Long-term optical photometry of the PMS stars V2764 Ori and LkH α 301 in the field of the McNeil's Nebula

G. Zidarova¹, S. Ibryamov¹, E. Semkov², S. Peneva²

¹ Department of Physics and Astronomy, University of Shumen, 115, Universitetska Str., 9700 Shumen, Bulgaria

² Institute of Astronomy and National Astronomical Observatory, Bulgarian Academy of Sciences, 72, Tsarigradsko Shose Blvd., 1784 Sofia, Bulgaria

g.zidarova@shu.bg

(Submitted on 31.01.2022. Accepted on 08.02.2022)

Abstract. In this paper, we present results from long-term $V(RI)_c$ photometric observations of the pre-main-sequence stars V2764 Ori and LkH α 301, located in the field of the McNeil's Nebula within the Orion star-forming complex. Our observations were performed in the period from August 2004 to November 2021 with three telescopes and seven different types of CCD cameras. Photometric observations, especially concerning the long-term behavior of the stars, are missing in the literature. We present the first photometric monitoring covering 17 years. Our data indicate that the variability of both stars is typical for classical T Tauri stars.

Key words: stars: pre-main sequence, stars: variables: T Tauri, star: individual: (V2764 Ori, $LkH\alpha$ 301)

1. Introduction

The McNeil's Nebula is a reflection nebula discovered by McNeil (2004). It is located in the LDN 1630 molecular cloud, within the Orion star-forming complex, and is associated with the point-like source IRAS 05436-0007 (V1647 Ori). V1647 Ori is an eruptive young object like FUor or EXor that illuminates the McNeil's Nebula. The Orion complex is one of the best-known sites of recent star formation containing many molecular clouds, dark and cometary nebulae, Herbig-Haro objects, and pre-main-sequence (PMS) stars.

Photometric variability in PMS stars is one of their main characteristics. Both classes of PMS stars – the low-mass ($M \le 2M_{\odot}$) T Tauri stars (TTSs) and the more massive ($2M_{\odot} \le M \le 8M_{\odot}$) Herbig Ae/Be stars (HAEBESs) show various types of photometric variability (Herbst et al. 1994). The TTSs exhibit rapid irregular light variations and emission spectra (Joy 1945). They are divided into two subgroups: classical T Tauri stars (CTTSs) and weak-line T Tauri stars (WTTSs). Most of the features that characterize each subgroup suggest the pressence of accretion disks surround CTTSs, whereas they must have almost disappeared in WTTSs (see Bertout 1989 and Ménard & Bertout 1999). CTTSs are distinguished from WTTSs by their strong H α emission line and significant infrared and ultraviolet excesses. The presence of hot and cool spots on the stellar surface, variable accretion activity, circumstellar dust or cloud obscuration events are possible reasons for the variability of TTSs (see Grinin et al. 1991, Herbst et al. 1994 and Ismailov 2005).

The stars included in the present study are located in the field of the Mc-Neil's Nebula. V2764 Ori was found to be variable by Briceño et al. (2004). In their work, the star was labeled as "V". LkH α 301 was registered as H α emission star by Herbig & Kuhi (1963). Semkov (2004) confirmed that these

Bulgarian Astronomical Journal 37, 2022

stars are variables. Both V2764 Ori and LkH α 301 are X-ray sources (Simon et al. 2004). Flaherty & Muzerolle (2008) classified them as CTTSs and determined their stellar parameters – for V2764 Ori: spectral class K4, mass 1.56 M_{\odot} , effective temperature 4590 K, radius 3.04 R_{\odot} and luminosity 3.576 L_{\odot} ; for LkH α 30: spectral class K2.5, mass 1.85 M_{\odot}, effective temperature 4815 K, radius 2.74 R_{\odot} and luminosity 3.525 L_{\odot}. There are spectroscopic studies for V2764 Ori and LkH α 301 in the literature (see Flaherty & Muzerolle 2008, Fang et al. 2009 and Espaillat et al.

2012), but there is no long-term photometry. In this paper, we present the long-term optical light variations of the two stars.

2. Observations and Data reduction

The $V(RI)_c$ photometric observations of the field of the McNeil's Nebula were carried out in the period from August 2004 to November 2021 with the 2-m Ritchey-Chrétien-Coudé (RCC) and the 50/70-cm Schmidt telescopes administered by the Rozhen National Astronomical Observatory (Bulgaria) and the 1.3-m Ritchey-Chrétien (RC) telescope administered by the Skinakas Observatory¹ of the University of Crete (Greece). Seven different CCD cameras were used to obtain the observations as follows: VersArray 1300B and Andor iKon-L BEX2-DD on the 2-m RCC telescope, Photometrics CH360 and Andor DZ436-BV on the 1.3-m RC telescope, and SBIG ST-8, SBIG STL-11000M and FLI PL16803 on the 50/70-cm Schmidt telescope.

