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Abstract. This paper studies the location and stability of planar (collinear) and non-planar
(out of plane) libration points in the elliptic restricted four body problem under the influence
of radiation pressure and oblateness effects. We have assumed that three bodies are moving
in elliptical orbit around their common center of masses fixed at origin of the coordinate
system and they are always at the vertices of an equilateral triangle while the fourth body
is infinitesimal mass. It was observed that for this system, two collinear and two or four out
of plane equilibrium points exist which is depend on true anomaly of the orbit. Out of plane
equilibrium points lie on the x− z plane in symmetrical position with respect to x-y plane.
Both Planar (collinear) and non-planar (out of plane) points are found unstable in linear
sense. The fractal Basin for planar (collinear) and non-planar (out of plane) libration points
were studied and found to depend on radiation pressure.
Key words: Elliptic restricted four body problem, Oblateness, Radiation pressure, Fractal
Basin

Introduction

In the present scenario, the Four Body Problem is an important extension
of the very well studied three body problem. R4BP is often more realistic for
certain applications such as space flight mission or satellite positioning then
the three body problem. For instance, while positioning the satellite orbiting
Moon, the consideration of the gravitational forces of Earth and Moon is not
sufficient, the effect due to Sun is also a great perturbing force affecting the
motion of satellite. Including different perturbing forces, several author studied
the Circular restricted four body problem (CR4BP). In CR4BP the primaries
move in an circular orbit and in elliptic restricted four body problems, the
primaries move in an elliptical Keplerian orbit. Most of the celestial bodies
move in an elliptical orbit. So the consideration of the non-zero value of the
eccentricity of orbits of primaries is more equipped to analyse the dynamical
system more accurately.

Grebenikov [7] presented the Newtonian circular restricted four-body prob-
lem and obtained nonlinear algebraic equations determining equilibrium solu-
tions in the rotating frame and found six possible equilibrium configurations
of the system. El-Saftawy and Abd El-Salam [9] defined restricted four body
problem, in the bicircular model. By constructing the Hamiltonian of the prob-
lem, they obtained solution using Delva Hanslmeir perturbation technique.
Shoaib and Ibrahima [10] discussed the equilibrium solutions of four differ-
ent types of collinear four-body problems having two pairs of equal masses.
Baltagiannis and Papadakis [5] have investigated the stability of the libration
points in the restricted four body problem. They have shown that ten libration
points exist and out of which two or four are collinear and the remaining are
non-collinear. The photogravitational restricted four body problem is the clas-
sical problem if at least one of the interacting bodies is an intense emitter of
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radiation. The effect of radiation pressure of a source on a small particle, is ex-
pressed by means of the reduction factor q. Papadouris and Papadakis [16]have
studied the photogravitational restricted four body problem. Singh and Vin-
cent [8] studied the out of plane equilibrium points. They considered all the
primaries as radiating bodies and two of the primaries having the same radi-
ation and mass value. They found that radiation pressure effects the location
of the equilibrium points and the zero velocity curves. These points are found
to be unstable. It has been observed that radiation pressure and oblateness
of the primaries have remarkable influence on the existence and stability of
equilibrium points in the restricted problems working on the approach.

Further Kumari and Kushvah [11] investigated equilibrium points under
the oblateness effects of first two bigger primary. They established eight equi-
librium points, two collinear equilibrium points and six non-collinear equilib-
rium points and observed that the stability regions of the equilibrium points
expanded due to the presence of oblateness coefficients for various value of
Jacobi constant C and also shown that the fractal basins of attraction for the
equilibrium points.

The above discussion of the major work undertaken by scientists shows
that circular restricted four body problem has been studied extensively, though
scope for further development still remains.

However study of elliptic R4BP based on Langrang’s solution has not been
undertaken by many authors. In the elliptic restricted four body problem the
three primaries are moving in elliptic orbits and the problem is restricted in
the sense that the motion of the three primaries as well as the infinitesimal
mass take place in a plane called the plane of motion. The fourth body of
infinitesimal mass does not affect the dynamics of the problem.

