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Abstract. The planar elliptic restricted three body problem under the influence of a cir-
cumstellar belt is studied in this work. The problem is restricted in the sense that one of
the three body is considered to be of so little mass that it does not influence the movement
of the other two larger bodies. However, other than the gravitational and other perturbing
forces due to the larger primaries, we shall also consider the influence of the force due to the
circumstellar or circumplanetary belt. Analytical study of the problem shows existence of
four collinear equilibrium points and a pair of triangular equilibrium points of the model. Nu-
merical methods were applied to the Sun-Jupiter system under the influence of the asteroid
belt and these show the existence of four collinear and two pairs of non-collinear equilibrium
points in the pulsating rotating plane. The numerically obtained results as well as the ana-
lytical results were then graphically represented and the influence of the different perturbing
forces were studied. The basin of attraction of the equilibrium points for the model is also
discussed based on the variation of the perturbing forces.
Key words: Chermynkh-like problem, Elliptic restricted three body problem, power law
density profile, fractal basin of attraction

Introduction

The study of restricted three body problem, which found its applicability in a
wide range of Space operations such as positioning of satellite, station-keeping,
transfer trajectory designing and so on, had started in the form where two large
celestial bodies, assumed to be point masses, are revolving in circular orbits
and the third body is assumed to be of infinitesimal mass. This representation
of few body problem, though not completely solvable, found wide applicability
and has since being under study with various generalization and modifications.
The foremost modification to the problem was the consideration of the per-
turbing forces due to luminosity of the body. The oblateness or triaxiality of
the body was also found to be an effective perturbation in some cases. An-
other form of modification of the problem was consideration of the orbits of
the primaries to be not circular but elliptical. This version of the problem
known as Elliptic Restricted Three Body Problem (ERTBP) was found to be
more effective in exploration of long-time dynamics of the model [Szebehely
(1967)].

In 1987, Chermynkh [Chermnykh (1987)] presented another modified ver-
sion of the restricted three body problem by assuming the angular velocity to
be greater than one. This increase in the angular velocity can be accounted for
considering the perturbation caused by the asteroid belt surrouding the two
primaries. Papadakis [Papadakis (2004)] has recently re-invigorated the inter-
est in these types of problems by studying symmetric motions near the three
collinear equilibrium points in three-dimensional space under the assumption
that the mass parameter is constant while the angular velocity parameter can
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vary continuously. He [Papadakis (2005a)] also illustrated the numerical in-
vestigations of the equilibrium points and the zero-velocity curves. Papadakis
(2005b) also studied asymmetric periodic orbits near triangular equilibrium
points when the assumed angular velocity varies for the Sun-Jupiter mass
distribution. Further studies were carried out by Jiang and Yeh, who stud-
ied a Chermnykh-like problem in which the mass parameter (µ) was set to
0.5, thereby finding both analytically as well as numerically that there are
extra equilibrium points. To explain how the belt around the planet affects
the system, they used a Chermynkh-like model. Miyamoto-Nagai’s profile and
Power-Law’s profile were used to define the gravitational forces from belts in
these studies. Also using the Miyamoto-Nagai profile, Kushvah studied the
linear stability of equilibrium points in the generalized photogravitational
Chermnykh’s problem [Kushvah (2008)], linearized the Hamiltonian in the
generalized photogravitational Chermnykh’s problem [Kushvah (2009)] and
designed trajectory around the Lagrangian point L2 in the Sun-Earth sys-
tem [Kushvah (2011)]. Furthermore, he and his co-authors investigated the
power-law profile and its impact on the restricted three-body problem under a
variety of generalization parameters [Kushvah et al. (2012),Kishor & Kushvah
(2013)], etc.

All the above mentioned work is done in the framework of circular re-
stricted three body problem. In the paper [Chakraborty et al. (2021)], the dy-
namics of the infinitesimal for the planar elliptic restricted three body model
interacting with circumstellar belt is studied. In the above paper the potential
due to the belt is considered according to finite Mestel ring.

In this paper, the model of elliptic restricted three body problem under
the influence of the circumstellar belt is further generalized and improvised
by defining the potential due to circumstellar belt by power law profile and
adding into consideration the radiation pressure of the largest primary and
oblateness of the second primary.

1 Equations of motion

Suppose mi (i = 1, 2) denote the masses of the two primaries M1 (larger)
and M2 (secondary) and let the mass of the infinitesimal body moving in the
plane of the motion of the primaries be m. We suppose that the primaries
lie on the x-axis of the inertial plane represented by the coordinates (ξ, η),
with the origin at the barycenter of the two primary bodies. The center of
the surrounding belt coincides with the barycenter of the primaries. Also,
we take into consideration the radiation pressure of the first primary and
oblateness of the second primary. If the position of the two primaries in the
inertial barycentric frame of reference are (ξ1, η1) and (ξ2, η2), then equations
of motion are given as follows:

ξ̈ =− Gm1q1(ξ − ξ1)

r31
− Gm2(ξ − ξ1)

r32

(

1 +
3A1

2r22
− 15A2

8r42

)

− ∂V

∂ξ
, (1)

η̈ =− Gm1q1(η − η1)

r31
− Gm2(η − η1)

r32

(

1 +
3A1

2r22
− 15A2

8r42

)

− ∂V

∂η
, (2)
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Fig. 1. Geometry of the problem

where,

r21 =(ξ − ξ1)
2 + (η − η1)

2 and r22 = (ξ − ξ2)
2 + (η − η2)

2.
(3)

The parameter q1 = 1 − β1, where, β1 = Fr

Fg
, and Fr is the force caused by

radiation pressure and Fg is the force due to gravitational attraction, is the
radiation factor. The oblateness coefficient of the second primary is denoted by
Ai, with 0 < Ai = J2iR2i

2 << 1, where J2i are zonal harmonic coefficients and
R2 is the mean radii of m2, assuming that the primaries have their equatorial
planes coinciding with the plane of motion. V is denoting the potential due to
circumscribing belt.