All frames were taken through a standard Johnson-Cousins $(V(RI)_c)$ set of filters. Twilight flat-fields in each filter were obtained every clear evening or morning. The frames acquired with the cameras on the 2-m RCC and the 1.3m RC telescopes are bias-frame subtracted and flat-field corrected. The frames obtained with the cameras on the 50/70-cm Schmidt telescope are dark-frame subtracted and flat-field corrected.

The photometric data were reduced using subroutine DAOPHOT in the IDL software package. As a reference sequence we used the $V(RI)_c$ comparisons reported in Semkov (2006). All data were analyzed using the same aperture, which was chosen to have a 5'' radius and background annulus from 10'' to 15''. The average value of the errors in the reported magnitudes is 0.01-0.02mag for the I_c and R_c band data and 0.01-0.03 mag for the V band data.

3. Results and Discussion

Figure 1 shows an I_c band image of the field of the McNeil's Nebula in the LDN 1630, where the positions of the stars from our study and V1647 Ori are marked.

Results from our long-term CCD observations of V2764 Ori are summarized in Table 1. The columns in the table contain date (dd.mm.yyyy format) and Julian date (J.D.) of the observations, $I_c R_c V$ magnitudes of the star, and telescope and CCD camera used. The light curves of the star constructed on

Skinakas Observatory is a collaborative project of the University of Crete, the Foundation for Research and Technology, Greece, and the Max-Planck-Institut für Extraterrestrische Physik, Germany.

Long-term photometry of the PMS stars V2764 Ori and LkH α 301

Fig. 1. An I_c band image of the field of the McNeil's Nebula obtained on 05 February 2013 with the 50/70-cm Schmidt telescope. The positions of the stars from our study and the young object V1647 Ori are marked. North is up, and east is left

the basis of our monitoring are displayed in Fig. 2. The available data suggest that during our observations the brightness of V2764 Ori generally varies around some intermediate level. The star exhibits irregular variability with different amplitudes in different periods. In August 2004 and December 2013, short-term decreases in the star's light were registered.

Fig. 2. $V(RI)_c$ light curves of V2764 Ori for the period August 2004–November 2021.