Assadian et al [1] studied the effect of the Sun on the Lagrange points of
the Earth Moon system in the frame of bielliptic restricted four body problem
(BiERFBP) in which the motion of Earth around the Sun is presumed to be
elliptic orbit in the ecliptic plane. Also the motion of Moon around the Earth
is presumed to be elliptic but out of the ecliptic plane.

Chakraborty and Narayan [3] studied the bielliptic restricted four body
problem. On the other hand Chakraborty and Narayan [4] discussed the equi-
librium points, their stability, the pulsating ZVC and fractal basin for the
elliptic triangular restricted four-body problem.

Extending this work, we have modeled the problem according to solution
of Lagrange, where they are always at the vertices of the equilateral triangle,
while the fourth body is infinitesimal. We have shown the existence of the
non-collinear points and determined their locations numerically in the elliptic
Restricted four body problem with radiation pressure and oblateness. [6]. In
this paper we have undertaken the study of the position and stability of planar
(collinear) and non-planar (out of plane) libration points. The fractal basins of
the model are also explored. MATHEMATICA 10 software was employed for
graphical and numerical solutions in this paper. The rest of paper is organized
as follows: Section 1 provides the equation of motion; Section 2 gives the
position of the Planar (collinear) and Non-Planar (out of plane) equilibrium
points; Section 3 focus on the stability of the Planar (collinear) and Non-
Planar (out of plane) equilibrium points; In Section 4 the basin of attraction
adopting the Newton Raphson Method has been discussed. The discussion and
conclusion are drawn in Section 5.

37



Stability of Planar... ER4BP with Oblate Primaries

1. Equations of motion

We have taken the configuration of the system as three bodies s1, s2 and s3
of masses m1, m2 and m3 where m1 mass is greater than m2 and m2 equal to
the m3 moving in a plane about their center of mass O in Keplerian elliptical
orbit having eccentricity e. This is further assumed that the bigger primary
m1 is radiating body and other two smaller primaries m2 and m3 are oblate
spheroids. A third body P of infinitesimal mass is the mutual gravitational at-
traction of the three primaries but without affecting their motion. The motion
of the infinitesimal is affected by the primaries. The oblateness parameter of
the second and third primary are given by

A1 =
a2

5R2
, A2 =

b2

5R2
; (1)

where ′a′ and ′b′ are the semi-major axis and R is the distance between the
primaries. The radiation factor of the largest primary given by q is derived
from the relation.

F = fg − fp = fg(1−
fp
fg

). = (1− q)fg (2)

Here fg is the gravitational attraction force, fp is the radiation pressure force
and q is the mass reduction factor The dimensionless variables are introduced
by using the distance r between the primaries given by

r =
a(1− e2)

1 + e cos f
;

where ′a′ and ′e′ are the semi-major axis and the eccentricity of the elliptical
orbit of the either primary around the other and f is the true anomaly. The
angular motion of infinitesimal moving in elliptical orbit based on Kepler’s
laws is given by

df

dt
=

na2
√

(1− e2)

r2
; (3)

We get the equation of motion of the infinitesimal in non-dimensional barycen-
tric, pulsating and non-uniformly rotating coordinate system (x, y, z) written
in the form [6]:

x′′ − 2y′ =
∂Ω

∂x
;

y′′ + 2x′ =
∂Ω

∂y
; (4)

z′′ =
∂Ω

∂z
;
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where,

Ω =
1

1 + ecosf
ω; (5)

ω = (
x2 + y2 − z2ecosf

2
+

1

n2

[

(1− 2µ)q

r1
+

µ

r2
+
µA2

2r32
+

µ

r3
+

µA1

2r33

]

). (6)

r21 =(x−
√
3µ)2 + y2 + z2;

r22 =(x+

√
3(1− 2µ)

2
)2 + (y − 1

2
)2 + z2; (7)

r23 =(x+

√
3(1− 2µ)

2
)2 + (y +

1

2
)2 + z2.

