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Abstract.
The presented paper is an attempt to investigate the dynamical states of an hydro-

dynamical isothermal turbulent self-gravitating system using the powerful tools of classical
thermodynamics. Our main assumption, inspired by the work of Keto et al. (2020), is that
turbulent kinetic energy can be substituted for the macro-temperature of chaotic motion of
fluid elements. As a proper sample for our system we use a model of turbulent self-gravitating
isothermal molecular cloud which is at the final stages of its life-cycle, when the dynamics
is nearly in steady state. Starting from this point, we write down the internal energy for a
physically small cloud’s volume, and then using the first principle of thermodynamics obtain
in explicit form the entropy, free energy, and Gibbs potential for this volume. Setting fiducial
boundary conditions for the latter system (small volume) we explore its stability as a grand
canonical ensemble. Searching for extrema of the Gibbs potential we obtain conditions for
its minimum, which corresponds to a stable dynamical state of the hydrodynamical system.
This result demonstrates the ability of our novel approach.
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Introduction

In this work we set ourselves a task to adopt the notions and methods of
classical thermodynamics as tools of describing the dynamical states of one
hydrodynamical isothermal turbulent self-gravitating system. In particular,
we are interested in equilibrium states. As a model for this purpose we use
a sample of one typical interstellar molecular cloud (MC), at the last stages
of its life cycle, when the cloud is at a nearly steady state and hence the
hydrodynamical system is close to dynamical equilibrium.

Molecular clouds are the places of star formation in our Galaxy which
highlights their importance for galactic evolution (Hennebelle & Falgarone,
2012; Klessen & Glover, 2016). They are gaseous structures of irregular shape
and consist mostly of cold (T ∼ 10 − 30 K, Ferriere 2001) molecular gas and
a small amount of interstellar dust (∼ 1%). Their physics is complex and
governed by the interplay between gravity, accretion from the surrounding
medium, supersonic turbulence and magnetic fields, with nearly isothermal
equation of state (Hennebelle & Falgarone, 2012; Klessen & Glover, 2016).
The feedback of new-born stars and supernovae explosions which eventually
disrupt the parental cloud complete the picture.

MCs have a fractal structure in a large interval of spatial scales – 0.001 pc
≤ l ≤ 100 pc , which is thought to be, also, the inertial range for turbulence
there (Elmegreen, 1997; Elmegreen & Scalo, 2004; Hennebelle & Falgarone,
2012; Klessen & Glover, 2016). Moreover the density contrast between large
and small substructures covers several orders of magnitude. At scales l ∼ 100
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pc the density n is about 102 cm−3, while at the scales of pre-stellar cores (l ≤
0.1 pc) n is of order 105 cm−3 and more. If we look at more dense substructures,
we arrive at scales of pre- and protostellar cores.

We model our cloud as a cold isothermal gaseous structure embedded in
an extended, but not infinite, medium consisting of atomic hydrogen which
serves as a material and thermal reservoir for the MC. A phase transition
takes place at the boundary between the cloud and its surroundings, i.e. when
the density and temperature of the inflowing gas change. We assume that there
exists an inertial range of scales for turbulence in the cloud which spans from
its boundary down to about the sizes of protostellar cores. This turbulence is
presumed to be fully developed and saturated, and also locally isotropic and
homogeneous. We regard the gravitational field in a fixed small volume in the
cloud as caused by self-gravity of the cloud and gravity of the surrounding
medium. Our main assumption is that the turbulent kinetic energy can be
locally substituted for the macro-temperature of chaotic motion of the fluid
elements. Indeed, we treat this motion as purely chaotic (locally) and hence
the fluid elements act as particles of a perfect gas. The idea was originally
suggested by Keto et al. (2020) with the purpose to investigate instability and
fragmentation of star-forming clouds by use of turbulent-entropic instability as
a thermodynamic tool. In the present work, starting from the above assump-
tion, we write down the internal energy, for a physically small volume, of a
turbulent self-gravitating and isothermal MC. The model is presented in more
details in Section 1. In Section 2, using the first principle of thermodynamics,
we obtain the explicit expressions for entropy, free energy and Gibbs poten-
tial of the macro-gas in the regarded small volume. Setting proper boundary
conditions for the latter system, we study in Section 3 its stability as a grand
canonical ensemble and obtain conditions for a minimum of the Gibbs po-
tential, which corresponds to a stable dynamical state of the hydrodynamical
system. This result demonstrates the ability of our novel approach. In Section
4 we list several possible caveats against the model and comment on them
briefly. This Section ends with a short conclusion.