The body M2 is orbiting M1 in an elliptic orbit with eccentricity ′e′ and
semi-major axis ′a′, then the distance between the primaries is given by

ρ =
a(1− e2)

1 + e cos f
. (4)

Here f is the true anomaly of the first primary.
Taking the angular velocity ω = ḟ k̂, where ḟ is the rate of change of true

anomaly given by

ḟ =
na2

√
1− e2

ρ2
; (5)

we transform the coordinate system to rotating coordinate system, using the
transformation:

ξ =X cos f − Y sin f, (6)

η =X sin f + Y cos f. (7)
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Also, we take the sum of masses of the two primaries as unit of mass,
distance between the primaries as characteristic length and the period of rev-
olution of the second body as unit of time such that the semi-major axis a ∼ 1
and gravitational constant G ∼ 1. Then, we obtain the following equation of
motion in normalized rotating barycentric coordinate system:

Ẍ − 2Ẏ ḟ − Y f̈ −Xḟ2 =− q1(1− µ)(X + µρ)

R3
1

− µ(X + (µ− 1)ρ)

R3
2

(

1 +
3A1

2R2
2

− 15A2

8R4
2

)

− ∂V

∂X
;

(8)

Ÿ + 2Ẋḟ +Xf̈ − Y ḟ2 =− q1(1− µ)Y

R3
1

− µY

R3
2

(

1 +
3A1

2R2
2

− 15A2

8R4
2

)

− ∂V

∂Y
(9)

where,

R2
1 = (X + µρ)2 + Y 2 and R2

2 = (X + (µ− 1)ρ)2 + Y 2

(10)

Here, µ = m1

m1+m2
. V is the potential due to the disc which is given by

[Kushvah et al. (2012),Yeh& Jiang (2006)]

V =− 4

∫

r′

F (ζ)ρ′(R′)R′

R+R′ dR′, (11)

where F (ζ) denotes the elliptic integral of first kind, R′ is the disk’s reference

radius and ζ = 2
√
RR′

R+R′ .

Then the gravitational force of the disc [Yeh& Jiang (2006)]

fb(R) =−
(

dV

dR

)

R=Rm

= −2

∫

ρ′(R′)R′

R+R′

[

E(ζ)

R+R′ +
F (ζ)

R+R′

]

dR′; (12)

where, E(ζ) is the elliptic integral of the second kind. The power law density
profile of the disc, having thickness h ≈ 10−4 is ρ(R) = cR−p, p = 3 and
c, is constant determined with help of disc mass. Calculating fb(R) at R =
Rm = 0.99 and expanding integrals in equation (11) and (12) with the limit
b ≤ R′ ≤ a and choosing appropriate term relative to R, the simplified form
of fb(R) [Jiang & Yeh (2006)] is obtained as

fb(R) =− 2chπ

R2

(

a− b

ab

)

− 3chπ

8

1

R3
log
(a

b

)

∣

∣

∣

∣

R=Rm

. (13)

Here, a and b are inner and outer radii of the belt. Further transforming the
coordinate system to pulsating coordinate system, using the transformation
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X = ρx̄, Y = ρȳ and employing the equations (12) and (13), we get the
system of equations:

x̄′′ − 2ȳ′ =
1

1 + e cos f

[

x̄− 1

n2

{

q1(1− µ)(x̄+ µ)

r̄31

+
µ(x̄+ µ− 1)

r̄32

(

1 +
3A1

2r̄22
(1 + e cos f)2 − 15A2

8r̄42
(1 + e cos f)4

)

+
2chπ(a− b)

ab

x̄

r̄3
+

3chπ

8
log

a

b

x̄

r̄4
(1 + e cos f)

}]

; (14)

ȳ′′ + 2x̄′ =
1

1 + e cos f

[

ȳ − 1

n2

{

q1(1− µ)ȳ

r̄31

+
µȳ

r̄32

(

1 +
3A1

2r̄22
(1 + e cos f)2 − 15A2

8r̄42
(1 + e cos f)4

)

+
2chπ(a− b)

ab

ȳ

r̄3
+

3chπ

8
log

a

b

ȳ

r̄4
(1 + e cos f)

}]

; (15)

where,

r̄21 = (x̄+ µ)2 + ȳ2 and r̄22 = (x̄+ µ− 1)2 + ȳ2

(16)

2 Mean motion

In the elliptical case, the distance between the primaries is given by (4) so that

the mean distance between them is obtained as a(1−e2)√
1+e2

. We have assumed the

eccentricity of the orbit of the primary M1 and the eccentricity of the orbit of
the primary M2 are both equal to e. Then the equation of mean motion [Idrisi
et al. (2021)] is simplified as

n2 =1 +
3

2
e2. (17)

Then the pseudo mean motion, including the effect due to radiation pressure
of largest primary, oblateness of the second primary and precision effect due
to the presence of circumstellar belt, is given by

n2 =q1 +
3

2

(

e2 +A1 −
5

4
A2

)

− 2fb(r̄)

∣

∣

∣

∣

r̄=r̄m

. (18)

3 Position of equilibrium points

The critical values of the potential function Ω(x̄, ȳ, z̄, f) are determined as the
equilibrium points of the system of differential equations (14) and (15). These
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equilibrium points are also known as Libration points or Lagrangian points.
The position of the five Lagrangian points, with the solar radiation pressure
of one of the primaries taken into account(neglecting the effect of drag forces),
was analyzed in the case of ERTBP [Ammar (2008)]. However, it has been
studied that the Lagrangian equilibrium points in the classical problem (i.e.,
CRTBP) shift their location when the other perturbation forces are considered.
This section is focused on the study of the position of the equilibrium points in
ERTBP when the potential due to circumstellar belt is also considered along
with radiation pressure of the largest primary and oblateness of the second
primary.

At the equilibrium points, the particle has zero velocity and acceleration,
therefore taking x̄′′ = x̄′ = ȳ′′ = ȳ′ = 0 in equation (14) and (15), we consider
the equations

n2x̄−
{

q1(1− µ)(x̄+ µ)

r̄31
+

µ(x̄+ µ− 1)

r̄32

(

1 +
3A1

2r̄22
(1 + e cos f)2

− 15A2

8r̄42
(1 + e cos f)4

)

+B1
x̄

r̄3
+B2

x̄

r̄4
(1 + e cos f)

}

= 0; (19)

n2ȳ −
{

q1(1− µ)ȳ

r̄31
+

µȳ

r̄32

(

1 +
3A1

2r̄22
(1 + e cos f)2 − 15A2

8r̄42
(1 + e cos f)4

)

+B1
ȳ

r̄3
+B2

ȳ

r̄4
(1 + e cos f)

}

= 0; (20)

where,

B1 =
2chπ(a− b)

ab
,

B2 =
3chπ

8
log

a

b
.

