0.2156
$03122+3713$	STF 360	4, L	24.4423	0.6554	20.5747	0.0873	-3.1249
$03162+5810$	MLB 115 AB	5	73.7645	0.0442	73.7407	0.0417	0.0621
03368 + 0035	STF 422	5	33.7528	0.0866	33.7882	0.0703	0.1215
$04076+3804$	STT 531AB	5	47.2101	0.0527	47.1305	0.2613	0.1054
$04367+1930$	STF 567	4	15.0064	0.0503	14.8835	0.0419	-0.0307
$05013+5015$	STF 619	5	4.3061	0.0372	4.5958	0.0375	-0.2150
$05364+2200$	STF 742	5	12.4603	0.1007	13.1274	0.0495	-0.5169
$05535+3720$	BU 1053	5	15.0035	0.0523	15.0920	0.0612	0.0250
$07106+1543$	J 703	5, L	2.7841	0.0389	12.1025	0.0391	-9.2404
$08095+3213$	STF1187AB	5	11.3335	0.7306	13.9676	0.0548	-1.8487
$08122+1739$	STF1196AB, C	4	41.2987	0.1710	42.1256	0.4798	-0.1761
$09013+1516$	STF1300AB	4	54.1310	0.0416	54.2762	0.0528	-0.0508
$09144+5241$	STF1321AB	4	157.8796	0.0366	157.8851	0.0414	0.0725
$09273+0614$	STF1355	4	18.7804	0.0900	18.5979	0.0918	-0.0007
$09414+3857$	STF1374AB	4	19.2207	0.0528	18.5919	0.2024	-0.3736
$09524+2659$	STF1389	4	18.8816	0.0577	18.8412	0.0592	0.0765
$10110+7508$	KUI 47	5	47.4964	0.0432	47.4612	0.0420	0.0500
$10227+1521$	STT 216	3	34.4535	0.0409	34.1930	0.0684	-0.1512
$10596+2527$	AG 342	5	46.9068	0.0457	46.9147	0.0513	0.0891
$11080+5249$	STF1510	5	17.5162	0.0370	17.4440	0.0337	-0.0015
$11387+4507$	STF1561AB	5	42.7909	0.0397	43.6091	0.1011	-0.6774
$11390+4109$	STT 237AB	4	12.4809	0.0760	12.0542	0.0751	-0.2756
$12244+2535$	STF1639AB	4	11.6398	0.0508	11.6948	0.0572	0.0530
$12272+2701$	STF1643AB	4	36.4871	0.0683	36.4672	0.0601	0.1085
$13120+3205$	STT 261	4	13.6916	0.0417	13.7597	0.0414	0.0150
$13284+1543$	STT 266	4	16.7111	0.0626	16.8001	0.0714	0.0450
$13328+1649$	VYS 6	5	60.3012	0.1130	60.3748	0.0826	0.1220
$13491+2659$	STF1785	2	73.9239	0.0653	74.2043	0.0456	-0.1695
13550-0804	STF1788AB	5	28.9580	0.0440	28.9488	0.0527	0.0875
$14024+4620$	SWI 1	5	89.3872	0.0661	89.3822	0.0557	0.1114
$14131+5520$	STF1820	4	26.1404	0.1500	26.0256	0.0350	0.0700
$14165+2007$	STF1825	5	30.0609	0.0394	30.1035	0.0545	0.0513
$14336+3535$	STF1858AB	5	25.3724	0.0359	25.3706	0.0371	0.0712
$14410+5757$	STF1872AB	5	17.8573	0.0318	17.8652	0.0384	0.0623
$14514+1906$	STF1888AB	2	148.5195	0.2436	148.2131	0.0464	-0.0164
$15245+3723$	STF1938Ba, Bb	2	27.1525	0.0250	27.2324	0.0276	-0.0273
$15348+1032$	STF1954AB	4	15.5728	0.6571	18.7090	0.2536	-2.2255
15559-0210	STF1985	5	26.0630	0.0508	26.1413	0.0610	0.0335
$16133+1332$	STF2021AB	4	41.1510	0.0413	41.2592	0.0352	-0.0317
$16147+3352$	STF2032AB	4	44.1346	0.0644	44.1475	0.0237	0.0474
$16160+0721$	STF2026AB	3	37.1441	0.0551	37.0752	0.0452	0.0314
$17053+5428$	STF2130AB	4	36.7992	0.0974	36.8008	0.0604	0.1208
$17248+3044$	BU 1250	5	2.3733	0.0354	2.2556	0.0439	-0.0384
$17386+5546$	STF2199	5	8.4420	0.0324	8.7367	0.4002	0.0648
$18428+5938$	STF2398AB	4	283.9489	0.0624	283.8624	0.1065	0.0824
$18443+3940$	STF2382AB	4	17.9665	0.2274	20.4080	0.0507	-2.1634
$18443+3940$	STF2383CD	4	20.0603	0.1196	20.1945	0.1275	0.1129
$19266+2719$	STF2525AB	4	16.3459	0.0392	16.2984	0.0448	0.0365
$19316+1747$	STF2536	5	19.1210	0.0572	19.1344	0.0752	0.1144
$19458+2710$	KUI 95AB	5	94.0139	0.0804	93.9479	0.0756	0.0900
$20210+1028$	J 838	5	0.9171	0.0327	2.0803	0.0327	-1.0978
$20462+1554$	STF2725AB	4	25.3160	0.2413	26.6012	0.0370	-1.0069
$21208+3227$	STT 437AB	4	14.0435	0.0297	14.0463	0.0335	0.0594
$21289+1105$	STF2799AB	4	10.2442	0.0502	10.2079	0.0494	0.0633
$21370+8255$	STF2837	5	21.3366	0.3034	16.5980	0.6373	-3.7979
$22455+1112$	BU 711 AB	5	23.0586	0.0404	23.0108	0.0409	0.0335
$23317+1956$	WIR 1AB	5	159.7098	0.0827	160.0598	0.1079	-0.1594

(expressed in parsec instead of the component parallaxes) are given. In the last column the overlapping distances (Δr) are given.