Here the mean motion of the system is presented as follows

n2 =
(1 + e2)3/2

a3(1− e2)

[

1 +
3A1

2
+

3A2

2

]

(8)

Since these primaries are fixed in this coordinate system, the position are

represented as (
√
3µ, 0, 0),(−

√
3(1− 2µ)

2
,−1/2, 0) and (−

√
3(1− 2µ)

2
, 1/2, 0)

where µ =
m2

m1 +m2 +m3
=

m3

m1 +m2 +m3
. From equation (4), we observe

that

∂ω

∂x
=

{

x− 1

n2

{

(1− 2µ)(x−
√
3µ)q

r31
+

3(µ)(x+

√
3(1− 2µ)

2
)A1

2r53

+
µ(x+

√
3(1− 2µ)

2
)

r32
+ 3

µ(x+

√
3(1− 2µ)

2
)A2

2r52

+
µ(x+

√
3(1− 2µ)

2
)

r33

}}

∂ω

∂y
=

{

y− 1

n2

{

(1− 2µ)yq

r31
+ 3

(y +
1

2
)A1

2r53
+

µ(y − 1

2
)

r32

+ 3
µ(y − 1

2
)A2

2r52
+

µ(y +
1

2
)

r33

}}
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∂ω

∂z
= −zecosf − 1

n2

{

(1− 2µ)zq

r31
+ 3

zA1

2r53
+

µz

r32

+ 3
µzA2

2r52
+

µ(z)

r33

}}

(9)

2. Equilibrium points

2.1. Position of Planar (Collinear) Equilibrium Points

If the problem is reduced to planar form that is projection on the xy− plane
considered, then the equilibrium points are obtained by solving the following
equation: Ωx = 0; Ωy = 0.

Solving the above two equations by further imposing the condition y = 0
we obtained collinear points by solving following equations :

r1 =|(x−
√
3µ)|;

r2 =r3 =

√

(x+

√
3(1− 2µ)

2
)2 +

1

4
;

{

x− 1

n2

{

(1− 2µ)(x−
√
3µ)q

r31
+

3(µ)(x+

√
3(1− 2µ)

2
)A

2r52

+
2µ(x+

√
3(1− 2µ)

2
)

r32

}

}

= 0

Also we note that when

r2 = r3

A1 = A2 = A (say) In the present work, we have considered the small mass
µ = 0.1 and varying value of q and Ai, there exist collinear equilibrium points
which are denoted by L1, L2. Fig. 1 represent the first and second equation of
system of equation (9) with added condition y = 0 and

r2 = r3.

They show the shift in the position of collinear equilibrium points for
varying values of q and A.

2.2. Position of Non Planar (Out of Plane) Equilibrium Points

The position of the out of plane equilibrium points can be found from the
equations of motion by setting all velocity and acceleration components equal
to zero and solving the resulting system.
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Fig. 1. Curve of Collinear Point for values of µ = 0.1, A = 0 and q = 1.
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Fig. 2. Curve of Collinear Point for values of µ = 0.1, A = 0 and q = 0.9.

When y = 0, r2 = r3 in the x− z plane we have

r1 =

√

(x−
√
3µ)2 + z2;

r2 =r3 =

√

(x+

√
3(1− 2µ)

2
)2 +

1

4
+ z2;
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Fig. 3. Curve of Collinear Point for values of µ = 0.1, A = 0 and q = 0.8.
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Fig. 4. Curve of Collinear Point for values of µ = 0.1, A = 0.0001 and q = 1.

Then

x− 1

n2

{

(1− 2µ)(x−
√
3µ)q

r31
+

3µ(x+

√
3(1− 2µ)

2
)A

2r52

+
2µ(x+

√
3(1− 2µ)

2
)

r32

}

= 0 (10)

−ze cos f− 1

n2

{

(1− 2µ)zq

r31
+ 3

zA

r52
+ 2

µz

r32

}}

= 0 (11)
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Fig. 5. Curve of Collinear Point for values of µ = 0.1, A = 0.0001 and q = 0.9.
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Fig. 6. Curve of Collinear Point for values of µ = 0.1, A = 0.0001 and q = 0.8.