Date	J.D. (24)	I_c	R_c	V	Tel	CCD	Date	J.D. (24)	I_c	R_c	V	Tel	CCD
	. ,	-						. ,	-				
18.08.2004 21.08.2004	$53235.723 \\ 53238.719$	$13.67 \\ 13.10$	$15.15 \\ 14.41$	$16.41 \\ 15.61$	1.3-m 1.3-m	$_{\rm Phot}$	03.09.2012	$56173.572 \\ 56183.564$	$13.03 \\ 13.05$	$14.31 \\ 14.33$	$15.40 \\ 15.49$	1.3-m 1.3-m	AND AND
09.09.2004	53257.704	13.24	14.59	15.81	1.3-m	Phot	23.09.2012	56193.576	12.95	14.19	15.34	1.3-m	AND
19.09.2004	53267.734	12.90	14.16	15.30 15.30	1.3-m	Phot	09.10.2012	56209.563	13.06	14.13	-	Sch	FLI
20.09.2004 21.09.2004	53268.724 53269.672	$13.04 \\ 13.12$	$14.33 \\ 14.46$	$15.51 \\ 15.65$	1.3-m 1.3-m	Phot Phot	18.11.2012 13.12.2012	$56249.501 \\ 56275.457$	$13.03 \\ 12.88$	$14.34 \\ 14.11$	15.31	Sch 2-m	VA
23.09.2004	53271.716 53277.624	13.44	14.81	16.04 15.66	1.3-m	Phot Phot	14.12.2012	56276.450 56312 331	12.98 12.03	14.24 14.16	15.48	2-m	VA VA
30.09.2004	53277.024 53278.619	13.09	14.38	15.00 15.57	1.3-m	Phot	04.02.2013	56328.303	12.93 13.09	14.10	-	Sch	FLI
$01.10.2004 \\ 02.10.2004$	53279.627 53280.736	$12.90 \\ 12.82$	$14.13 \\ 14.02$	$15.28 \\ 15.21$	1.3-m 1.3-m	$_{\rm Phot}$	05.02.2013	$56329.311 \\ 56540.584$	$13.05 \\ 12.91$	$14.33 \\ 14.18$	$\frac{-}{15.35}$	Sch Sch	$_{\rm FLI}$
03.10.2004	53281.729 53328 498	12.88 13.17	14.12	15.27 15.69	1.3-m Sch	Phot ST 8	07.09.2013	56542.564 56543.503	12.91	14.19 14.16	15 37	Sch 2 m	FLI VA
21.11.2004	53330.546	13.13	14.40	15.67	Sch	ST-8	18.09.2013	56553.544	12.88	14.13	-	1.3-m	AND
38.12.2004 10.12.2004	$53348.359 \\ 53350.390$	$12.93 \\ 12.87$	$14.14 \\ 14.10$	15.35	Sch Sch	ST-8 ST-8		56636.381 56655.413	$12.89 \\ 13.48$	$14.09 \\ 14.92$	15.33	2-m Sch	VA FLI
10.02.2005 11.02.2005	53412.366 53413.350	$12.81 \\ 12.95$	$14.03 \\ 14.21$	-	Sch Sch	ST-8 ST-8	29.12.2013	56656.404 56681.349	$13.10 \\ 13.23$	$14.41 \\ 14.61$	-	Sch Sch	FLI FLI
12.03.2005	53442.273	13.11	14.38	15.63	2-m	VA	05.02.2014	56694.316	13.33	14.67	15.96	2-m	VA
14.08.2005	53464.242 53596.730	$13.11 \\ 12.89$	$14.40 \\ 14.11$	-	5cn 1.3-m	Phot	22.03.2014	56715.250 56739.222	$13.10 \\ 13.18$	-	-	Sch	FLI
27.08.2005 28.08.2005	53609.713 53610.711	$13.02 \\ 12.88$	$14.28 \\ 14.10$	$15.43 \\ 15.23$	1.3-m	Phot Phot	30.03.2014	56747.311 56899.567	-	1459	$15.34 \\ 15.79$	2-m 1.3-m	VA AND
29.08.2005	53611.708	12.88	14.13	15.28	1.3-m	Phot	13.12.2014	57005.488	13.02	14.32	-	Sch	FLI
10.09.2005 10.09.2005	53610.724 53623.724	12.90 12.91	-	$15.32 \\ 15.26$	1.3-m 1.3-m	Phot	24.12.2014	57006.001 57016.438	12.99 12.95	-	15.33	2-m	VA
11.09.2005 15.09.2005	$53624.724 \\ 53628.702$	$12.86 \\ 13.12$	$14.09 \\ 14.45$	$15.23 \\ 15.62$	1.3-m 1.3-m	Phot Phot	25.12.2014	57017.371 57074.281	$13.02 \\ 13.00$	-14.32	-	2-m Sch	VA FLI
19.09.2005	53632.688	12.94	14.20	15 20	1.3-m	Phot	02.09.2015	57267.570	13.04	14.34	15.57	1.3-m	AND
20.09.2005 25.09.2005	53635.700 53638.699	12.97 12.91	14.23 14.13	-	1.3-m 1.3-m	Phot	03.09.2015	57269.595 57269.581	12.92 12.87	14.19 14.12	-	1.3-m	AND
$03.10.2005 \\ 03.11.2005$	$53646.700 \\ 53678.396$	$12.94 \\ 13.15$	$14.20 \\ 14.41$	$15.35 \\ 15.60$	1.3-m 2-m	Phot VA	03.11.2015	$57330.281 \\ 57331.511$	$12.91 \\ 12.80$	$14.20 \\ 14.04$	-	Sch Sch	$_{\rm FLI}$
26.11.2005	53701.340	12.92	-	-	Sch	ST-8 Phot	06.11.2015	57333.444 57222 502	12.88	-	-	Sch	FLI
20.11.2008	53988.592 54791.385	13.00 13.14	14.49	-	Sch	STL-11	08.11.2015	57334.502	12.80 12.87	-	-	Sch	FLI
11.01.2009 24.03.2009	$54843.261 \\ 54915.260$	$13.18 \\ 12.99$	$14.57 \\ 14.28$	-	Sch Sch	STL-11 STL-11	12.12.2015 13.12.2015	$57369.458 \\ 57370.436$	$12.94 \\ 13.02$	$14.12 \\ 14.32$	$15.34 \\ 15.55$	2-m 2-m	VA VA
16.04.2009	54938.268 55065.559	12.89 13.06	-	-	Sch Sch	STL-11 FLI	14.12.2015 15 12 2015	57371.436 57372.435	$13.02 \\ 12.86$	$14.23 \\ 14.11$	15.52	2-m Sch	VA