For numerical explorations, consider the model to be composed of an infinites-
imal particle affected by the forces due to the Sun as radiating primary and
Jupiter as the oblate second primary. The oblateness factors for the second
primary are assumed to be A1 = 0.005 and A2 = 0.005, respectively. The inner
and outer radius are assumed to be b = 1 and a = 1.5 respectively, control fac-
tor of density profile c = 1910.83 and disk thickness h = 0.0001. For analytical
and numerical study of the effect of the perturbation due to the circumstellar
belt, we are using the notation B1 and B2 to denote the two parts of the per-
turbing force. Figure 2 shows two set of curves depicting the equations (19)
and (20) and, hence, the point of intersection of these two curves are the crit-
ical points of the system. However, the equilibrium points depicted in these
figures are numerically obtained. In this figure, the shift in the position of the
equilibrium points, when the perturbing forces such as the radiation pressure
of the largest primary, the oblateness of the second primary and the influence
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of force due to the circumstellar belt is considered from that of the case when
these forces are neglected, is made. It was observed that when the perturbing
forces are neglected the model shows the presence of five equilibrium points
same as observed in CRTBP (see fig. 2). However, when the perturbing forces
are considered, numerical study of the system shows the presence of eight
equilibrium points, of which five equilibrium points are analogues to the clas-
sically obtained Lagrangian equilibrium points L1, L2, L3 (collinear points),
L4 and L5(triangular points). Out of the three newly obtained equilibrium
points, a pair of non-collinear points are equidistantly placed above and below
the y−axis and the third is lying on the x−axis between the largest primary
and collinear equilibrium point L1.

Figures 3 to 6 present the study of the behavior of the above mentioned
model varying the different perturbing forces. Figure 3 depicts the shift in the
position of the points when the radiation pressure is reduced from 1 to 0.6.
It was observed that the triangular equilibrium points show substantial shift,
they are moving farther from x-axis and towards y-axis. Also the equilibrium
point L3, L3α show shift towards the largest primary. To study the effect of the
circumstellar belt, the thickness of the belt h is varied from 0 to 0.0003. The
curves are drawn in figure 4 corresponding to three values h = 0, 0.0001, 0.0003.
It was found that for h = 0, the equilibrium point L3α vanishes and the points
L3, L4, L5, L4(N) and L5(N) show shift in position with increased value of h.
Figures 5 and 6 represent the shift in the position of the equilibrium points
with respect to the two factors of oblateness A1 and A2 which are varied as
0, 0.05, 0.1. The position and existence of many of the equilibrium points
were found to be affected by A2. A general though slight shift in position of
all equilibrium points was observed varying A1, whereas when A2 is increased
the number of equilibrium points decreased from eight to five and then to one.

3.1 The Triangular equilibrium points

Now to get the coordinates of triangular equilibrium points, we solve the equa-
tions (19) and (20), taking y 6= 0. From equation (20), we have

n2 −
{

q1(1− µ)

r̄31
+

µ

r̄32

(

1 +
3A1

2r̄22
(1 + e cos f)2 − 15A2

8r̄42
(1 + e cos f)4

)

+B1
1

r̄3
+B2

1

r̄4
(1 + e cos f)

}

= 0 (21)

Then, equation (19) reduces to:

q1(1− µ)µ

r̄31
+

µ(µ− 1)

r̄32

(

1 +
3A1

2r̄22
(1 + e cos f)2 − 15A2

8r̄42
(1 + e cos f)4

)

= 0

(22)

In absence of all perturbing forces other than the radiation pressure of the
largest primary, the solution of the system of equations is given by
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Fig. 2. A comparative representation of equilibrium points in the Sun-Jupiter system with
and without the perturbing forces
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Fig. 3. The shift in the equilibrium points due to the effect of radiation factor q1 of the
massive primary. The blue dots represent the numerically obtained position of the planar
equilibrium points.
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Fig. 4. The shift in the equilibrium points due to the effect of the circumstellar belt. The
blue dots represent the numerically obtained position of the planar equilibrium points.
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Variation in the value of A1

Fig. 5. The shift in the equilibrium points due to the effect of the oblateness of the second
primary A1. The blue dots represent the numerically obtained position of the planar equi-
librium points.
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Variation in the value of A2

Fig. 6. The shift in the equilibrium points due to the effect of the oblateness of the second
primary A2. The blue dots represent the numerically obtained position of the planar equi-
librium points.
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r̄1 = q
1/3
1 , r̄2 = 1

Let us assume that due to the oblateness of primaries, radiation pressure and
the influence of circumstellar belt, the values of r̄1 and r̄2 is given by

r̄1 =q
1/3
1 + ǫ1, r̄2 = 1 + ǫ2. (23)

Then, we have

x̄ =
q
1/3
1

2
− µ+ q

1/3
1 ǫ1 − ǫ2, (24)

and

ȳ2 = r̄21 − (x̄− µ)2

⇒ȳ = ±q
1/3
1

(

1− q
2/3
1

4
+ (2q

−1/3
1 − q

1/3
1 )ǫ1 + ǫ2

)1/2
, (25)

Substituting equation (23)-(25) in system (19) and (20) and solving we get
the values of ǫ1 and ǫ2 as:

ǫ1 =
N1

Dn
, ǫ2 =

N2

Dn
. (26)

where,

N1=−
[{

1−n2+

(

B1

q
5/3
1

+
B2

q21
(1+e cos f)

)

(q
2/3
1 −2µq1/31 )

}(

1+
5

2
A1(1+e cos f)2−

− 35

8
A2(1+e cosf)4

)

+µ

(

3B1

2q
5/3
1

+
B2

q21
(1+e cosf)

)(

A1(1+e cosf)2.

.
(

1 +
15

2
µ
)

− 5

8
A2(1 + e cosf)4

(

2 + 21µ
)

+3µ

)]

(27)

N2=−
[(

1−n2+
3

2
A1(1+e cosf)2− 15

8
A2(1+e cosf)4

)(

q
1/3
1 − B1

q
4/3
1

(1−µ)

)

−

−4µ(q
1/3
1 −3µ)

(

3B1

q21
+

B2

q
2/3
1

(1+e cosf)

)

+
B2

q
5/3
1

(1+e cosf).

.

(

1+2A1(1+e cosf)2
(

1−µ)− 5

2
A2(1+e cosf)4

(

1−µ
)

µ

)]

(28)

Dn =3

[

µ

q21
−
{

1

q
1/3
1

+

(

B1

q
4/3
1

(1− µ)− 4B2

3q
5/3
1

(1 + e cos f)

)

(1− µ)

}

.

