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Abstract. This paper aims to investigate the dynamical behaviour of Kaluza-Klein (KK)
FRW type dark energy cosmological models in the context of Saez and Ballester’s scalar-
tensor theory of gravitation (Phys. Lett. A113, 467:1986). In this theory, the Tsallis holo-
graphic dark energy model is provided by solving the field equations with variable decel-
eration parameter proposed by Mishra et al. (Int. J. Theor. Phys. 2016; 55: 1241). The
equation of state parameter (ωde), the deceleration parameter (q(t)), statefinder parameter
(r,s), ωde − ω′

de plane, squared speed of sound, and energy conditions have all been studied
for our models. We investigated their dynamic behaviour using graphical representation and
Planck Collaboration data. It has been discovered that our models describe the accelerated
expansion of the universe and that our theoretical results are reasonably consistent with the
observational data.
Key words: Kaluza-Klein model; Saez-Ballester theory; Scalar-tensor theory; Tsallis holo-
graphic dark energy model.

1 Introduction

Experiment data from Supernova Ia have confirmed that the universe is cur-
rently accelerating (Riess et al. 1998; Perlmutter et al. 1999). It has also been
proposed that the primary cause of this is an exotic negative pressure known as
’dark energy.’ Even today, this is a cosmological mystery. Two approaches are
being actively considered in the literature to explain the accelerated expansion
of the universe. One approach is to build dark energy models and study their
dynamics. Another approach is to modify Einstein’s theory of gravitation, de-
termine the cosmological models in the modified theories of gravity, and then
investigate their dynamical aspects. The cosmological constant is the most
straightforward candidate for dark energy. However, it is plagued by coinci-
dence and other issues. As a result, other DE candidates such as quintessence,
phantom, k- essence and quintom models have also been considered to explain
DE (Ratra and Peebles 1988; Chiba et al. 2000; Elizalde et al. 2004; Caldwell
2002). Among the different dynamical DE models, the HDE model, in par-
ticular, has been a prominent model for examining the DE mystery in recent
years. It was based on the quantum properties of black holes (BH), which
have been widely studied in the literature to investigate quantum gravity (Li
2004; Susskind 1995). Due to the formation of BH in quantum field theory,
the holographic principle states that the bound on the vacuum energy Λ of a
system with size L should not cross the limit of the BH mass of the same size.
The following is the definition of HDE’s energy density (Cohen et al. 1999)

ρde = 3d2m2
p (L)

−2 (1)

The reduced Planck mass is mp, the numerical constant is 3d2, and the IR
cutoff is L. Several entropy formalisms have been used to develop and evaluate
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cosmological models in recent years. Tsallis HDE (THDE) is one of the new
HDE models developed and is never stable at the classical level (Tavayef et al.
2018; Tsallis et al. 2013). Several investigations on THDE models in alternative
theories of gravitation have been done by several researchers all over the globe
(Aditya et al. 2019; Ghaffari et al. 2019; Maity et al. 2019; Iqbal et al. 2019;
Santhi and Sobhanbabu 2020).

For this purpose, we are interested in the ”modified gravity” approach.
The f(R) and f(R,T) theories of gravity (Nojiri et al. 2005; Harko et al. 2011)
(R is the scalar curvature and T is the trace of the energy-momentum tensor),
Brans-Dicke (BD) and Saez-Ballester (SB) scalar-tensor theories of gravitation
(Brans and Dicke 1961; Saez and Ballester 1986) are significant modifications
of Einstein’s theory of gravitation. As a result, several investigations of DE
cosmological models have been conducted in the above alternative theories of
gravitation to explain DE models by studying their dynamical aspects. The
researchers focused on anisotropic Bianchi type DE models in the majority of
the above cases. Many authors (Aditya 2023; Aditya et al. 2023; Rao et al.
2015a, 2015b; Aditya et al. 2016; Rao et al. 2018; Aditya and Reddy 2018a,
2018b, 2018c; Aditya and Reddy 2019; Rao et al. 2012; Dasunaidu et al. 2018a,
2018b; Ravindranath et al. 2018; Prasanthi and Aditya 2019, 2021; Aditya et
al. 2019; Santhi et al. 2016a, 2016b, 2017; Deniel Raju et al. 2020; Rao et
al. 2022) have recently discussed several DE models in modified theories of
gravitation.