1. Setup of the model

We consider a cloud of molecular gas, which is turbulent and isothermal, i.e.
T = const (Ferriere 2001). The turbulence is fully developed and saturated.
There exists an inertial range of scales: ld ≤ l ≤ lup (Elmegreen & Scalo,
2004; Hennebelle & Falgarone, 2012; Klessen & Glover, 2016), where ld is the
turbulence dissipation scale and lup is the upper limit of the range. We suppose
that the outer size of the cloud lc obeys the conditions: lc ≤ lup and ld ≪ lc.

The turbulence, locally, is homogeneous and isotropic (Elmegreen & Scalo,
2004; Hennebelle & Falgarone, 2012; Klessen & Glover, 2016) and the motion of
fluid elements is purely chaotic. Therefore this local motion can be modelled as
a perfect gas of fluid elements with a macro-temperature θ, expressed through
the following equation:

1

2
mσ(l)2 ≡

3

2
κθ(l) , (1)

92



Thermodynamics of fluid elements

where σ(l) = u0l
β is the 3D velocity dispersion of the turbulent motion of fluid

elements at scale l, uo ∼ 1 is a normalizing coefficient, 0 < β ≤ 1 is a scaling
exponent (Larson, 1981; Padoan et al., 2006; Kritsuk et al., 2007), m is the
mass of fluid elements and κ is the Boltzmann constant. The molecular cloud
(MC) is embedded in a very large, but not infinite, medium which consists
of atomic hydrogen and causes a constant gravitational potential ϕm = const
in the cloud volume. The modelled MC can exchange particles/fluid elements
with the surrounding medium. Also, when the gas flows through the cloud
boundary, it becomes molecular, its Kelvin temperature becomes equal to
the cloud’s temperature (gas is cooling) and its density becomes equal to the
cloud’s boundary density ρc. Only its pressure does not change. In other words,
a phase transition occurs at the cloud boundary 4. We assume that the cloud
is at the last stages of its evolution and hence, dynamically, it is in a nearly
steady state (Slyz et al., 2005; Kritsuk, Norman & Wagner, 2011; Girichidis
et al. 2014; Schneider et al., 2015a; Schneider et al., 2015b; Schneider et al.,
2015c; Schneider et al., 2016; Veltchev et al., 2019). At any cloud scale l ≤ lc
we consider a physically small volume V0 ≪ l3, which is, however, sufficiently
large in regard to the chaotic turbulent motion of fluid elements. This volume
is presumably constant at any cloud scale in the inertial range. Therefore, if the
condition V0 ≪ l3d is satisfied, it is true for all cloud scales. The gravitational
potential in this volume reads: ϕ(l) = ϕs(l)+ϕm, where ϕs(l) is caused by the
self-gravity of the cloud. We denote with n(l) the number density of macro-gas
at scale l and suppose that n(l) = const in the volume V0, i.e. this volume is
homogeneous.

We assume that some quantities depend solely on the scale l. This is strictly
true only in case of spherical symmetry and isotropy, but it is adopted here
for simplicity of the considerations, which is justified as a first step in the
development of our model.

Now we write down the formula for internal energy of the macro-gas in the
volume V0:

ε(l) =
3

2
N(l)κθ(l) +

3

2

m

m0

N(l)κT +mN(l)ϕ(l) , (2)

where m0 is the averaged molecular mass of the gas and N(l) is the number of
fluid elements in volume V0. Hereafter, the explicit dependence of l is omitted
in the equations for simplicity, unless it is important to be pointed out.

2. Equations

In this Section we obtain the explicit form of several basic thermodynamic
potentials (namely: entropy, free energy, and Gibbs potential) which are im-
portant for the further considerations.

From equation (2) one can see that the internal energy is a function of two
thermodynamic variables: ε = ε(θ,N), as it is natural for an homogeneous
thermodynamic system. Then the total differential dε(θ,N) reads as follows:

4 In the theory of interstellar medium the transition from atomic to molecular gas is regarded
as a first order phase transition where only the gas pressure stays unchanged. During the
process, the gas releases constant energy per volume, because the temperature of molecular
hydrogen is about two orders of magnitude lower than that of atomic hydrogen.
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dε =
3

2
Nκdθ +

(

3

2
κθ +

3

2

m

m0

κT +mϕ

)

dN . (3)

On the other hand, from the first principle of thermodynamics, one gets:

dε = θds− PdV0 + µdN , (4)

where s is the entropy in volume V0, P is the pressure of macro-gas, and µ is
the chemical potential.