.

(

1 +
5

2
A1(1 + e cos f)2 − 35

8
A2(1 + e cos f)4

)]

(29)
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Hence, substituting the values of ǫ1 and ǫ2 in equations (24) and (25), we
get the coordinates of the triangular equilibrium points.

3.2 Collinear Equilibrium points

The equilirium points lying on the x−axis of the plane on which the primaries
are assumed to be situated are called collinear equilibrium points. The position
of these equilibrium points has been obtained by adding the condition y = 0 to
the equations (19) and (20). Thus we get reduced condition for the existence
of collinear equilibrium points as:

f(x)=n2x̄−
{

q1(1−µ)(x̄+µ)

|x̄+µ|3 +
µ(x̄+µ−1)

|x̄+µ−1|3
(

1+
3A1

2|x̄+µ−1|2 . (1+e cos f)2−

− 15A2

8|x̄+ µ− 1|4 (1 + e cos f)4
)

+B1
x̄

|x̄|3+

+B2
x̄

|x̄|4 (1 + e cos f)

}

= 0. (30)

Also, in the classical studies, three collinear equilibrium points L1, L2 and L3
are defined to exist in the following range:

1. L1 lies between the bigger and the smaller primary: −µ < x < 1− µ,
2. L2 lies to the right of the smaller primary: x > 1− µ,
3. L3 lies to the left of the bigger primary: x < −µ.

However, when considering the effect of the belt, we observe that the range
−µ < x < 1 − µ is further separated into two sub-ranges −µ < x < 0 and
0 < x < 1− µ. So we shall be studying four cases:

1. L1 lies between the bigger and the smaller primary: 0 < x < 1− µ,
2. L2 lies to the right of the smaller primary: x > 1− µ.
3. L3 lies to the left of the bigger primary: x < −µ,
4. L3α lies to the right of the bigger primary: −µ < x.

For each case the polynomial equation is expanded to get an idea of the
number of possible real roots.

Case(i) For 0 < x < 1− µ In this case, we have

|x̄+ µ| = x̄+ µ, |x̄+ µ− 1| = −(x̄+ µ− 1)and |x̄| = x (31)

Then,

f(x) = n2x̄−
{

q1(1− µ)

(x̄+ µ)2
− µ

(x̄+ µ− 1)2

(

1 +
3A1

2(x̄+ µ− 1)2
(1 + e cos f)2

− 15A2

8(x̄+ µ− 1)4
(1 + e cos f)4

)

+
B1

x̄2
+

B2

x̄3
(1 + e cos f)

}

= 0.

(32)
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Fig. 7. The shift in the equilibrium points as calculated by analytic method, compared with
respect to the different perturbing parameters
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f ′(x) = n2 +

{

2q1(1− µ)

(x̄+ µ)3
− 2µ

(x̄+ µ− 1)3

(

1 +
3A1

(x̄+ µ− 1)2
(1 + e cos f)2

− 45A2

8(x̄+ µ− 1)4
(1 + e cos f)4

)

+
2B1

x̄3
+

3B2

x̄4
(1 + e cos f)

}

= 0.

we note that in this range f ′(x) > 0, where as f(ǫ) → −∞ and f(1−µ−ǫ) → ∞
as ǫ → 0. Thus, in this range one collinear point, generally named as L1 is
obtained as follows:

Let

x+ µ− 1 = −ρ1, where 0 < ρ1 << 1 (33)

Then, equation (32) reduces to the form:

n2(1− µ− ρ1)−
q1(1− µ)

(1− ρ1)2
+

µ

ρ21

(

1 +
3A1(1 + e cos f)2

2ρ21
− 15A2(1 + e cos f)4

8ρ41

)

− B1

(1− µ− ρ1)2
− B2(1 + e cos f)

(1− µ− ρ1)3
= 0. (34)

Simplifying, we obtain

µ

1−µ
(1−ρ1)

2

(

1+
9

2
A1(1+e cos f)2− 75

8
A2(1 + e cos f)4

)

(1−dc11−dc12−dc13)

=ρ21
(

q1−n2+B1−B2(1+e cos f)
)

(1+nc11−nc12+nc13) ; (35)

where,

dc11 =
3A1(1 + e cos f)2 − 15

2 A2(1 + e cos f)4

1 + 9
2A1(1 + e cos f)2 − 75

8 A2(1 + e cos f)4
(36)

dc12 =
3B1 + 4B2(1 + e cos f)

1 + 9
2A1(1 + e cos f)2 − 75

8 A2(1 + e cos f)4
(37)

dc13 =
n2 + 2B1 + 3B2(1 + e cos f)

1 + 9
2A1(1 + e cos f)2 − 75

8 A2(1 + e cos f)4
(38)

nc11 =
3n2 +B2(1 + e cos f)

q1 − n2 +B1 −B2(1 + e cos f)
(39)

nc12 =
3n2 + 3B1 + 5B2(1 + e cos f)

q1 − n2 +B1 −B2(1 + e cos f)
(40)

nc13 =
n2 + 2B1 + 3B2(1 + e cos f)

q1 − n2 +B1 −B2(1 + e cos f)
(41)
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Taking

λ2 =

(

1 + 9
2A1(1 + e cos f)2 − 75

8 A2(1 + e cos f)4
)

µ

(q1 − n2 +B1 −B2(1 + e cos f))(1− µ)
. (42)

For a very small value of ρ1, ρ1 ≈ λ1, thus we use the series expansion

ρ1 = λ1(1 + c11λ1 + c12λ
2
1 + · · · ). (43)

Substituting equations (42) and (43) in (35), we get the values of the coeffi-
cients c11 and c12 as follows:

c11 =
1

2
(2− dc11 − nc11) ,

c12 =
1

2
(1− 2dc11 − dc12 + nc12 + c11(c11 − 2nc11)) . (44)

Thus, x-coordinate of the collinear point L1 is given as

x =1− µ− ρ1, (45)

where, ρ1 is given using (43) and coefficients given by (44).
Case(ii) x>1−µ Here we have,

|x̄+µ|= x̄+µ, |x̄+µ−1|=(x̄+µ−1) and |x̄|=x (46)

Then,

f(x) = n2x̄−
{

q1(1− µ)

(x̄+ µ)2
+

µ

(x̄+ µ− 1)2

(

1 +
3A1

2(x̄+ µ− 1)2
(1 + e cos f)2

− 15A2

8(x̄+ µ− 1)4
(1 + e cos f)4

)

+
B1

x̄2
+

B2

x̄3
(1 + e cos f)

}

= 0.