09.10.2009	55114.450	13.03	14.35	-	Sch	FLI	17.12.2015	57374.398	12.86	14.13	-	Sch	FLI
19.11.2009	55133.417 55155.408	$13.02 \\ 12.99$	$14.34 \\ 14.28$	-	Sch	FLI	07.02.2016	57425.312 57426.302	$12.95 \\ 13.20$	14.23 14.54	-	Sch	FLI
20.11.2009 21 11 2009	55156.470 55157471	$12.99 \\ 13.01$	14.27 14.31	-	Sch Sch	FLI FLI	05.04.2016 22 11 2016	57484.260 57714.500	$12.91 \\ 12.92$	14 10	$15.34 \\ 15.35$	2-m 2-m	VA VA
25.11.2009	55161.496	13.03	14.34	15.57	2-m	VA	22.11.2016	57715.490	13.00	14.31	15.44	2-m	VA
12.03.2010 12.03.2010	55267.275 55268.321	12.96	$14.20 \\ 14.22$	-	2-m	VA VA	02.01.2017	57756.370	12.87 13.00	$14.15 \\ 14.29$	-	Sch	FLI
12.08.2010 20.08.2010	55420.614 55428.606	$13.07 \\ 12.94$	14.18	-	1.3-m 1.3-m	AND AND	27.01.2017	$57781.304 \\57782.376$	12.81	14.08	15.28	Sch 2-m	FLI VA
24.08.2010 25.08.2010	55432.586 55433.594	13.09 13.09	14.38 14.37	-	1.3-m	AND AND	01.02.2017 15 02 2017	57786.333 57800 275	12.81	14 04	15.24	2-m Sch	VA
20.09.2010	55459.636	13.05	14.35	15.50	1.3-m	AND	16.02.2017	57801.305	12.83	14.07	-	Sch	FLI
30.10.2010 31.10.2010	55499.524 55500.503	$13.07 \\ 13.10$	$14.36 \\ 14.41$	$15.61 \\ 15.68$	2-m 2-m	VA VA	28.02.2017 04.03.2017	57813.257 57817.268	$12.88 \\ 12.85$	$14.15 \\ 14.11$	-	Sch	FLI
01.11.2010 01.11.2010	55501.501 55501.546	$13.15 \\ 13.10$	14.42 14 40	15.66	2-m Sch	VA FLI	01.04.2017 02.04.2017	57845.249 57846.255	$12.83 \\ 12.95$	14.09 14.25	-	Sch Sch	FLI FLI
02.11.2010	55502.569	13.04	14.32	15.54	2-m	VA	17.09.2017	58013.548	12.88	14.14	-	Sch	FLI
36.11.2010	55505.472 55506.501	$13.00 \\ 13.11$	14.28 14.42	-	Sch	FLI	18.10.2017	58045.525 58044.595	12.79 12.77	14.03 14.00	-	Sch	FLI
07.11.2010 01.01.2011	55507.511 55563.420	$13.17 \\ 13.06$	$14.51 \\ 14.36$	-	Sch Sch	FLI FLI	22.11.2017	58080.483 58081.486	$12.90 \\ 12.98$	$14.17 \\ 14.25$	-	Sch Sch	FLI FLI
06.01.2011	55568.388	13.10	14.39	15.66	2-m	VA	25.12.2017	58113.402	12.76	13.96	-	Sch	FLI
09.01.2011	55571.378	13.08	14.34 14.37	$15.60 \\ 15.63$	2-m	VA VA	03.09.2018	58364.578	12.85 12.95	14.10 14.26	-	Sch	FLI
06.02.2011 07.02.2011	55599.321 55600.299	$13.05 \\ 12.99$	$14.33 \\ 14.25$	-	Sch Sch	FLI FLI	05.11.2018 12.01.2019	58428.435 58496.316	$12.90 \\ 12.90$	- 14.16	-	Sch Sch	FLI FLI
04.04.2011 09.04.2011	55656.253 55661.260	$12.96 \\ 13.04$	$14.24 \\ 14.28$	15.51	Sch 2-m	FLI VA	28.02.2019	58543.232 58544.250	$12.95 \\ 13.03$	14.29	-	Sch 2-m	FLI AND
11.09.2011	55815.564	13.01	14.27	15.46	1.3-m	AND	12.08.2019	58707.587	12.89	-	-	Sch	FLI
20.09.2011	55810.591 55824.537	13.07 13.13	14.34 14.43	15.52 15.64	1.3-m 1.3-m	AND	03.09.2019	58729.589	12.99 13.12	-	-	2-m 2-m	AND
08.10.2011 14.10.2011	$55842.510 \\ 55848.501$	$12.99 \\ 13.02$	$14.26 \\ 14.28$	$15.41 \\ 15.42$	1.3-m 1.3-m	AND AND	02.10.2019 15.01.2020	$58758.539 \\58864.358$	$12.86 \\ 12.78$	-	-	Sch Sch	FLI FLI
30.10.2011	55865.483	-	14.37 14.26	15 50	2-m	VA	16.01.2020	58865.361 58867.372	12.77	14.15	15 39	Sch 2.m	FLI
26.11.2011	55892.474	13.09	14.33	15.50 15.53	2-m	VA	20.01.2020	58869.361	12.89	14.07	-	2-m	AND
27.11.2011 29.11.2011	55893.417 55895.486	$13.14 \\ 13.08$	$14.43 \\ 14.35$	-	Sch Sch	FLI FLI	21.01.2020	$58870.366 \\58909.278$	$12.75 \\ 12.85$	14.07	-	Sch Sch	FLÍ FLI
30.11.2011	55896.443 55925 450	12.96	14.24 14.20	-	Sch	FLI	21.03.2020	58930.318 59105 602	12.87	-	-	Sch	FLI
43.14.4011	55028 381	12.94 12.99	14.20 14.26	-	Sch	FLI	22.11.2020	59176.451	12.80 12.88	14.24	-	Sch	FLI
01.01.2012	00020.001	10.00			a -		0 8 0 4 5 5 5	FOOD	4.0			~ ~ ~ ~	
$ \begin{array}{c} 01.01.2012 \\ 16.03.2012 \\ 26.03.2012 \end{array} $	56003.258 56013.259	$12.96 \\ 13.33$	$\begin{array}{c}14.24\\14.61\end{array}$	15.88	Sch 2-m	FLI VA	$\begin{array}{c} 05.01.2021 \\ 04.02.2021 \end{array}$	$59220.339 \\ 59250.350$	$13.12 \\ 13.24$	$14.39 \\ 14.51$	$15.71 \\ 15.85$	2-m 2-m	AND AND