In the case N = const and taking into account the constant volume V0:
PdV0 = 0, we derive from equations (3) and (4) the following expression:

ds =
3

2

Nκ

θ
dθ .

Integrating it in the limits from the dissipation scale ld to the scale in
consideration l, one obtains:

s(θ,N) =
3

2
Nκ ln(θ/θd) , (5)

where we presume that sd = s(θd, N) = 0, which plays a role of the third
principle of thermodynamics of fluid elements and is a natural assumption,
because turbulence dissipates at scale ld.

By use of equations (2) and (5) one can derive the explicit form of free
energy: f(θ,N) = ε(θ,N)− θs(θ,N), and the respective formula is as follows:

f(θ,N) =
3

2
Nκθ[1− ln(θ/θd)] +

3

2

m

m0

NκT +mNϕ . (6)

Now the chemical potential µ reads:

µ =

(

∂f

∂N

)

θ
=

3

2
κθ[1− ln(θ/θd)] +

3

2

m

m0

κT +mϕ . (7)

Finally we obtain the explicit formula for Gibbs potential (hereafter, Gibbs
potential or Gibbs energy): g(θ,N) = ε(θ,N) − θs(θ,N) + PV0. The latter
reads:

g(θ,N) =
3

2
Nκθ[(5/3)− ln(θ/θd)] +

3

2

m

m0

NκT +mNϕ , (8)

where PV0 is replaced according to the equation of state of the perfect gas of
fluid elements: PV0 = Nκθ.

3. Stability analysis of the system

In this section we aim to explore whether the MC regarded as a macro-gas of
fluid elements can be in a stable dynamical state. To perform this analysis,
one needs to determine the boundary conditions at which the cloud resides.
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According to the recent knowledge about interstellar medium, a good approx-
imation might be to consider the modelled cloud at fixed macro-temperature
θ0 and pressure P0 of the surrounding medium (see Hennebelle & Falgarone,
2012; Klessen & Glover, 2016). We also presume that the number N of the
fluid elements in the cloud is constant. It is worth to note here, that the
fixed conditions for macro-gas determine not the microstates but rather the
macrostates of the gas. Thus, studying the states of the macro-gas, we explore
indeed its hydrodynamical states.

We apply the same conditions to an arbitrary small volume V0, at a scale
l in the cloud interior. The latter means that the considered small volume
V0 is regarded as a grand canonical ensemble – at fixed macro-temperature,
pressure and number of fluid elements. The relevant thermodynamic potential
is the Gibbs energy g(θ,N, V0). In the following treatment we explore whether
this quantity has extrema and of what kind they are (see Reif 1965).

Let us consider the Gibbs energy in a nonequilibrium form:

g(θ,N, V0) = ε(θ,N)− θ0s(θ,N) + P0V0 . (9)

We take the partial derivative of g in regard to θ and equate it to zero.
Making use of equations (2) and (5), it reads:

(

∂g

∂θ

)

N,V0

=

(

∂ε

∂θ

)

N,V0

− θ0

(

∂s

∂θ

)

N,V0

+ 0 =
3

2
Nκ

[

1−
θ0
θ

]

= 0 , (10)

which leads to the first condition for a possible extremum: θ = θ0. In other
words, the macro-temperature of the volume V0 must be equal to the macro-
temperature of the surrounding medium.

To study the condition for pressure, let us take the partial derivative of g
in regard to V0. Using the equation of the first principle (4) and the one for
the entropy: (5), one obtains easily:

(

∂g

∂V0

)

θ,N
=

(

∂ε

∂V0

)

θ,N
− θ0

(

∂s

∂V0

)

θ,N
+ P0 = −P − 0 + P0 = 0 , (11)

from which follows that the pressure P in the volume V0 must be equal to the
pressure P0 of its surroundings.