(47)

and

f ′(x) = n2 +

{

2q1(1− µ)

(x̄+ µ)3
+

2µ

(x̄+ µ− 1)3

(

1 +
3A1

(x̄+ µ− 1)2
(1 + e cos f)2

− 45A2

8(x̄+ µ− 1)4
(1 + e cos f)4

)

+
2B1

x̄3
+

3B2

x̄4
(1 + e cos f)

}

= 0.

Again we observe f ′(x) > 0 for this range. We also find f(1 − µ + ǫ) → ∞
as ǫ → 0 and f(∞) → ∞. Thus, in this range one collinear point, generally
named L2 is obtained as follows:
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Assuming

x+ µ− 1 = ρ2, where 0 < ρ2 << 1; (48)

equation (32) reduces to the form:

n2(1− µ+ ρ2)−
q1(1− µ)

(1 + ρ2)2
− µ

ρ22

(

1 +
3A1(1 + e cos f)2

2ρ22
− 15A2(1 + e cos f)4

8ρ42

)

− B1

(1− µ+ ρ2)2
− B2(1 + e cos f)

(1− µ+ ρ2)3
= 0. (49)

Simplifying, we obtain

µ

1−µ
(1+ρ2)

2

(

1+
9

2
A1(1+e cosf)2− 75

8
A2(1+e cosf)4

)

(1−dc11+dc12−dc13)

=ρ22
(

n2 − q1 −B1 −B2(1 + e cos f)
)

(1 + nc21 + nc22 + nc23) ;
(50)

where,

nc21 =
3n2 +B2(1 + e cos f)

n2 − q1 −B1 −B2(1 + e cos f)
, (51)

nc22 =
3n2 + 3B1 + 5B2(1 + e cos f)

n2 − q1 −B1 −B2(1 + e cos f)
, (52)

nc23 =
n2 + 2B1 + 3B2(1 + e cos f)

n2 − q1 −B1 −B2(1 + e cos f)
, (53)

and dc11 − dc13 are given by (36)-(38). Taking

λ2 =

(

1 + 9
2A1(1 + e cos f)2 − 75

8 A2(1 + e cos f)4
)

µ

(n2 − q1 −B1 −B2(1 + e cos f))(1− µ)
. (54)

For a very small value of ρ2, ρ2 ≈ λ2, thus we use the series expansion

ρ2 = λ2(1 + c21λ2 + c22λ
2
2 + · · · ). (55)

Substituting equations (54) and (55) in (50), we get the values of the coeffi-
cients c21 and c22 as follows:

c21 =
1

2
(2− dc11 + nc21) .

c22 =
1

2
(1− 2dc11 + dc12 + nc22 + c21(c21 + 2nc21)) . (56)

Thus, x-coordinate of the collinear point L2 is given as

x =1− µ+ ρ2, (57)
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where, ρ2 is given using (55) and coefficients are given by (56).

Case(iii) x < −µ
In this case, we have

|x+ µ| = −(x+ µ), |x+ µ− 1| = −(x+ µ− 1) and |x| = −x (58)

Then, from equation (30), we have

f(x)=n2x̄+

{

q1(1−µ)

(x̄+µ)2
+

µ

(x̄+µ−1)2

(

1+
3A1

2(x̄+µ−1)2
(1+e cos f)2

− 15A2

8(x̄+ µ− 1)4
(1 + e cos f)4

)

+
B1

x̄2
− B2

x̄3
(1 + e cos f)

}

= 0.

(59)

and

f ′(x) = n2 −
{

2q1(1− µ)

(x̄+ µ)3
+

2µ

(x̄+ µ− 1)3

(

1 +
3A1

(x̄+ µ− 1)2
(1 + e cos f)2

− 45A2

8(x̄+ µ− 1)4
(1 + e cos f)4

)

+
2B1

x̄3
− 3B2

x̄4
(1 + e cos f)

}

= 0.

Again we observe f ′(x) > 0 for this range. We also find f(−∞) → −∞ and
f(−µ − ǫ) → ∞ as ǫ → 0. Thus, in this range one collinear point, generally
named L3 is obtained as follows:

We take

x+ µ = −ρ3, where 0 < ρ3 << 1. (60)

Then, equation (59) reduces to the form:

−n2(µ+ρ3)+

{

q1(1− µ)

ρ23
+

µ

(1 + ρ3)2

(

1+
3A1

2(1 + ρ3)2
(1 + e cos f)2

− 15A2

8(1+ρ3)4
(1+e cosf)4

)

+
B1

(µ+ρ3)2
− B2

(µ+ρ3)3
(1+e cosf)

}

=0.

(61)

Simplifying, we obtain

µ

1−µ
=

q1+(3B1−4B2(1+e cosf))ρ23−(n2+2B1−3B2(1+e cosf))ρ3
[

n2−1− 3A1

2 (1+e cosf)2+ 15A2

8 (1+e cosf)4−B1+B2(1+e cosf)

+
(

3n2+3A1(1+e cos f)2− 15A2

2 (1+e cosf)4−B2(1+e cosf)
)

ρ3

+
(

3n2+3B1−5B2(1+e cosf)
)

ρ23+
(

n2+2B1−3B2(1+e cosf)
)

ρ33

]

(62)

38



Anindita Chakraborty

Thus taking

α = ρ3 − 1, q1 = 1− β1 and n2 = 1− δn; (63)

equation (76) is represented as

µ

1− µ
= −N1

D1
. (64)

Here, the numerator and denominator are

N1 =4(β1 − δn −B1 +B2(1 + e cos f)) + (12 + 4β1 − 16δn − 4B1)α

+ (24 + β1 − 25δn + 11B1 − 23B2(1 + e cos f))α2

+ (19− 19δn + 20B1 − 33B2(1 + e cos f))α3 + · · · (65)

D1 =7−8δn+
3A1

2
(1+e cos f)2− 45A2

8
(1+e cos f)4+4B1−8B2(1+ ecos f)

+

(

26−28δn+
12A1

2
(1+e cosf)2− 75A2

4
(1+ ecosf)4+20B1−36B2(1+ ecosf)

)

α

+

(

37−38δn+
15A1

2
(1+e cosf)2− 165A2

8
(1+e cosf)4+37B1−62B2(1+e cosf)