We are mainly interested in Saez and Ballester’s scalar-tensor theory of
gravity (Saez 1986). In addition to a metric tensor field, a scalar field ϕ has
been introduced in BD theory to serve as the inverse of the gravitational con-
stant. This was done to incorporate Mach’s principle more thoroughly. Later,
Saez and Ballester developed a new scalar-tensor theory of gravitation in which
the metric of space-time is simply coupled with a dimensionless scalar field.
However, an antigravity regime exists in this theory. This theory contributes
to the solution of the ”missing mass” problem in non-flat FRW cosmologies.
The gravitational action is regarded as

I =

∫

Σ

(L+GLm)
√
−g dx dy dz dt

where Lm denotes the matter Lagrangian. The SB scalar-tensor theory field
equations result from a variation of the gravitational action principle δI = 0.

Rij −
1

2
gijR− wϕn

(

ϕ,iϕ,j −
1

2
gϕ,kϕ

,k

)

= −T (2)

Here the scalar field ϕ satisfies the equation

2ϕnϕ
′i
ji + nϕn−1ϕ,kϕ

′k = 0 (3)

where Rij is the Ricci tensor, R is the Ricci scalar, w is a dimensionless con-
stant, T is the energy-momentum tensor of matter (The relativistic units,
8πG = c = 1 are used here).
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Also, we have the energy conservation equation as

T ij
;j = 0. (4)

Higher-dimensional space-time research is still required, to integrate grav-
ity with other gauge interactions. Extra dimensions are important in cosmol-
ogy, especially at the early stages of the universe. The universe’s current four-
dimensional stage may have been preceded by a multidimensional stage, ac-
cording to theory. As time passes, the standard dimensions grow while the
extra dimensions shrink to Planckian dimensions, which are beyond our cur-
rent experimental capabilities to detect. This discovery has piqued the interest
of many scholars who want to learn more about cosmological theories in the
domain of higher dimensions. This extra dimension was employed by Kaluza
and Klein to unify gravity and electromagnetism in a five-dimensional general
relativity theory.

Due to dynamical contraction as time passes in Kaluza-Klein’s theories, the
extra dimensions are not visible (Chodos and Detweller 1980). It is thought
that during the early phases of the universe’s evolution, the cosmos may have
experienced a higher dimensional era (Witten 1984; Applequist and Chodos
1983). In addition, as time passes, the universe compacts and shrinks to four
dimensions. DE models with a scalar field play a crucial role in the discussion
of the universe’s early stages of evolution. Several authors have looked into DE
models in five dimensions in BD theory and SB theory. In BD theory, Reddy
et al. (2016) presented the five-dimensional minimally interacting holographic
DE model. Non-compact FRW type KK cosmological models were examined
by Ozel et al. (2010) and Sharif and Khanum (2011). In the BD theory of
gravity, Aditya and Reddy (2018) studied FRW type KK modified holographic
Ricci DE models. Naidu et al. (2021) have explored Kaluza-Klein FRW dark
energy models in modified theories of gravitation. As a result, KK scalar-tensor
models have become extremely important.

In this paper, we obtain a new class of Tsallis HDE cosmological models
in FRW type KK space-time in the SB theory of gravitation. The plan of
this paper is the following: In Section 2 we obtain the field equations of SB
theory with the help of FRW type KK metric in the presence of a Tsallis HDE
fluid. Section 3 is devoted to the solutions of the field equations and their
corresponding model. In Section 4 we investigate the cosmological parameters
of each of the models and discuss their physical significance. The last section
involves a summary and some conclusions.

2 Field Equations

We propose to use the FRW type KK metric to get the explicit field equations
of SB theory

ds2 = dt2 − a2(t)

[

dr2

1− kr2
+ r2(dθ2 + sin2θdφ2) + (1− kr2)dψ2

]

(5)

where a(t) is the five-dimensional average scale factor of the model and k = 0,
1, -1 represents the curvature parameter for a flat, closed and open universe.
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The energy-momentum tensors for DE fluid (T
(de)
ij ) and pressure-less matter

(T
(m)
ij ) are given by

T
(de)
ij = (ρde + pde)u

iuj − pdegij ; T
(m)
ij =ρmuiuj (6)

where ρde is DE density, pde is DE pressure, ρm the energy density of matter
and

uiui = 1, uiuj = 0. (7)

Now the field equations (2) take the form

Rij −
1

2
gijR− wϕn

(

ϕ,iϕ,j − gijϕ,kϕ
,k
)

= −T (de)
ij − T

(m)
ij (8)

where T
(de)
ij and T

(m)
ij are given by Eq. (6).