Table 1: Photometric CCD observations of V2764 Ori.

The brightness variation of V2764 Ori during the whole period of our monitoring is in the range 12.75-13.67 mag for the I_c band, 13.96-15.15 mag for the R_c band and 15.21-16.41 mag for the V band. The registered amplitudes of the light variations of the star during the same period are 0.92 mag for the I_c band, 1.19 mag for the R_c band and 1.20 mag for the V band. Variability with such amplitudes is observed in CTTSs and it can be explained by variations in the mass accretion rate and rotational modulation from a spot or group of spots on the stellar surface.

The measured color indices $(V - I_c \text{ and } V - R_c)$ versus the V magnitude of V2764 Ori are shown in Fig. 3. As can be seen, the star becomes redder as it fades. Such color variation is typical for T Tauri variables, whose variability is produced by the presence of a spot or group of spots on the star's surface, as well as by the small irregular obscuration by the circumstellar material.

Fig. 3. Color indices $(V - I_c)$ and $(V - R_c)$ versus the V magnitude of V2764 Ori.

LkH α 301 is located at a distance of 20" from V2764 Ori. Results from our long-term photometric monitoring of the star are summarized in Table 2. The columns have the same content as in Table 1. Figure 4 shows $V(RI)_c$ light curves of LkH α 301 from our observations. As can be seen, similar to V2764 Ori, LkH α 301 exhibits irregular light variations and its brightness varies around some intermediate level. In September 2004 and September 2019, two short-term decreases in the star's brightness were registered. During our monitoring the light variation of LkH α 301 is in the range 12.31-13.01 mag for the I_c band, 13.38-14.27 mag for the R_c band and 14.46-15.43 mag for the V band. The observed amplitudes are ΔI_c =0.70 mag, ΔR_c =0.89 mag and ΔV =0.97 mag, which are typical for CTTSs.