In the present work, we have considered the small mass µ = 0.1 and varying
value of q and Ai there exists non-planar equilibrium points which are denoted
by L01, L02, L03, L04. Fig. 6− 12 represent the equation (10) and (11) in the
xz−plane the black dot represents out of plane points. Their are position
studied through numerical method. They are located in the (x, z) plane in
symmetrical position with respect to the x−axis Fig. 8 and Fig. 9 show the
shift in the position of out of plane equilibrium points for negative value of
q for f = 3π/2 and f = π, where as Fig. 10 and Fig. 11 show the shift for
positive value of q.
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Fig. 7. The curves on x̄z̄ plane of µ = 0.1, A = 0.0001 and q = −0.01,−0.02,−0.03 and
f = 2π.
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Fig. 8. The curves on x̄z̄ plane of µ = 0.1, A = 0.0001 and q = −0.01,−0.02,−0.03 and
f = 3π/2.

3. Stability of Equilibrium Points

To study the stability of the equilibrium point denoted by (a0, b0, c0) of
an infinitesimal body, we displace it to the position (x, y, z) with a small
displacement (u, v, w) from the point, such that x = a0 + u, y = b0 + v,
z = c0 + w substituting this value in (1), we obtain the following linearized
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Fig. 9. The curves on x̄z̄ plane of µ = 0.1, A = 0.0001 and q = −0.01,−0.02,−0.03 and
f = π.
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Fig. 10. The curves on x̄z̄ plane of µ = 0.1, A = 0.0001 and q = 0.01 and f = 0.

system of equations:

u′′ − 2v′ =
[

uΩ0
xx + vΩ0

xy + wΩ0
xz

]

v′′ + 2u′ =
[

uΩ0
yx + vΩ0

yy + wΩ0
yz

]

w′′ =
[

uΩ0
zx + vΩ0

zy + wΩ0
zz

]

(12)
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Fig. 11. The curves on x̄z̄ plane of µ = 0.1, A = 0.0001 and q = 0.01 and f = π/4.

Here, Ω is defined in terms of ω as given by equation (5) and

ωxx =1− 1

n2

[

(1− 2µ)q

r31
− 3(1− 2µ)(x−

√
3µ)2q

r51
+

µ

r32
+

µ

r33

−
3µ

(

x+

√
3(1− 2µ)

2

)2

r52
−

3µ

(

x+

√
3(1− 2µ)

2

)2

r53
+

3µA2

2r52
+

3µA1

2r53

−
15µA1

(

x+

√
3(1− 2µ)

2

)2

2r73
−

15µA2

(

x+

√
3(1− 2µ)

2

)2

2r72

]

ωxy =
1

n2

[

3(1− 2µ)(x−
√
3µ)qy

r51
+

3µ

(

x+

√
3(1− 2µ)

2

)2

(y − 1/2)

r52
(13)

+

3µ

(

x+

√
3(1− 2µ)

2

)2

(y + 1/2)

r53
+

15µ(x+

√
3(1− 2µ)

2
)2(x+ 1/2)A1

2r73

+

15µ

(

x+

√
3(1− 2µ)

2

)2

(y − 1/2)A2

2r72

]

(14)
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ωyy =1− 1

n2

[

(1− 2µ)q

r31
− 3(1− 2µ)y2q

r51
+

µ

r32
− 3µ(y − 1/2)2

r52
− 3µ(y + 1/2)2

r53

+
µ

r33
+

3µA1

2r53
+

3µA2

2r52
− 3µA1(y + 1/2)2

2r73
− 3µA2(y − 1/2)2

2r72

]

ωxz =
1

n2

[

3(1− 2µ)(x−
√
3µ)qz

r51
+

3µ

(

x+

√
3(1− 2µ)

2

)2

(z)

r52

+

3µ

(

x+

√
3(1− 2µ)

2

)

(z)

r53
+

15µ(x+

√
3(1− 2µ)

2
)(z)A1

2r73

+

15µ

(

x+

√
3(1− 2µ)

2

)2

(z)A2

2r72

]

ωyz =
1

n2

[

(1− 2µ)zq

r51
+

3µ(y − 1/2)z

r52
+

3µ(y + 1/2)z

r53

+
15µA1(y + 1/2)z

2r73
− 15µA2(y − 1/2)z

2r72

]