Now, field Eqs. (8), (3) and (4) with the help of Eqs. (6) and (7) for the
metric (5) can be written as

6
ȧ2

a2
+

6k

a2
+
w

2
ϕnϕ̇2 = ρm + ρde (9)

3

(

ä

a
+
ȧ2

a2
+

k

a2

)

−
w

2
ϕnϕ̇2 = −ωdeρde (10)

ϕ̈+ 4 ϕ̇
ȧ

a
+
n

2

ϕ̇2

ϕ
= 0 (11)

ρde+ ρm+4
ȧ

a
[ρm + (1 + ωde) ρde] = 0 (12)

where ωde = pde
ρde

is the equation of state (EoS) parameter of DE and an

overhead dot indicates differentiation with respect to time t.

3 Solutions and the models

We can see that Eqs. (9) – (12) are three independent equations in five un-
knowns a(t), ϕ, ρm, ρde and ωde. As a result, two more conditions are required
to obtain a determinate solution. Also, the early decelerated phase of the uni-
verse is represented by a positive value of the deceleration parameter, whereas
the accelerated phase is represented by a negative number. Our universe is
expanding at an accelerated rate, according to recent cosmological findings.
By modifying its signature, the deceleration parameter must move smoothly
from early deceleration to present increasing expansion. As a result, the decel-
eration parameter must be time-varying rather than constant. To discover the
corresponding cosmological models of the universe, we use the following form
of average scale factor, which provides us with a time-dependent deceleration
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parameter. Mishra et al. (2016) proposed a new ansatz for the average scale
factor, which is given by

a (t) = [sinh (αt)]
1

β (13)

which provides a time-dependent deceleration parameter. Now from Eqs. (11)
and (13) we get the scalar field as

ϕ(t) =

(

(n+ 2)ϕ0 β

2 α (β − 4)
(sinh (α t))

β−4

β

)
2

n+2

(14)

where φ0 is a constant of integration. Using Eq. (13) in metric (5) we get the
model as

ds2 = dt2 − [sinh (αt)]
2

β
[

dr2 + r2(dθ2 + sin2θdφ2) + dψ2
]

(15)

4 Physical discussion of the models

In this section, we examine each model’s important cosmological parameters
and describe their physical significance in cosmology.

The spatial volume in the model is

V = a4(t) = [sinh (αt)]
4

β (16)

The average Hubble parameter (H(t)) and scalar expansion (θ(t)) are

H =
θ

4
=
ȧ

a
=
α

β
coth(αt) (17)

Here we assume Tsallis holographic dark energy with Granda-Oliveros cut-
off as the suitable candidate for dynamical dark energy. Its energy density is
defined as follows (Tsallis and Cirto 2013)

ρde = 3d2(L)2 δ−4

where d is an unknown parameter. By assuming the Hubble horizon as the IR
cutoff, L = H−1, the energy density of THDE takes the form

ρde = 3d2(H)−2 δ+4

From Eq. (17) we obtain the THDE density of our model obtained as

ρde = 3d2
(

α coth (α t)

β

)

−2 δ+4

(18)

and from Eqs. (9), (13), (14) and (18) we get the energy density of matter as

ρm=
6α2(cosh (α t))2

β2(sinh (α t))2
+

wϕ0

2
(

(sinh (α t))β
−1
)4 − 3d2

(

α cosh (α t)

β sinh (α t)

)

−2 δ+4

(19)
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Scalar field:

Figure 1 describes the behaviour of a scalar field over cosmic time for various
values of the parameter n, which has an important influence in its evolution.
For all values of n, we notice that the scalar field reduces with cosmic time.
The scalar field, on the other hand, grows in sync with the value n. We see
that the scalar field is decreasing and that the kinetic energy is increasing as
a result. This tendency is quite identical to the scalar field in the dark energy
scalar field models developed by Jawad et al. (2015), Raju et al. (2019) and
Bhaskara Rao et al. (2022).
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Fig. 1. Plot of scalar field versus cosmic time t for β = 1.5, α = 0.11, n = 2.3, w =
0.0075, d = 0.38, δ = 1.5 and ϕ0 = 0.5.