In order to conclude whether an extremum exists and of what kind, one
needs of second partial derivatives of g, which are the elements of the corre-
sponding functional determinant D. The latter are not difficult to be obtained;
calculated at θ = θ0 and P = P0, they read:

(

∂2g

∂θ2

)

N,V0

=
3

2

Nκ

θ0
;

(

∂2g

∂V 2
0

)

θ,N
= −

(

∂P

∂V0

)

θ,N
=

Nκθ0
V 2
0

;

∂2g

∂θ∂V0

= −

(

∂P

∂θ

)

N,V0

= −
Nκ

V0

;
∂2g

∂V0∂θ
= 0 . (12)
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Finally we obtain that D = (3/2)(Nκ/V0)
2 > 0. The latter means that

the Gibbs energy has a minimum at θ = θ0 and P = P0. Hence, the regarded
small volume V0 is in a stable dynamical state.

What can one conclude about the whole cloud? The obtained above condi-
tions are valid for an arbitrary located small volume V0, at an arbitrary scale
l belonging to the inertial range. These conditions are quite natural, because,
due to the small size of the volume V0 in regard to the scale in considera-
tions, one expects that macro-temperature θ and pressure P do not change

substantially in the vicinity of V0, whose linear size V
1/3
0 is much less than l.

Therefore the medium in the cloud is locally dynamically stable, and if the
macro-temperature and pressure change continuously through the fluid (which
is the case for the scales within the inertial range), then large parcels of the
cloud should be stable. The latter conclusion would be valid for the whole
cloud if the conditions for θ and P change continuously through its outer
boundary.

4. Discussion and conclusion

In the presented work we attempt to adopt some notions and tools of ther-
modynamics to study the dynamical states of an hydrodynamical isothermal
turbulent and self-gravitating system realized as a model of molecular cloud.
This aim can face several caveats as follows.

The first caveat concerns the basic assumption that the turbulent kinetic
energy can be substituted for the macro-temperature of the chaotic motion
of fluid elements. This is justifiable only locally due to the existence of scales
within the presumed inertial range of turbulence (Elmegreen & Scalo, 2004;
Klessen & Glover, 2016). Hence, if the turbulent velocity fluctuations scale
(Kritsuk et al., 2007) then the macro-temperature will also scale, according to
equation (1). Then a certain temperature θ can be regarded only locally and
not to be ascribed to the whole cloud. This problem is avoided in our work by
the consideration of a physically small volume V0 (whose size is much smaller
than the scale l, at which it resides) which is indeed the studied thermodynamic
system.

The second caveat may arise in view of the homogeneity of the system.
It is well known that a simple thermodynamic system must be homogeneous
(Reif, 1965). Obviously the whole cloud or large parts of it do not satisfy
this condition, due to the discovered scaling law for density (Larson, 1989;
Kritsuk et al., 2007). But the regarded small volume V0 can be considered as

homogeneous, because V
1/3
0 ≪ l.

The third caveat may stem from the way self-gravity is accounted for in
the equations for different energies (internal energy, free energy, and Gibbs
energy). The latter usually causes an issue since self-gravity depends on the
square of the mass and hence energy is not additive in regard to mass (about
additivity of energies see, for example, Reif, 1965). In our treatment we account
for self-gravity as an external field, caused by the whole scale l to which the
volume V0 belongs (see Section 1). Therefore the equations for energies remain
additive.

The last caveat we mention here concerns the dynamics of the studied
hydrodynamical system: the modelled cloud. The approach in this work is
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based on equilibrium thermodynamics. Of course, the notion of temperature
is not applicable if the system is not in equilibrium. MCs are systems that are
not in hydrodynamical equilibrium during most of their life-time (Vázquez-
Semadeni et al., 2019). However, at the last stages of their life-cycle they are
in a nearly steady state (Slyz et al., 2005; Kritsuk, Norman & Wagner, 2011;
Girichidis et al. 2014; Schneider et al., 2015a; Schneider et al., 2015b; Schneider
et al., 2015c; Schneider et al., 2016; Veltchev et al., 2019). Thus equilibrium
thermodynamics is appropriate to describe this last period of their life.

In conclusion, we argue that our novel approach, inspired by the work of
Keto at al. (2020), shows the ability of classical thermodynamics to provide
a fiducial description of equilibrium dynamical states of a hydrodynamical
isothermal turbulent self-gravitating system, represented here by a model of
a molecular cloud. Despite of the several used approximations in regard to
the presented physical picture, we consider this work as a sensible step in this
direction.
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