		1	able 2	. 1 1100	ometr		observations	S OI EKHA 5	01.				
Date	J.D. (24)	I_c	R_c	V	Tel	CCD	Date	J.D. (24)	I_c	R_c	V	Tel	CCD
18.08.2004 21 08 2004	53235.723 53238.719	12.61 12.67	$13.78 \\ 13.86$	14.89 15.00	1.3-m	Phot Phot	03.09.2012 13 09 2012	56173.572 56183.564	12.41 12.41	$13.48 \\ 13.45$	$14.46 \\ 14.49$	1.3-m	AND
09.09.2004	53257.704	13.01	14.27	15.43	1.3-m	Phot	23.09.2012	56193.576	12.45	13.50	14.54	1.3-m	AND
18.09.2004	53266.733	12.59	13.72	14.81	1.3-m	Phot	23.09.2012	56193.597	12.44	13.51	-	Sch	FLI
20.09.2004	53267.734 53268.724	12.95 12.62	$14.19 \\ 13.78$	$13.34 \\ 14.87$	1.3-m	Phot	18.11.2012	56209.503 56249.501	12.34 12.38	$13.44 \\ 13.48$	-	Sch	FLI
21.09.2004	53269.672	12.55	13.69	14.76	1.3-m	Phot	13.12.2012	56275.457	12.46	13.58	14.68	2-m	VA
23.09.2004	53271.710 53277.624	12.57 12.47	13.71 13.61	14.79 14.73	1.3-m 1.3-m	Phot	14.12.2012 19.01.2013	56312.331	12.46 12.45	13.55	14.72	2-m 2-m	VA VA
30.09.2004	53278.619	12.45	13.55	14.64	1.3-m	Phot	04.02.2013	56328.303	12.56	13.71	-	Sch	FLI
01.10.2004 02.10.2004	53279.627 53280.736	12.50 12.48	$13.61 \\ 13.58$	$14.69 \\ 14.69$	1.3-m	Phot Phot	05.02.2013 05.09.2013	56329.311 56540.584	12.40 12.43	$13.49 \\ 13.53$	14 61	Sch	FLI
03.10.2004	53281.729	12.49	13.62	14.69	1.3-m	Phot	07.09.2013	56542.564	12.42	13.54	-	Sch	FLI
19.11.2004 21 11 2004	53328.498 53330.546	12.56 12.54	13.69 13.64	14.86 14 79	Sch	ST-8 ST-8	08.09.2013	56543.593 56553.544	12.45 12.57	13.55 13.73	14.63	2-m	VA AND
08.12.2004	53348.359	12.45	13.57	14.73	Sch	ST-8	09.12.2013	56636.381	12.53	13.63	14.75	2-m	VA
10.12.2004 10.02.2005	53350.390 53412.366	12.54 12.41	13.66	-	Sch	ST-8	28.12.2013	56655.413 56656 404	12.42	13.52 13.51	-	Sch	FLI
11.02.2005	53413.350	12.41 12.43	13.51 13.55	-	Sch	ST-8	23.01.2014	56681.349	12.40 12.46	13.51 13.58	-	Sch	FLI
12.03.2005	53442.273	12.47	13.60	14.72	2-m Sab	VA	26.02.2014	56715.250 56720.222	12.45	13.57	-	Sch	FLI
14.08.2005	53596.730	12.49 12.45	13.62 13.61	-	1.3-m	Phot	30.03.2014	56747.311	- 12.40	-	14.69	2-m	VA
27.08.2005	53609.713	12.45	13.59	14.67	1.3-m	Phot	30.08.2014	56899.567	12.45	13.57	14.61	1.3-m	AND
20.08.2005	53610.711	12.44 12.37	13.59 13.51	14.07 14.58	1.3-m 1.3-m	Phot	15.12.2014	57005.488 57006.601	12.43 12.42	13.33 13.49	-	Sch Sch	FLI
03.09.2005	53616.724	10.40	13.56	14.62	1.3-m	Phot	24.12.2014	57016.438	12.50	13.57	14.69	2-m	VA
10.09.2005 11.09.2005	53623.724 53624.724	12.46	13.63	14.67 14.71	1.3-m 1.3-m	Phot Phot	20.02.2014	57017.371 57074.281	12.43 12.40	13.49	-	2-m Sch	VA FLI
15.09.2005	53628.702	12.41	13.53	14.57	1.3-m	Phot	02.09.2015	57267.570	12.46	13.53	14.63	1.3-m	AND
19.09.2005	53632.688 53633 706	12.38 12.41	13.51 13.52	14.57	1.3-m 1.3-m	Phot Phot	03.09.2015	57268.593 57269.581	12.47 12.46	13.57 13.56	14.66	1.3-m 1.3-m	AND AND
25.09.2005	53638.699	12.46	13.59	-	1.3-m	Phot	03.11.2015	57330.281	12.43	13.54	-	Sch	FLI
03.10.2005 03.11.2005	53646.700 53678.396	12.45 12.50	13.61 13.67	14.68 14.76	1.3-m	$_{VA}^{Phot}$	05.11.2015 06 11 2015	57331.511 57333.444	12.40	13.50	-	Sch	FLI
26.11.2005	53701.340	12.00 12.41	-	-	Sch	ST-8	07.11.2015	57333.502	12.40	-	_	Sch	FLI
10.09.2006	53988.592 54701 385	12.44 12.45	13.62	-	1.3-m	Phot STL 11	08.11.2015	57334.501 57360 458	12.49	13 14	14 53	Sch 2 m	FLI VA
11.01.2009	54843.261	12.43 12.41	13.52 13.57	-	Sch	STL-11 STL-11	13.12.2015	57370.436	-	-	14.63	2-m	VA VA
24.03.2009	54915.260	12.42	13.59	-	Sch	STL-11	14.12.2015	57371.436	12.41	13.48	14.61	2-m	VA
22.08.2009	54958.208 55065.559	12.37 12.33	-	-	Sch	STL-11	17.12.2015	57374.398	12.43 12.39	13.35 13.49	-	Sch	FLI