ωzz =−
[

ecosf − 1

n2

[

(1− 2µ)q

r31
+

3Aµ

r52
+

2µ

r32

]

−z2
[

1

n2

[

(1− 2µ)q

r51
+

3Aµ

2r72
+

2µ

r52

]

In order to investigate the stability of the out of plane equilibrium points, we
introduce new variables as follows

Px =
du

df
, Py =

dv

df
, Pz =

dw

df
, (15)

Assuming these values the differential equations take the forms:

du

df
= P14Px + P15Py + P16Pz + P11u+ P12v + P13w (16)

dv

df
= P24Px + P25Py + P26Pz + P21u+ P22v + P23w (17)
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dw

df
= P34Px + P35Py + P36Pz + P31u+ P32v + P33w (18)

dpx

df
= P44Px + P45Py + P46Pz + P41u+ P42v + P43w (19)

dpy

df
= P54Px + P55Py + P56Pz + P51u+ P52v + P53w (20)

dpz

df
= P64Px + P65Py + P66Pz + P61u+ P62v + P63w (21)

where, the coefficients of the differential equations are P14 = P25 = P36 =
1;P45 = −P54 = 2;P41 = ωxx;P42 = ωxy;P43 = ωxz;P51 = ωyx;P52 =
ωyy;P53 = ωyz;P61 = ωzx;P62 = ωzy;P63 = ωzz and the values of all other
coefficients are equal to zero. The coefficients Pij i ≤ j, j ≤ 6 are periodic func-
tions of f of period 2π considering the averaged system, where the averaged
coefficients are given by

P
(0)
ij =

1

2π

∫ 2π

0
Pij(f)df (22)

i ≤ j, j=1,2,3,4,5,6.

3.1. Stability of Planar (Collinear) Equilibrium Points

Using y = 0,r2=r3 then A1=A2=A all second order derivative are given
by

ωxx =1− 1

n2

[

(1− 2µ)q

r31
− 3(1− 2µ)(x−

√
3µ)2q

r51
+ 2

µ

r32

−
6µ

(

x+

√
3(1− 2µ)

2

)2

r52
−

15µA

(

x+

√
3(1− 2µ)

2

)2

r73
+

3µA

r52

]

ωxz =ωyx = ωyz = 0

ωyy =1− 1

n2

[

(1− 2µ)q

r31
+

2Aµ

r32

]

ωzz =ecosf − 1

n2

[

(1− 2µ)q

r31
+

2Aµ

r32

]

Now, to investigate the stability of the equilibrium points (a0, b0) in the first
approximation,we derive the variational equation of motion in the coordinates
as given by equation (15),(16),(18), (19) and (21). Where, after evaluating
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the values of the terms given by equation (15) collinear equilibrium points
according to equation (12), we get:

P
(0)
11 = P

(0)
12 = P

(0)
14 = P

(0)
21 = P

(0)
22 = P

(0)
23 = P

(0)
33 = P

(0)
44 = 0;

P
(0)
13 = 1, P

(0)
24 = 1, P

(0)
45 = 2, P

(0)
54 = −2

(23)

and the values of all other coefficients are equal to zero. Thus the characteristic
equation for the system is :

λ4 −Qλ2 +R = 0 (24)

where,

Q = P
(0)
31 + P

(0)
42 − 4

R = P
(0)
31 · P (0)

42 − P
(0)
32 · P (0)

41 . (25)

The roots of characteristic equation (18) are given by:

λ = ±
[

Q

2
+

(Q2 − 4R)
1

2

2

]
1

2

(26)

The characteristic roots will be purely imaginary if

Q < 0 (27)

and

Q2 − 4R ≥ 0 (28)

It is not feasible to determine the terms analytically, so we have tabulated the
value of λ as shown in Table 1.
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Table 1. Collinear Points and stability table for different value of Radiation Pressure and
oblateness coefficient.