Deceleration parameter:

The deceleration parameter (DP) is often used to evaluate how rapidly the
universe is expanding. It’s expressed as

q=− 1−
Ḣ

H2
. (20)

Making use of DP’s signature the nature of the universe’s expansion is ex-
plained. Positive values of DP show a deceleration phase, whereas −1 ≤ q<0
shows an accelerated expansion phase. The deceleration parameter of our
model is

q = β(sech(αt))2 − 1 . (21)

Figure 2 illustrates the behaviour of DP in terms of cosmic time t for our
model. This indicates a significant transition from positive to negative. As a
result, our model has a smooth transition from the early deceleration epoch
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Fig. 2. Plot of deceleration parameter versus time t for β = 1.5 and α = 0.11.

to the universe’s current acceleration era. The present value of the DP seems
to be −0.7324 and our model starts accelerating expansion at ts 6 Gyr, or 7.7
Gyr ago from today (t0 = 13.7 Gyr). This behaviour is supported by data from
a variety of observational schemes (Cunha 2009; Li et al. 2011; Amirhashchi
and Amirhashchi 2019; Capozziello et al. 2019).

Energy conditions:

For our THDE model, we discuss the well-known energy conditions. The Ray-
chaudhuri equations, which have an important significance in any discussion
of the congruence of null and time-like geodesics, gave rise to the study of
energy conditions. The energy conditions are also used to show several general
theorems regarding how powerful gravitational fields operate. The following
are the standard energy conditions:

– Null energy conditions (NEC): ρde + pde ≥ 0,
– Weak energy conditions (WEC): ρde≥ 0, ρde + pde≥ 0,
– Strong energy conditions (SEC): ρde + pde≥ 0, ρde + 3pde≥ 0,
– Dominant energy condition (DEC): ρde≥ 0, ρde ± pde≥ 0.
According to the NEC, the universe’s energy density decreases as it ex-

pands, and its violation could lead to the Big Rip in cosmology. The violation
of the SEC condition represents the universe’s rapid expansion. The Hawking-
Penrose singularity theorems demonstrate the validity of SEC and WEC. Be-
cause their failure causes other energy conditions to be violated, the WEC and
NEC are essential among all energy conditions. Figure 3 depicts the energy
conditions for various values of ‘n’ in our model. The SEC is observed to be
satisfied at the beginning of the period and then violated subsequently. As a
result, the model causes the universe to expand at a faster rate. Furthermore,
as should be the case, our model violates the SEC. Throughout the evolution
of the universe, all other energy conditions are fulfilled. Also, it can be seen
that the energy conditions are almost the same for all the values of param-
eter ‘n’, i.e., the energy conditions are independent of the scalar field. This
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is attributed to the universe’s late-time acceleration, which is supported by
current observational data.
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Fig. 3. Plot of energy conditions versus cosmic time t for β = 1.5, α = 0.11, n = 2.3, w =
0.0075, d = 0.38, δ = 1.5 and ϕ0 = 0.5.

EoS parameter:

The EoS parameter (ω) is used to categorise the different stages of the expand-
ing universe. It calculates the cosmological constant/vacuum era for ω= − 1,
the quintessence for −1 < ω<−1

3 , the phantom era for ω<− 1, and the quin-
tom era for both ω>− 1 and ω<− 1. From Eqs. (10), (13), (14) and (18) we
have the EoS parameter as

ωde = −

1

3d2

{

3

(sinh (α t))β
−1

{

(sinh (α t))β
−1

α2(cosh (α t))2

β2(sinh (α t))2
+

(sinh (α t))β
−1

α2

β

−

(sinh (α t))β
−1

α2(cosh (α t))2

β (sinh (α t))2

}

+
3α2(cosh (α t))2

β2(sinh (α t))2

−

wφ0

2
(

(sinh (α t))β
−1
)4

}(

(

α cosh (α t)

β sinh (α t)

)2 δ−4
)

(22)