)

α2

+

(

25−25δn+
6A1

2
(1+e cosf)2− 15A2

2
(1+e cosf)4+ 32B1−51B2(1+e cosf)

)

α3

(66)

Then, from equation (64)

µ = − N1

D1 −N1
. (67)

We get

−µ1

α
=
12

7
+
20

49
β1−

8

49
δn−

18A1

49
(1+e cos f)2+

135A2

98
(1+e cos f)4− 68

49
B1

+
88

49
B2(1+e cosf)−

(

37

49
β1−

37

49
δn+

36A1

49
(1+e cosf)2− 90A2

49
(1+e cosf)4

+
23

49
B1−

43

49
B2(1+e cosf)

)

α−
(

23

49
− 82

343
β1−

1

49
δn−

285A1

686
(1+e cosf)2

+
4275A2

2744
(1+e cos f)4− 354

343
B1+

531

343
B2(1+e cosf)

)

α2+· · · (68)

where,

µ1 = µ+
4(β1 − δn −B1 +B2(1 + e cos f))

7
. (69)
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The first approximation to a solution for α in linear terms is given as

α=α0=
−µ1

12
7 +20

49β1− 8
49δn−

18A1

49 (1+e cosf)2+ 135A2

98 (1+e cosf)4

−68
49B1+

88
49B2(1+e cosf)

=− 7

12
µ1. (70)

Then, the next approximation for α is obtained as:

α = α0

−

(

37
49β1 − 37

49δn + 36A1

49 (1 + e cos f)2 − 90A2

49 (1 + e cos f)4

+23
49B1 − 43

49B2(1 + e cos f)

)

(

12
7 + 20

49β1 − 8
49δn − 18A1

49 (1 + e cos f)2 + 135A2

98 (1 + e cos f)4

−68
49B1 +

88
49B2(1 + e cos f)

)α2
0

+

[

2













(

37
49β1 − 37

49δn + 36A1

49 (1 + e cos f)2 − 90A2

49 (1 + e cos f)4

+23
49B1 − 43

49B2(1 + e cos f)

)

(

12
7 + 20

49β1 − 8
49δn − 18A1

49 (1 + e cos f)2 + 135A2

98 (1 + e cos f)4

−68
49B1 +

88
49B2(1 + e cos f)

)













2

+

(

23
49 − 82

343β1 − 1
49δn − 285A1

686 (1 + e cos f)2 + 4275A2

2744 (1 + e cos f)4

+354
343B1 +

531
343B2(1 + e cos f)

)

(

12
7 + 20

49β1 − 8
49δn − 18A1

49 (1 + e cos f)2 + 135A2

98 (1 + e cos f)4

−68
49B1 +

88
49B2(1 + e cos f)

)

]

α3
0 + · · ·

(71)

Thus, x-coordinate of the collinear point L3 is given as

x =1− µ+ α. (72)

Case(iv) −µ < x < 0

In this case, we have

|x+ µ| = (x+ µ), |x+ µ− 1| = −(x+ µ− 1) and |x| = −x (73)
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Then, from equation (30), we have

f(x) = n2x̄−
{

q1(1− µ)

(x̄+ µ)2
+

µ

(x̄+ µ− 1)2

(

1 +
3A1

2(x̄+ µ− 1)2
(1 + e cos f)2

− 15A2

8(x̄+ µ− 1)4
(1 + e cos f)4

)

+
B1

x̄2
+

B2

x̄3
(1 + e cos f)

}

= 0.

(74)

and

f ′(x) = n2 −
{

− 2q1(1− µ)

(x̄+ µ)3
+

2µ

(x̄+ µ− 1)3

(

1 +
3A1

(x̄+ µ− 1)2
(1 + e cos f)2

− 45A2

8(x̄+ µ− 1)4
(1 + e cos f)4

)

+
2B1

x̄3
− 3B2

x̄4
(1 + e cos f)

}

= 0.

Again we observe f ′(x) > 0 for this range. We also find f(−µ+ ǫ) → −∞ and
f(−ǫ) → ∞ as ǫ → 0 . Thus, in this range also one collinear point may exist
which is named L3α by assuming Let

x+ µ = ρ4, where 0 < ρ4 << 1 (75)

Then, equation (74) reduces to the form:

n2(−µ+ ρ4) +

{

q1(1− µ)

ρ24
+

µ

(ρ4 − 1)2

(

1 +
3A1

2(ρ4 − 1)2
(1 + e cos f)2

− 15A2

8(ρ4−1)4
(1+e cosf)4

)

− B1

(−µ+ρ4)2
− B2

(−µ+ρ4)3
(1+e cosf)

}

=0.

(76)

Simplifying, we obtain

µ

1−µ
=

q1−2q1ρ4+(q1+3B1−4B2(1+e cos f))ρ24+(n2−8B1+11B2(1+e cos f))ρ34
−(2n2−7B1+10B2(1+e cos f))ρ44+(n2−2B1+3B2(1+e cos f))ρ54
[

n2−1− 3A1

2 (1+e cos f)2+ 15A2

8 (1+e cos f)4−B1+B2(1+e cos f)

+
(

3n2+3A1(1+e cos f)2− 15A2

2 (1+e cos f)4−B2(1+e cos f)
)

ρ3
+
(

3n2+3B1−5B2(1+e cos f)
)

ρ23 +
(

n2+2B1−3B2(1+e cos f)
)

ρ33

]

.

(77)

Now taking

α∗ = ρ4 + 1, q1 = 1− β1 and n2 = 1− δn; (78)
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equation (77) is represented as

µ

1− µ
=

N2

7D2
. (79)

Here, the numerator and denominator are

N2=4(δn−β1+5B1−7B2(1+e cosf))+(12+4β1−16δn−68B1+96B2(1+e cosf))α∗

− (24 + β1 − 25δn − 89B1 + 127B2(1 + e cos f))(α∗)2

+ (19− 19δn − 56B1 + 81B2(1 + e cos f))(α∗)3

−(7−7δn−17B1+25B2(1+e cos f))(α∗)4+(1−δn−2B1+3B2(1+e cosf))(α∗)5,
(80)

D2 = 1− 8δn
7

+
3A1

14
(1+e cosf)2− 45A2

56
(1+e cosf)4−4B1+

40

7
B2(1+e cos f)

−
(

26

7
−4δn+

12A1

14
(1+e cosf)2− 75A2

28
(1+e cosf)4− 92

7
B1+

132

7
B2(1+e cosf)

)