µ A q L1 λ1,2 λ3,4 L2 λ1,2 λ3,4

0.1 0.0 1 −0.9286 ±0.9925i ±3.0682i 1.057 ±1.3263 ±2.4357i

0.1 0.0 0.9 −0.8746 ±1.1668i ±3.2585i 1.026 ±1.3471 ±2.5134i

0.1 0.0 0.8 −0.8403 ±2.2702i ±3.3647 0.9888 ±1.3833 ±2.627i

0.1 0.0001 1 −0.9341 ±0.9747i ±3.0470i 1.054 ±1.3364 ±2.4514i

0.1 0.0001 0.9 −0.8872 ±1.1301i ±3.3122i 1.017 ±1.3790 ±2.5660i

0.1 0.0001 0.8 −0.8215 ±1.3145i ±3.4255 0.988 ±1.3865 ±2.6330i

3.2. Stability of Non Planar Equilibrium Points

Using y = 0, r2 = r3 then A1 = A2 = A all second order derivative are
given by

ωxz =
z

n2

[

(1− 2µ)(x−
√
3µ)2q

r51
+

6µ

(

x+

√
3(1− 2µ)

2

)

r52

−
15µA

(

x+

√
3(1− 2µ)

2

)

r73

]

ωxx =ωyx = 0

ωyz =
1

n2

[

(1− 2µ)(z)q

r31

]

ωyy =1− 1

n2

[

(1− 2µ)q

r31
+

2µ

r32
+

2Aµ

r32

]

ωzz =ecosf − 1

n2

[

(1− 2µ)q

r31
+

2µ

r32
+

2Aµ

r32

]

The coefficients of characteristic equation for differential equation is given by

λ6 + κ0λ
4 + κ1λ

2 + κ2 = 0; (29)

where,

κ0 = S4− P
(0)
41 − P

(0)
52 − P

(0)
63 ,

κ1 =P
(0)
41 P

(0)
52 − P

(0)
41 P

(0)
63 − P

(0)
52 P

(0)
63 − P

(0)2
42 − P

(0)
43 − P

(0)2
53 − 4P

(0)
63 ,

κ2 =P
(0)
43 P

(0)2
52 + P

(0)
63 P

(0)2
42 + P

(0)
41 P

(0)2
53 − 2P

(0)
42 P

(0)
53 P

(0)
43 − P

(0)
52 P

(0)
41 P

(0)
63 .
(30)
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Assuming λ2 = ρ, the following cubic equation is obtained from equation

ρ3 + κ0ρ
2 + κ1ρ+ κ2 = 0;

κ0 > 0, κ1 > 0, κ2 > 0and∆ < 0,

∆ =
(2κ30 − 9κ0κ1 + 27κ2)

2 + 4(3κ1 − κ0
2)3

27
now,

κ0 > 0,

gives the condition

3− 1√
1− e2

> 0

that is e < 0.866. Further more, expanding the terms of the above inequalities,
we get the following conditions:

0 < κ1 <=

(3− 1

(
√
1− e2)

)2

3
<=

4

3

0 < κ2 < δ1, κ1 <= 1 (31)

0 < κ2 < δ2, κ1 > 1 (32)

where,

δ1 =
(9κ0κ1 − 2κ30 − 2((κ0)

2 − 3κ1)
3/2

27
(33)

δ2 =
(9κ0κ1 − 2κ30 − 2((κ0)

2 − 3κ1)
3/2

27
(34)

Thus the inequalities are utilized to define the stability region values of
the various parameters such as oblateness, radiation pressure and so on. These
conditions for stability are analogues to the conditions proposed by Ragos and
Zagouras [12] in CRTBP when oblateness of the primaries and infinitesimal
are neglected. The stability of the system will hold if the roots of equation
(29) are purely imaginary.