09.10.2009	55114.450	12.34	13.45	-	Sch	FLI	06.02.2016	57425.312	12.48	13.60	-	Sch	FLI
19.11.2009	55155.408	12.42 12.36	13.33 13.45	-	Sch	FLI	05.04.2016	57420.302 57484.260	12.44 12.48	-	14.65	2-m	VA
20.11.2009	55156.470	12.40	13.52	-	Sch	FLI	22.11.2016	57714.500		-	14.61	2-m	VA
25.11.2009	55157.471 55161.496	12.31 12.42	$13.38 \\ 13.58$	14.68	2-m	VA	22.11.2016 23.11.2016	57715.490 57716.479	$12.44 \\ 12.42$	13.59	$14.61 \\ 14.69$	2-m 2-m	VA VA
11.03.2010	55267.275	12.43	13.54	14.65	2-m	VA	02.01.2017	57756.370	12.44	13.54	-	Sch	FLI
12.03.2010 12.08.2010	55268.321 55420.614	12.40 12.44	13.54	-	2-m 1.3-m	VA AND	27.01.2017 01 02 2017	57781.304 57786.333	12.40	13.51	1462	Sch 2-m	F'LI VA
20.08.2010	55428.606	12.37	13.43	-	1.3-m	AND	15.02.2017	57800.275	12.48	13.58	-	Sch	FLI
24.08.2010	55432.586 55433.594	12.43 12.40	13.52 13.49	-	1.3-m	AND	16.02.2017 28 02 2017	57801.305 57813.257	12.47 12 44	13.58 13.54	-	Sch	FLI
20.09.2010	55459.636	12.36	13.45	14.47	1.3-m	AND	04.03.2017	57817.268	12.44 12.44	13.53	-	Sch	FLI
30.10.2010	55499.524	12.32	13.44	14.51	2-m	VA	01.04.2017	57845.249	12.45	13.57	-	Sch	FLI
01.11.2010	55500.503 55501.501	12.30 12.40	13.51 13.53	14.61 14.62	2-m 2-m	VA VA	17.09.2017	58013.548	12.43 12.47	13.58 13.59	-	Sch	FLI
01.11.2010	55501.546	12.36	13.46	-	Sch	FLI	17.10.2017	58043.523	12.49	13.57	-	Sch	FLI
04.11.2010	55502.509 55505.472	12.40 12.32	13.32 13.41	- 14.01	Sch	FLI	22.11.2017	58044.595 58080.483	12.43 12.47	13.51 13.55	1	Sch	FLI
06.11.2010 07 11 2010	55506.501	12.35	13.43	-	Sch	FLI	23.11.2017	58081.486	12.48	13.58 13.56	-	Sch	FLI
01.01.2010	55563.420	12.32 12.55	13.41 13.74	-	Sch	FLI	26.12.2017	58113.402 58114.397	12.48 12.46	13.50 13.54	-	Sch	FLI
06.01.2011	55568.388	12.44	13.57	14.68	2-m	VA	03.09.2018	58364.578	12.50	13.62	-	Sch	FLI
09.01.2011	55571.378	12.42	13.52 13.53	14.63 14.65	2-m 2-m	VA VA	12.01.2019	58428.435 58496.316	12.50 12.49	13.61	-	Sch Sch	гы FLI
06.02.2011	55599.321	12.37	13.46	-	Sch	FLI	28.02.2019	58543.232	12.56	-	-	Sch	FLI
07.02.2011 04.04 2011	55600.299 55656.253	12.34 12.36	$13.40 \\ 13.46$	2	Sch Sch	FLI	01.03.2019	58544.250 58707 587	12.72 12.58	13.94	2	2-m Sch	AND FLI
09.04.2011	55661.260	12.39	13.50	14.61	2-m	VA	01.09.2019	58727.587	12.77	-	-	2-m	AND
11.09.2011	$55815.564 \\ 55816.591$	$12.44 \\ 12.43$	13.53	$14.59 \\ 14.57$	1.3-m 1.3-m	AND AND	03.09.2019	58729.589 58758.539	$12.89 \\ 12.53$	2	2	2-m Sch	AND FLI
20.09.2011	55824.537	12.40	13.50	14.60	1.3-m	AND	15.01.2020	58864.358	12.49	-	-	Sch	FLI
08.10.2011 14 10 2011	55842.510 55848.501	12.40	13.49	14.54	1.3-m	AND AND	16.01.2020	58865.361 58867.372	12.49 12.60	13.80	-	Sch 2-m	FLI AND
01.11.2011	55866.521	- 12.42	-	14.53 14.64	2-m	VA	20.01.2020	58869.361	12.60 12.61	-	-	2-m	AND
26.11.2011	55892.474	12.47	13.56	14.63	2-m	VA	21.01.2020	58870.366	12.42	13.61	-	Sch	FLI
29.11.2011	55895.486	12.40 12.35	13.49 13.43	-	Sch	FLI	21.03.2020	58930.318	12.40 12.47	-	2	Sch	FLI
30.11.2011	55896.443	12.38	13.50	-	Sch	FLI	13.09.2020	59105.602	12.44	-	-	Sch	FLI
29.12.2011 01.01.2012	55925.450 55928.381	12.35 12.39	13.43 13.48	-	Sch Sch	гLI FLI	22.11.2020 05.01.2021	59176.451 59220.339	12.40 12.58	$13.62 \\ 13.71$	14.78	Sch 2-m	f'li AND
16.03.2012	56003.258	12.34	13.42		Sch	FLI	04.02.2021	59250.350	12.54	13.70	14.76	2-m	AND
26.03.2012 28.03 2012	$56013.259 \\ 56015.310$	$12.41 \\ 12.47$	$13.52 \\ 13.60$	14.58	2-m 2-m	VA VA	11.09.2021 30.11.2021	59468.598 59549.451	$12.41 \\ 12.41$	13.61	14.71	Sch Sch	FLI FLI
21 08 2012	56160 582	12.43	13 49	-	1.3-m	AND	0.11.2021	55545.401	10.41	-	-	John	1 11