α∗

+

(

37

7
− 38δn

7
+

15A1

14
(1 + e cos f)2 − 165A2

56
(1 + e cos f)4

− 115

7
B1 +

166

7
B2(1 + e cos f)

)

(α∗)2

−
(

25

7
− 25δn

7
+
6A1

14
(1+e cosf)2− 15A2

14
(1+e cosf)4− 68

7
B1+

99

7
B2(1+e cosf)

)

(α∗)3

+

(

8

7
− 8

7
δn − 19

7
B1 + 4B2(1 + e cos f)

)

(α∗)4

2−
(

1

7

(

1− δn
)

− 2

7
B1 +

3

7
B2(1 + e cos f)

)

(α∗)5. (81)

We get

−µ2

α∗ =
12

7
− 76

49
β1 +

88

49
δn − 18A1

49
(1 + e cos f)2 +

135A2

98
(1 + e cos f)4 − 380

49
B1

−536

49
B2(1 + e cos f) +

(

144

49
− 989

343
β1 +

1227

343
δn − 180A1

343
(1 + e cos f)2

+
990A2

343
(1 + e cos f)4− 536

343
B1−

757

343
B2(1 + e cos f)

)

α∗+

(

1567

343
− 10930

2401
β1

−2207

343
δn − 1461A1

4802
(1 + e cos f)2 +

82395A2

19208
(1 + e cos f)4

−65122

2401
B1 −

9179

2401
B2(1 + e cos f)

)

(α∗)2 + · · · ; (82)

where,

µ2 =
µ

1− µ
+

4

7
(δn − β1 + 5B1 − 7B2(1 + e cos f)). (83)
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The first approximation to a solution for α in linear terms is given as

α∗=α∗
0=

µ2
[

12
7 − 76

49β1+
88
49δn−

18A1

49 (1+e cosf)2

+ 135A2

98 (1+e cosf)4− 380
49 B1− 536

49 B2(1+e cosf)

] =
7

12
µ1. (84)

Then, the next approximation for α is obtained as:

α∗

= α∗
0

−
[

1

Dn∗

(

144

49
− 989

343
β1+

1227

343
δn−

180A1

343
(1+e cosf)2+

990A2

343
(1+e cosf)4

− 536

343
B1 −

757

343
B2(1 + e cos f)

)

]

(α∗
0)

2

+

[

2

(Dn∗)2

(

144

49
− 989

343
β1+

1227

343
δn−

180A1

343
(1+e cosf)2+

990A2

343
(1+e cos f)4

− 536

343
B1 −

757

343
B2(1 + e cos f)

)2

− 1

Dn∗

(

1567

343
− 10930β1

2401
− 2207δn

343
− 1461A1(1+e cosf)2

4802
+
82395A2(1+e cosf)4

19208

− 65122B1

2401
− 9179B2(1 + e cos f)

2401

)

]

(α∗
0)

3 + · · · (85)

where,

Dn∗ =
12

7
− 76

49
β1 +

88

49
δn − 18A1

49
(1 + e cos f)2 +

135A2

98
(1 + e cos f)4

− 380

49
B1 −

536

49
B2(1 + e cos f) (86)

Thus, x-coordinate of the collinear point L3α is given as

x =− 1− µ+ α∗. (87)

In this section the equilibrium point for the model has been analytically
derived as a function of µ, e and the factors of perturbing forces. Though
in the previous section we had numerically observed existence of two pairs
of non-collinear equilibrium points, analytically the position of the triangular
equilibrium point was derived. However, analytical methods also verify the
existence of four collinear equilibrium points.

Figures 7-10 graphically explore the dependence of the position of equi-
librium points on the various perturbing forces as well as the mass factor µ.
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Fig. 8. The shift in the x-coordinate of collinear equilibrium points as calculated by analytic
method, compared with respect to the parameters: mass ratio µ and mass reduction factor
q1

Fig. 9. The shift in the x-coordinate of collinear equilibrium points as calculated by analytic
method, compared with respect to the oblateness parameters of the second primary: A1 and
A2
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Fig. 10. The shift in the x-coordinate of collinear equilibrium points as calculated by analytic
method, compared with respect to the parameters due to the circumstellar belt: B1 and B2

In figure 7 the shift in the position of the triangular equilibrium points with
the change in the various parameters is observed. When one of the parameters
is varied, the others are taken as constant according to Sun-Jupiter system.
The variation of the parameters are as follows: 0 ≤ µ ≤ 0.5, 1 ≥ q ≥ 0.6,
0 ≤ h ≤ 0.0003, 0 ≤ A1, A2 ≤ 0.1 respectively. It was observed that variation
in each factor have effect on the triangular points. They are most affected
by the radiation factor q1, then mass parameter µ and then the circumstellar
belt. Figure 8 shows the shift in the x−coordinate of the four collinear equi-
librium points with the change in the values of µ and q1. The collinear points
especially L1 and L2 show drastic shift in their position with change in the
value of µ. The radiation factor q1 does not show any effect on the position
of the collinear points. Figure 9 is the representation of the x−coordinate as
the function of the oblateness parameters A1 and A2. It shows slight effect on
the position of the points. L2 is shifted towards origin whereas L3 is shifted
away from it. Figure 10 shows the shift with respect to the thickness of the
circumstellar belt. All the collinear points were found to be dependent on the
circumstellar belt factor which in turn is dependent on the thickness of the
belt.

4 Fractal Basin

In this section, multi-variate version of Newton-Raphson’s method is employed
to get the Basin of attraction of the planar equilibrium points. Fractal basin of
attraction of a point(attractor) is referred to the region from which each point
after a number of iteration tends toward the point. Studying the structure
of such region for roots of non-linear equation, it was found that they have
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fractus boundaries. The main use of these basin of attraction is in choice of
initial point for orbits around the equilibrium point. If the initial point is
chosen from inside the region of attraction, the possibility of getting stable
orbit is high, however the initial point chosen among the boundary values
shows chaotic behavior. For study of basin of attraction of equilibrium points
of dynamical models various methods are available [Kalvouridis & Gousidou-
Koutita (2012)] studied the modified Broyden’s method and Newton-Raphson
method and proved that the Newton-Raphson’s method is more appropriate
for dynamical systems as they show much better rate of convergence.