4. Basin of Attraction

The basin of attraction of a point (attractor) is referred to the region
from which each point after a number of iteration tends toward the point.
These basins of attraction are mostly used to select the starting point for
orbits around the equilibrium point. The possibility of getting stable orbit is
high If the initial point is chosen from inside the region of attraction. However
the initial point chosen among the boundary values shows chaotic behavior.We
determine the basin of attraction of the planar (collinear) and non-planar (out
of plane) libration points with the help of Newton Raphson method which was
used extensively by Zotos [14, 15].
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Table 2. The values of the characteristic roots for the pair equilibrium points LO1,O2 for
f = 2π, A = 0.0001, e = .06.

q L1 and L2 λ1,2 λ3,4 λ5,6

−0.01 (0.1968, 0.2942) ±1.0995i ±2.760 ±1.0995i

−0.01 (0.1968,−0.2942) 1.221± 0.3457i −1.221± 0.3457i ±2.9271

−0.02 (0.1893, 0.3841) 1.4664± 0.4046i −1.4664± 0.4046i ±1.708i

−0.02 (0.1893,−0.3841) 1.063± 0.5902i −1.063± 0.5902i ±2.009

−0.03 (0.1743, 0.4367) 1.3368± 0.5875i 1.3368± 0.5875i ±1.6532i

−0.03 (0.1743,−0.4367) 0.9939± 0.6704i −0.9939± 0.6704i ±1.7979

Table 3. The values of the characteristic roots for the pair equilibrium points LO1,O2 for
f = 3π/2, A = 0.0001, e = 0.06.

q L1 and L2 λ1,2 λ3,4 λ5,6

−0.01 (0.1978, 0.3242) 1.5260± 0.06780i −1.5260± 0.06780 ±1.65805i

−0.01 (0.1978,−0.3242) 1.0923± 0.5065i −1.0923± 0.5065i ±2.1080

−0.02 (0.174, 0.4217) 1.1603± 0.6837i −1.603± 0.6837i ±1.3844i

−0.02 (0.174,−0.4217) 0.9121± 0.7220i −0.9121± 0.7220i ±1.4944

−0.03 (0.1668, 0.4891) 1.0025± 0.7743i 1.0025± 0.7743i ±1.3844i

−0.03 (0.1668,−0.4891) 0.7938± 0.8055i −0.7938± 0.8055 ±1.306

4.1. Basin of Attraction for planar equilibrium points

We use iterative scheme for each equilibrium point in the xy-plane as given
by the following relation:

xn+1 = xn − ΩxΩyy −ΩyyΩxy

ΩxxΩyy −Ω2
yz

(35)

yn+1 = yn − ΩxΩyx −ΩyΩyy

ΩxxΩyy −Ω2
xy

(36)

All the initial condition are provided such as equilibrium point (x,y), mass
parameter and oblateness coefficient. We present the basin of attraction using
Newton Raphson method for the equilibrium points in the restricted four body
problem. The colour coded diagrams in the (x-y) plane are plotted for different
value of f .

4.2 Basin of Attraction for non-planar equilibrium points

We determine the basin of attraction of the planar (collinear) and non-
planar (out of plane) libration points with the help of Newton Raphson method
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Table 4. The values of the characteristic roots for the pair equilibrium points LO1,O2 for
f = π , A = 0.0001, e = 0.06.

q LO1andLO2 λ1,2 λ3,4 λ5,6

−0.01 (0.1779, 0.3969) 0.8904± 0.7816i −0.8904± 0.7816 ±1.2248i

−0.01 (0.1779,−0.3969) 0.7493± 0.8137i −0.7493± 0.8137i ±1.1239

−0.01 (0.08668, 1.255) 0.0± 1.189i 0.0± 0.2241i ±.8051i

−0.01 (0.08668,−1.255) ±0.8071i 0.0± 1.189i ±.3585

−0.02 (0.1631, 0.4826) 0.7991± 0.819i −0.7991± 0.8191i ±1.2132i

−0.02 (0.1631,−0.4826) 0.6492± 0.8652i −0.6492± 0.8652i ±1.082

−0.02 (0.06337, 1.197) 0.0± 0.2780i −0.0± 0.8034i ±1.189i

−0.02 (0.06337, 1.197) 0± 0.7984i −0.0± 1.1968i ±..3913i

−0.03 (0.1515, 0.5595) 0.6800± 0.8414i 0.6800± 0.8414i ±1.595i

−0.03 (0.1515,−0.5595) 0.6800± 0.8414i −0.6800± 0.8414 ±1.1595

−0.03 (0.0418, 1.165) 0.0± 0.3195i 0.0± 0.8095i ±1.179i

−0.03 (0.0418,−1.165) 0.4219± 0.8156i −0.4219± 0.81564 ±0.4219

which was used extensively by Zotos [14,15]. We use iterative scheme for each
equilibrium point in the xz-plane as given by the following relation:

xn+1 = xn − ΩxΩzz −ΩzzΩxz

ΩxxΩzz −Ω2
xz

(37)

zn+1 = zn − ΩxΩzx −ΩzΩzz

ΩxxΩzz −Ω2
xz

(38)

All the initial conditions are provided such as equilibrium point (x,z), mass
parameter and oblateness coefficient. We present the basin of attraction using
Newton Raphson method for the equilibrium points in the restricted four body
problem. The colour coded diagrams in the (x-z) plane are plotted for different
value of q and f .

5. Conclusion and Discussion

The position and stability of collinear and non-planar equilibrium points
in the elliptical restricted four body problem, where one of the primary is
radiating and other two are oblate spheroid, moving in elliptic orbit around
their common center of mass, has been investigated. We found that the location
of planar (collinear) and non-planar (out of plane) Libration points are affected
by parameters perturbation forces such as oblateness and radiation pressure.

We observed that for fixed value of oblateness parameter A, when radiation
pressure is increased from 0.8 to 1.0 both planar equilibrium points L1 and
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Fig. 12. Fractal basin for planar equilibrium point µ = 0.1, A = 0.0001 and q = 0.01 and
f = π/2.

Fig. 13. Fractal basin for planar equilibrium point µ = 0.1, A = 0.0001 and q = 0.01 and
f = π.

L2 shift away from the origin. Whereas when the oblateness is decreased the
shift is toward the origin.

The existence and position of non-planar (out of plane) equilibrium points
depend on true anomaly f and radiation pressure q. For A = 0.0001, q = −0.01
to q = −0.03 and f = (2n + 1)π there exist four out-of-plane equilibrium
points and for A = 0.0001, q = −0.01 to q = −0.03 and for f = (2n + 1)π/2
there exists two out-of-plane equilibrium points. For A = 0.0001, q = −0.01
to q = −0.03 and f = 2nπ there exists two out-of-plane equilibrium points
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Fig. 14. Fractal basin for non-planar equilibrium point µ = 0.1, A = 0.0001 and q = −0.01
and f = 0.

Fig. 15. Fractal basin for non-planar equilibrium point µ = 0.1, A = 0.0001 and q = −0.02
and f = 0.

whereas for A = 0.0001, q = 0.01 to q = 0.08 and f = π/4 and there exists
two out-of-plane equilibrium points.

These points are shifted toward the origin and f = π/2 and or A = 0.0001,
q = 0.01 to q = 0.08 (positive value) is no equilibrium points whereas for
q = .01 to 0.6 and f = 0 their exist two out of plane equilibrium points. We
also observed that there is very little difference in the position of out of plane
equilibrium points for different values of the oblateness coefficient.
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Fig. 16. Fractal basin for non-planar equilibrium point µ = 0.1, A = 0.0001 and q = −0.01
and f = π.

Fig. 17. Fractal basin for non-planar equilibrium point µ = 0.1, A = 0.0001 and q = −0.02
and f = π.

The stability criteria for both planar (collinear) and non-planar (out of
plane) equilibrium points were established and were numerically studied by
tabulating their eigen values. It was also shown that the collinear and non-
planar equilibrium points are unstable.

The basin of attraction for collinear equilibrium point in the xy-plane was
plotted for f = π/2, q = 0.01 and A = 0.0001 also for f = π, q = 0.01 and
A = 0.0001. It was observed that thre are no major changes in fractal basin
for changes in true anomaly.
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The basin of attraction for out of plane equilibrium point in the xz-plane
was plotted for f = 0, q = −0.01 and q = −0.02 also for f = π q = −0.01 and
q = −0.02. It was observed that as radiation factor q decreases the basin of
attraction points enlarges and its vagueness decreases.
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