Table 2: Photometric CCD observations of LkH α 301.

Fig. 4. $V(RI)_c$ light curves of LkH α 301 for the period August 2004–November 2021.

The measured color indices $V - I_c$ and $V - R_c$ versus the V magnitude of LkH α 301 are plotted in Fig. 5. A clear dependence can be seen from the figure: the star becomes redder as it fades. This is an expected color variation in the CTTSs.

Fig. 5. Color indices $(V - I_c)$ and $(V - R_c)$ versus the V magnitude of LkH α 301.

We utilized the software package PERIOD04 (Lenz & Breger 2005) to search for periodicity in the light variations of V2764 Ori and LkH α 301. We did not identify any periodicity in their photometric behavior. The reason for this negative result is probably the short life of the hot spots on the stellar surface. Another reason may be the insufficient number of photometric points we have

for the stars. Due to negative declination, the field of the McNeil's Nebula can be observed from Southern Europe only in the period August-April. In some months and years, we have only a few observations of this field.

4. Concluding remarks

We presented and discussed the optical CCD light curves and color-magnitude diagrams of V2764 Ori and LkH α 301. Our observations cover 17 years and represent the first long-term $V(RI)_c$ monitoring of the stars. The shape of the light curves, the brightness variations, and the observed amplitudes of both stars are typical for CTTSs. Our study adds two CTTSs with long-term photometry to the family of known PMS stars. We plan to continue our monitoring of the field of the McNeil's Nebula during the next years.

Acknowledgements

This research has made use of NASA's Astrophysics Data System Abstract Service. The authors thank the Director of Skinakas Observatory Prof. I. Papamastorakis and Prof. I. Papadakis for the award of telescope time. This work was partly supported by the National Science Fund of the Ministry of Education and Science of Bulgaria under grand DN 18-13/2017 and by the research fund of the University of Shumen.

References

Bertout, C., 1989, ARA&A, 27, 3515
Briceño, C., Vivas, A. K., Hernández, J. et al., 2004, ApJ, 606, 123
Espaillat, C., Ingleby, L., Hernández, J. et al., 2012, ApJ, 747, 103
Fang, M., van Boekel, R., Wang, W. et al., 2009, A&A, 504, 461
Flaherty, K. M. & Muzerolle, J., 2008, AJ, 135, 966
Grinin, V. P., Kiselev, N. N., Minikulov, N. Kh., Chernova, G. P., Voshchinnikov, N. V., 1991, Ap&SS, 186, 283
Herbig, G. H. & Kuhi, L. V., 1963, ApJ, 137, 398
Herbst, W., Herbst, D. K., Grossman, E. J. & Weinstein, D., 1994, AJ, 108, 1906
Ismailov, N. Z., 2005, Astronomy Reports, 49, 309
Joy, A. H., 1945, ApJ, 102, 168
Lenz, P. & Breger, M., 2005, CoAst, 146, 53
McNeil, J. W., 2004, IAU Circ, 8284
Ménard, F. & Bertout, C., 1999, In: Origin of Stars and Planetary Systems, eds. C. J. Lada & N. D. Kylafis, 341
Semkov, E. H., 2006, IBVS, 5578, 1
Semkov, E. H., 2006, IBVS, 5683, 1
Simon, T., Andrews, S. M., Rayner, J. T. & Drake S. A., 2004, ApJ, 611, 940