According to Fig. 4, the EoS parameter begins in the matter-dominated
era, evolves to the quintessence DE era, and finally approaches the vacuum DE
and phantom era for different values of δ= 1.4, 1.45, and 1.5. The figure clearly
shows that for δ = 1.5, the EoS parameter becomes −1, i.e., the cosmological
constant. This is in agreement with the predictions of Saridakis et al. (2018).
It is also worth noting that for δ=1.45 and 1.5, the universe model crosses the
phantom divided line (PDL) ωde = −1 and enters the phantom region. The
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Fig. 4. Plot of EoS parameter versus time t for β = 1.5, α = 0.11, n = 2.3, w = 0.0075, d =
0.38, δ = 1.5 and ϕ0 = 0.5.

current values of our model’s EoS parameters (δ, ωde)=(1.4, −1.59), (1.45,
−1.24), and (1.5, −0.96) are in good agreement with Planck observational
data (Aghanim et al. 2018).

Squared sound speed:

The squared sound speed parameter facilitates the exploration of the stability
of DE models depending on the sign of v2s . The model’s stability is determined
by the positive sign of v2s , whereas the model’s instability is determined by the
negative sign of v2s . It is defined as:

v2s=
ṗde

ρ̇de
=ωde +

ρde

ρ̇de
ω̇de. (23)

v
2
s =

α cosh (α t)

(−2 δ + 4)β sinh (α t)

{

(−2 δ + 4) β sinh (α t)

3d2α cosh (α t)

{

3

(sinh (αt))β
−1

×

{

(sinh (α t))β
−1

α2(cosh (α t))2

β2(sinh (α t))2
−

(sinh (α t))β
−1

α2(cosh (α t))2

β (sinh (α t))2

+
(sinh (α t))β

−1

α2

β

}

+ 3
α2(cosh (α t))2

β2(sinh (α t))2
−

wφ0

2
(

(sinh (α t))β
−1
)4

}

(

α2

β
−

α2(cosh (α t))2

β (sinh (α t))2

)

(

(

α cosh (α t)

β sinh (α t)

)

−2 δ+4
)

−1

−

1

3d2

{

3

(sinh (α t))β
−1

{

(sinh (α t))β
−1

α3(cosh (α t))3

β3(sinh (α t))3

+3
(sinh (α t))β

−1

α3cosh (α t)

β2sinh (α t)
− 3

(sinh (α t))β
−1

α3(cosh (α t))3

β2(sinh (α t))3

−2
(sinh (α t))β

−1

α3cosh (α t)

β sinh (α t)
+ 2

(sinh (α t))β
−1

α3(cosh (α t))3

β (sinh (α t))3

}
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−

3α cosh (α t)

(sinh (α t))β
−1

β sinh (α t)

{

(sinh (α t))β
−1

α2(cosh (α t))2

β2(sinh (α t))2
+

(sinh (α t))β
−1

α2

β

−

(sinh (α t))β
−1

α2(cosh (α t))2

β (sinh (α t))2

}

+ 6
α3cosh (α t)

β2sinh (α t)
− 6

α3(cosh (α t))3

β2(sinh (α t))3

+
2wφ0 α cosh (α t)

(

(sinh (α t))β
−1
)4

β sinh (α t)

}(

(

α cosh (α t)

β sinh (α t)

)2 δ−4
)}

×

(

α2

β
−

α2(cosh (α t))2

β (sinh (α t))2

)−1

−

1

3d2

{

3

(sinh (α t))β
−1

{

(sinh (α t))β
−1

α2

β2(tanh (α t))2

+
(sinh (α t))β

−1

α2

β
−

(sinh (α t))β
−1

α2(cosh (α t))2

β (sinh (α t))2

}

+
3α2(cosh (α t))2

β2(sinh (α t))2

−

wφ0

2
(

(sinh (α t))β
−1
)4

}(

(

α cosh (α t)

β sinh (α t)

)2 δ−4
)

(24)

Fig. 5. Plot of v2s versus time t for β = 1.5, α = 0.11, n = 2.3, w = 0.0075, d = 0.38, δ =
1.5 and ϕ0 = 0.5.

We can calculate the squared speed of sound by substituting expressions
for the parameters in Eq. (26). We numerically investigated the behaviour of
squared sound speed v2s by plotting it in terms of time t, as shown in Fig. 5.
It can be seen that v2s exhibits the model’s stable behaviour early on, but the
model becomes unstable later on.