The iterative scheme for each planar equilibrium point in the x̄ȳ plane, is
as follows:

x̄n+1 =x̄n −
(

Ωx̄Ωȳȳ −ΩyΩx̄ȳ

Ωx̄x̄Ωȳȳ −Ω2
x̄ȳ

)

(x̄n,ȳn)

;

ȳn+1 =ȳn +

(

Ωx̄Ωȳx̄ −ΩȳΩȳȳ

Ωx̄x̄Ωȳȳ −Ω2
x̄ȳ

)

(x̄n,ȳn)

;

where,

Ωx̄=
1

1+e cosf

[

x̄− 1

n2

{

q1(1−µ)(x̄+µ)

r̄31
+
µ(x̄+µ−1)

r̄32

(

1+
3A1

2r̄22
(1+e cosf)2

− 15A2

8r̄42
(1 + e cos f)4

)

+
2chπ(a− b)

ab

x̄

r̄3
+

3chπ

8
log

a

b

x̄

r̄4
(1 + e cos f)

}]

,
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Ωȳ=
1

1+e cosf

[

ȳ− 1

n2

{

q1(1−µ)ȳ

r̄31
+
µȳ

r̄32

(

1+
3A1

2r̄22
(1+e cosf)2− 15A2

8r̄42
(1+e cosf)4

)

+
2chπ(a− b)

ab

ȳ

r̄3
+

3chπ

8
log

a

b

ȳ

r̄4
(1 + e cos f)

}]

. (89)

And Ωx̄x̄, Ωȳȳ, Ωx̄ȳ are the second order derivatives of the potential function
Ω.

Different colors have been used to depict the basin of attraction of the
different equilibrium points. The color coded diagrams in the x̄ȳ-plane are
plotted. Figure 11 shows the Newton-Raphson basins of attraction on the
configuration x̄ȳ-plane varying the values of eccentricity e and radiation pres-
sure factor q1, whereas Figure 12 shows the effect of the variation of e and q1
when the influence of belt is also considered. The comparison of the two figures
shows that the circumstellar belt is affecting the basin of convergence. In these
figures the color code is as follows: the basin of convergence of L1 is colored
Green, L2 is Cyan, L3 is Yellow, L3α is White, L4 is Red, L5 is Magenta,
L4(N) is Dark red, L5(N) is Purple. Comparing sub-figure 11(c) and (d), it was
foud that basin of attraction of L5 reduces with decrease in the value of radi-
ation pressure, whereas the basin of attraction of L2 and L3 expands; similar
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(a) µ = 0.3, e = 0, q1 = 1 (b) µ = 0.3, e = 0.01, q1 = 1
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(c) µ = 0.3, e = 0.1, q1 = 1 (d) µ = 0.3, e = 0.01, q1 = 0.8

Fig. 11. Fractal basin on the x̄ȳ−plane, when the circumstellar belt is neglected
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(a) µ = 0.3, e = 0, q1 = 1 (b) µ = 0.3, e = 0.01, q1 = 1

(c) µ = 0.3, e = 0.1, q = 1 (d) µ = 0.3, e = 0.1, q = 0.8

Fig. 12. Fractal basin on the x̄ȳ−plane, considering the effect of circumstellar belt
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phenomenon is observed for sub-figures 12(c) and (d). Comparing sub-figures
11(a), (b) and (c), we observe that the increase in the value of eccentricity
of the orbits e is not effecting the structure or extend of the basin of conver-
gence of the equilibrium points, similar was the observation about sub-figures
12(a), (b) and (c). Again comparing the figures 11 and 12, we observe the
circumstellar belt is effecting the extend as well as the structure of the basin
of attraction of the various equilibrium points. The size of the basin for L4 and
L5 decreases under the effect of circumstellar belt, whereas the basin for L1,
L2 and L3 changes shape and becomes elongated and the boundaries are more
fractus. The fractal basin for L3α, L4(N) and L5(N) becomes visible though the
regions are very limited and highly fractal in nature.

Figure 13 is representation of the fractal basin of attraction for Sun-Jupiter
system. The two sub-figures highlight the difference due to circumstellar belt.
The effect is the same as discussed above.

Conclusions and Discussions

A system of two massive objects orbiting in elliptical orbits and surrounded
by a circumstellar belt is modeled in this problem. It was assumed that the
potential due to the circumstellar belt is defined by Power Law Profile, the
largest primary is illuminating and the second primary is oblate. The equation
of motion of the system in the rotating, pulsating barycentric frame of reference
is derived.

Firstly, numerical methods are employed to apply this model on Sun-
Jupiter system and obtain the number and position of equilibrium points.
When the perturbing forces are considered, the presence of eight equilibrium
points was detected, five of which equilibrium points are analogues to the clas-
sically obtained Lagrangian equilibrium points L1, L2, L3 (collinear points),
L4 and L5(triangular points). Out of the three newly obtained equilibrium
points, a pair of non-collinear points are equidistantly placed above and be-
low the y−axis named L4,5(N) and the third is lying on the x−axis between
the largest primary and collinear equilibrium point L1, named L3α. The shift
in position of these equilibrium points with change in the perturbing forces
was also studied graphically. Secondly, analytical methods were employed to
obtain the equilibrium points for the model. Analytically, only six equilibrium
points were obtained. Other than the points analogues to the five Lagrangian
points, the existence of another collinear point L3α was verified analytically.
The graphical representation of these equilibrium points as a function of dif-
ferent perturbing forces, taking the other parameters as constant according to
Sun-Jupiter system showed the dependence of the position of the points on
various equilibrium points. And in most of the cases, the numerically obtained
depiction was found to be the same as that analytically observed. Both studies
showed that all the perturbing forces as well as the mass parameter effect the
position of all the equilibrium points. The triangular equilibrium points L4,5
and non-collinear points L4,5(N) were found to be most affected by the radi-
ation factor q1, then mass parameter µ and then the circumstellar belt. All
the collinear points were found to be affected by mass parameter µ, oblateness
parameters A1 and A2 and thickness of circumstellar belt h.
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(a) Neglecting the effect of circumstellar belt

(b) With the effect of circumstellar belt

Fig. 13. Fractal basin on the x̄ȳ−plane for the equilibrium points for Sun-Jupiter system
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The fractal basins of convergence of these points were also studied and
it was observed that the basins are affected by the mass parameter, radia-
tion pressure as well as the circumstellar belt. However, both the structure
and extent of the basins were found unaffected by oblateness parameters and
eccentricity e.
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