From Table 2 (lower part) it is seen that when the distance increases, the overlap interval also increases. This can result in a wrong inference that the stars are gravitationally bound, though this is not the case. WDS14098+0822 $=\mathrm{A} 1098$ can be considered to be an example of the most distant double

Table 2. Double stars which have calculated linear elements, but the parallaxes are congruent.

WDS Discover designation designation	$\begin{gathered} \pi_{A} \\ (\mathrm{mas}) \\ \hline \end{gathered}$	$\begin{gathered} \hline \sigma_{\pi_{A}} \\ (\mathrm{mas}) \\ \hline \end{gathered}$	$\begin{gathered} \pi_{B} \\ \text { (mas) } \\ \hline \end{gathered}$	$\begin{gathered} \sigma_{\pi_{B}} \\ (\mathrm{mas}) \\ \hline \end{gathered}$	$\begin{gathered} \Delta \pi \\ (\mathrm{mas}) \\ \hline \end{gathered}$
$03401+3407$ STF 425AB	21.8411	0.0658	21.7646	0.0582	0.0475
$12025+2145$ HO 535	11.5165	0.3809	11.4831	0.0980	0.1960
12151 - 0715 STF1619AB	29.3041	0.0729	29.3916	0.0749	0.0603
$14098+0822$ A 1098	1.2232	0.0453	1.2483	0.0442	0.0644
$21330+2043$ STF2804AB	16.7406	0.0479	16.7396	0.0517	0.0958
$22326+0725$ STF2915AB	4.6630	0.0672	4.6300	0.1079	0.1344
WDS Discover	${ }_{o}(A)$		$r_{l o}(B)$		
designation designation	(pc)	(pc)	(pc)	(pc)	(pc)
$03401+3407$ STF 425AB	45.5871	45.8643	45.7625	46.0094	0.1017
$12025+2145$ HO 535	83.9828	89.7738	86.1371	87.6280	1.4908
12151 - 0715 STF1619AB	34.0063	34.1770	33.9031	34.0776	0.0712
$14098+0822$ A 1098	771.2660	829.6147	757.1539	811.9205	40.6545
$21330+2043$ STF2804AB	59.4613	59.8049	59.4517	59.8221	0.3435
$\underline{22326+0725 \text { STF2915AB }}$	210.1633	216.3198	209.9164	219.9566	6.1564

star (in our sample). Its primary is at a distance of $(800.44 \pm 29.17) \mathrm{pc}$, the secondary at $(784.53 \pm 27.38) \mathrm{pc}$. When we compare the distance between the components with the distance determination errors, we find that the components are 15.9 pc apart, whereas the errors are almost twice as large. A similar situation appears for the other pairs from Table 2. However, in order to make a sufficiently reliable judgement whether these pairs are gravitationally bound or not, it would be necessary, as mentioned earlier, in addition to the parallaxes to include relative positions, velocities and masses of the components, but these data are yet mostly unknown.

2 Conclusion

For more than 60% of the pairs from our sample which have calculated orbits, the applied criterion showed that the components are really close in space. This can serve as a indicator that the components are gravitationally bound, i.e. they form a binary system.

On the other hand, this criterion in a much higher percentage (more than 94%) indicates that the pairs with linear elements are not gravitationally bound, i.e. that they do not form a binary system.

Acknowledgments: The results presented in this paper are based on observations with the 1.4 m telescope "Milanković" at AS Vidojevica and the 2-m RCC telescope of Rozhen National Astronomical Observatory. The authors gratefully acknowledge the observing grant support from the Institute of Astronomy and Rozhen National Astronomical Observatory, Bulgarian Academy of Sciences. Also, the authors owe their sincere gratitude to the anonymous referee for valuable comments and suggestions. This research has made use of the Washington database maintained at the U.S. Naval Observatory and of the SIMBAD database, operated at CDS, Strasbourg, France.

This research has been supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia (Project No 176011 "Dynamics and kinematics of celestial bodies and systems").

References

Bailer-Jones, C. A. L., Rybizki, J., Fouesneau, M., Mantelet, G., \& Andrae, R., 2018, AJ, 156, 58, 11 pp. http://vizier.u-strasbg.fr/viz-bin/VizieR-3?-source=I/347/gaia2dis

Gaia Collaboration et al. (2016): Description of the Gaia mission (spacecraft, instruments, survey and measurement principles, and operations)
Gaia Collaboration et al. (2018): Summary of the contents and survey properties http://vizier.u-strasbg.fr/viz-bin/VizieR-3?-source=I/345/gaia2
Hartkopf, W.I., Mason, B.D. \& Worley, C.E. 2001, AJ, 122, 3472, http://www.usno.navy.mil/USNO/astrometry/optical-IR-prod/wds/orb6
Hartkopf, W.I., \& Mason, B.D. 2011, Catalog of Rectilinear Elements, published in Second USNO Double Star CD 2006.5 available online at http://www.usno.navy.mil/USNO/astrometry/optical-IR-prod/wds/lin1