ωde − ω
′

de
:

Caldwell and Linder (2005) proposed the ωde−ω′

de plane (where prime signifies
the derivative of ’ln(a(t))’) to investigate the DE model’s cosmic evolution.
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They hypothesized that the ωde − ω′

de plane can be divided into two regions:
freezing (ωde<0, ω

′

de<0) and thawing (ωde<0, ω
′

de>0) regions.

ω
′

de =
β sinh (α t)

α cosh (α t)

{

(−2 δ + 4) β sinh (α t)

3d2α cosh (α t)

{

3

(sinh (αt))β
−1

×

{

(sinh (α t))β
−1

α2

β

(sinh (α t))β
−1

α2(cosh (α t))2

β2(sinh (α t))2
−

(sinh (α t))β
−1

α2(cosh (α t))2

β (sinh (α t))2

}

+3
α2(cosh (α t))2

β2(sinh (α t))2
−

wφ0

2
(

(sinh (α t))4β
−1
)

}

(

α2

β
−

α2(cosh (α t))2

β (sinh (α t))2

)

×

(

(

α cosh (α t)

β sinh (α t)

)2 δ−4
)

−

1

3d2

{

3

(sinh (α t))β
−1

{

(sinh (α t))β
−1

α3(cosh (α t))3

β3(sinh (α t))3

+3
(sinh (α t))β

−1

α3cosh (α t)

β2sinh (α t)
− 3

(sinh (α t))β
−1

α3(cosh (α t))3

β2(sinh (α t))3
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}(

(

α cosh (α t)
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)

−2 δ+4
)
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(25)

Figure 6 depicts the development of ωde−ω′

de plane of our model. We have
noticed that ωde − ω′

de plane represents the freezing region throughout the
evolution of the universe. The ωde − ω′

de plane of our model is consistent with
recent observations, as the freezing zone has a faster rate of cosmic expansion
than the thawing region.

Statefinder parameters:

The dynamics of the universe’s expansion can be explained using Hubble and
deceleration parameters. However, in the modern scenario, all dynamical DE
models have the same values for these cosmological parameters. As a result,
these parameters failed to identify the best-fitting dynamical DE model among
a variety of models. With this goal in mind, Sahni et al. (2003) presented
statefinders, a pair of dimensionless cosmological parameters that are defined
as follows:

r=

...
a

aH3
, s=

r − 1

3(q − 1
2)

(26)

The statefinder parameters in the model are

r = 1− 2β2
(

tanh2(α t)− 1
)

+ 3β
(

coth2(α t)− 1
)

(27)
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Fig. 6. Plot of ωde−ω′

de plane for β = 1.5, α = 0.11, n = 2.3, w = 0.0075, d = 0.38, δ = 1.5
and ϕ0 = 0.5.

s =
−2β2

(

tanh2(α t)− 1
)

+ 3β
(

coth2(α t)− 1
)

(

−3β (sinh(α t))2

(cosh(α t))2
+ 3 β − 4.5

)

−1 (28)

The well-known regions are defined as follows by these statefinders: For
(r,s)=(1,0) and (r,s)=(1,1), respectively, ΛCDM and CDM models. The phan-
tom and quintessence DE phases are found in the s>0 and r<1 regions. The
Chaplygin gas model is defined by r>1 with s<0. We got the statefinders for
our model by substituting the average scale factor a(t), Hubble’s parameter
H(t), and deceleration parameter q(t).

r

1 1 1 1 1

s

×10
-19

-1

0

1

r-s trajectory

Λ CDM model

  (r,s)=(1,0)

Fig. 7. Plot of statefinders for k=− 1.5, c2=− 0.005 and M= 0.125.
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Our model’s statefinder plane is depicted in Fig. 7. The statefinder plane’s
trajectory reaches the ΛCDM limit in its evolution, as can be shown. In its
evolution, the r-s trajectory also shows phantom, quintessence, and Chaplygin
gas behaviour.

r-q plane:

r

1 1 1 1 1

q

-1

-0.5

0

0.5

r-q trajectory

of our model

(r,q)=(0.5, 1)  

(r,q)=(-1, 1)

Λ CDM modelSteady state

model (r,q)=(1,-1)

S CDM model

(r,q)=(1,0.5)

Fig. 8. The evolution of our model in the r -q plane for k=−1.5, c2=−0.005 and M= 0.125.

The behaviour of our DE model on the r-q plane is seen in Fig. 8. The
fixed points (r, q) = (1, 0.5) and (r, q) = (1,−1) for standard cold dark matter
(SCDM) and Steady State (SS) models, respectively, are shown by the blue
and pink colour dots. The time evolution of the ΛCDM model is shown by
the dotted line (green colour) at r = 1. Our DE model begins with the SCDM
model and progresses to the SS model at a later time, as shown by the r-
q trajectory. It can also be shown that our model’s evolution coincides with
that of the ΛCDM model. It’s worth noting that the r-q trajectory of our DE
model behaves similarly to that of DE models obtained in literature (Singh
and Kumar 2016; Dasunaidu et al. 2018a; Prasanthi and Aditya 2020; Aditya
et al. 2021).

5 Summary and Conclusions

We studied flat FRW type KK cosmological models in the Saez-Ballester
scalar-tensor theory of gravitation in this paper. We have obtained a Tsal-
lis HDE model by solving the field equations using an average scale factor
proposed by Mishra et al. (2016). We discovered all the cosmological param-
eters of our models and examined their relevance to modern cosmology in
depth. The following is a summary of our findings:

We notice that the scalar field reduces with cosmic time and we that the
SF is decreasing, and that the kinetic energy is increasing as a result. This ten-
dency is quite identical to the scalar field in the dark energy scalar field models
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developed by several authors (Jawad et al. 2015; Raju et al. 2019; Bhaskara
Rao et al. 2022). The study of the deceleration parameter shows that our model
has a smooth transition from the early deceleration epoch to the universe’s
current acceleration era. The present value of the DP seems to be −0.7324 and
our model starts accelerating expansion at 6 Gyr, or 7.7 Gyr ago from today
(t0 = 13.7 Gyr). This behaviour is supported by data from a variety of observa-
tional schemes q = −0.930 ± 0.218 (BAO + Masers +TDSL+Pantheon+Hz)
(Cunha 2009; Li et al. 2011; Amirhashchi and Amirhashchi 2019; Capozziello
et al. 2019).

The SEC is observed to be satisfied at the beginning of the period and then
violated subsequently. Throughout the evolution of the universe, all other en-
ergy conditions are fulfilled. This is attributed to the universe’s late-time accel-
eration, which is supported by current observational data. The EoS parameter
begins in the matter-dominated era, evolves to the quintessence DE era, and
finally approaches the vacuum DE and phantom era. For δ = 1.5, the EoS pa-
rameter becomes −1, i.e., the cosmological constant. This is in agreement with
the predictions of Saridakis et al. (2018). For δ =1.45 and 1.5, the model crosses
the phantom divided line ωde = −1 and enters the phantom region. The current
values of our model’s EoS parameters (δ, ωde)=(1.4, −1.59), (1.45, −1.24), and
(1.5, −0.96) are in good agreement with Planck observational data (Aghanim
et al. 2018) ωde = −1.56+0.60

−0.48 (Planck + TT + lowE); ωde = −1.58+0.52
−0.41 (Planck

+ TT,TE,EE+lowE); ωde = −1.57+0.50
−0.40(Planck + TT,TE,EE+lowE+lensing);

ωde = −1.04+0.10
−0.10 (Planck + TT,TE,EE+lowE+lensing+BAO).

Study of stability analysis exhibits that our model is stable initially, but
the model becomes unstable later on. We have noticed that ωde − ω′

de plane
represents the freezing region throughout the evolution of the universe. This
is consistent with recent observations, as the freezing zone has a faster rate of
cosmic expansion than the thawing region. The statefinder plane’s trajectory
reaches the ΛCDM limit in its evolution. In its evolution, the r-s trajectory
also shows phantom, quintessence, and Chaplygin gas behaviour. Our Tsallis
HDE model begins with the SCDM model and progresses to the SS model
at a later time, as shown by the r-q trajectory. It can also be shown that
our model’s evolution coincides with that of the ΛCDM model. It’s worth
noting that the r-q trajectory of our DE model behaves similarly to that of
DE models obtained in the literature (Singh and Kumar 2016; Dasunaidu et
al. 2018a; Prasanthi and Aditya 2020; Aditya et al. 2021).

The study of the models presented here will help to understand DE models
in Saez-Ballester theory in the five-dimensional geometry.
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