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Abstract. The goal of this paper is to investigate the cosmic evolution of a cosmological
model with a massive scalar field in f(R, T ) gravity (R and T denote the Ricci scalar and
the energy-momentum tensor trace, respectively). We reconstruct the f(R, T ) model using
a correspondence scheme that includes (i) a power-law relationship between the scalar field
and the average scale factor, and (ii) the expansion scalar of the space-time is proportional
to the shear scalar, resulting in a metric potential relationship. With the assistance of evolu-
tionary trajectories of the equation of state and deceleration, as well as statefinder diagnostic
parameters, the qualitative analysis of the obtained model is studied. The equation of state
parameter is found to describe the Universe’s phantom epoch, whereas the deceleration pa-
rameter depicts smooth transition from the early decelerated phase to the present accelerated
phase, while the statefinder plane corresponds to the Chaplygin gas model and the model
finally approaches ΛCDM model.
Key words: Bianchi type-I model; dark energy model; anisotropic model; massive scalar
field; f(R, T ) gravity.

Introduction

Observational data has confirmed the recent concept of cosmic acceleration
in our universe, and the cause for this is believed to be the presence of a
mysterious force known as dark energy (DE) (Riess et al. 1998; Perlmutter et
al. 1999; Peebles and Ratra 2003; Komatsu et al. 2009). Two concepts have
been proposed to explain the universe’s late-time acceleration. One of them is
to investigate the dynamical DE models such as Chaplygin gas (Bento et al.
2002; Zhang et al. 2006), holographic models (Hsu 2004; Li 2004), etc. Because
the simple DE model, specifically the cosmological constant, is plagued by
coincidence and other major difficulties in general relativity, the above models
have been investigated. Modifying Einstein’s theory of gravity is another way
to explain the cosmic acceleration. A nice review of dark energy and modified
theories of gravitation are presented in the literature (Nojiri and Odintsov
2011; Harko and Lobo 2012; Nojiri and Odintsov 2007; Bamba et al. 2012).
The f(R), f(R, T ) (Capozziello et al. 2003; Nojiri and Odintsov 2003; Harko
et al. 2011) theories of gravity are among the most important adaptations. We
are mostly interested in f(R, T ) gravity here. The gravitational Lagrangian
has been assumed to be an arbitrary function of the Ricci scalar R and the
trace T of the matter-energy tensor in this theory.

The field equations of the f(R, T ) theory of gravity are produced by com-
bining gravity, matter, and a scalar field in the following action (Harko et al.
2011; Sharif and Nawazish 2017):

S=
1

16π

∫

f(R, T )
√
−g d4x+

∫

(Lm + Lϕ)
√
−g d4x. (1)

Lm and Lϕ are the matter and scalar field Lagrangian densities, respectively.
Only Lm and Lϕ allow minimum coupling in the gravity Lagrangian f(R, T )
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(Harko et al. 2011). R is the Ricci scalar, and T is the trace of the energy-
momentum tensor of matter. The combined energy-momentum tensor of mat-
ter and scalar field is defined as

Tij=− 2δ(
√−g(Lm + Lϕ))√−gδgij

, i, j= 1, 2, 3, 4. (2)

We got the field equations of f(R, T ) gravity by assuming that the matter
Lagrangian Lm and scalar field Lagrangian Lϕ depend only on the metric
tensor components gij

fR(R, T )Rij −
1

2
f(R, T )gij− (∇i∇j − gij ⊔⊓)fR(R, T )

= 8πTij − fT (R, T )(Tij +Θij) (3)

and

Θij=− 2Tij + gij(Lm + Lϕ)− 2glk
∂2(Lm + Lϕ)

∂gij∂glm
. (4)

Here

⊔⊓=∇i∇i, fR(R, T ) =
∂f(R, T )

∂R
, fT (R, T ) =

∂f(R, T )

∂T

and ∇i denotes the covariant derivative. For a perfect fluid, the energy- mo-
mentum tensor is

Tij= (ρ+ p)uiuj − pgij (5)

where ρ and p denote energy density and pressure, respectively, and ui denotes
the fluid’s four-velocity vector. We also assume an attracting massive scalar
field with a tensor of energy-momentum equal to

T
ϕ
ij=ϕ;iϕ;j −

1

2
gij

(

ϕ;kϕ
,k −M2ϕ2

)

. (6)

where M is the mass of the scalar field ϕ which satisfies the Klein-Gordon
equation

gijϕ;ij +M2ϕ= 0. (7)

Ordinary and covariant differentiation is indicated by a comma and a semi-
colon, respectively, and ϕ is a function of time t. The Lagrangian density of
perfect fluid and scalar fields for action (1) is defined as (Harko et al. 2011;
Sharif and Nawazish 2017)

Lm=− p, Lϕ=
1

2

(

M2ϕ2 − ϕ̇2
)

. (8)

Now with the use of Eqs. (4) and (8) we obtain the tensor Θij as

Θij=− 2Tij −
gij

2

(

2p+ ϕ̇2 −M2ϕ2
)

. (9)
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The tensor Θij , which describes the physical constitution of the matter field,
and affects the field equations in general. As a result, in the case of f(R, T )
gravity, we have many theoretical models corresponding to each choice of
f(R, T ) provided by each choice of f(R, T ) (Harko et al. 2011)

f (R, T )=

{

R+ 2f (T )
f1 (R) + f2 (T )
f1 (R) + f2 (R) f3 (T ) .

(10)

Assuming the function f(R, T ) as

f(R, T ) =R+ 2f(T ) (11)

where f(T ) is an arbitrary function of the trace of stress-energy tensor of
matter (perfect fluid and massive scalar field), we get the gravitational field
equations of f(R, T ) gravity from Eq. (3) as

Rij −
1

2
Rgij = 8πTij − 2 (Tij +Θij) f

′(T ) + f(T )gij (12)

where the prime denotes differentiation with respect to the argument.
The study of cosmological models in the f(R) and f(R, T ) theories of grav-

ity in the presence of various source terms that represent stress-energy tensors
has generated a lot of interest. This is because f(R, T ) gravity models repre-
sent the universe’s early inflation and late-time acceleration. Capozziello and
Laurentis (2011), Nojiri and Odintsov (2011), and Nojiri et al. (2017) provide
a review of modified gravity models to explain dark energy. Sharif and Shamir
(2009) and Shamir (2010) studied Bianchi type-I, III, V , and Kantowski-
Sachs models in f(R) theory. Several researchers have investigated numerous
anisotropic Bianchi-type cosmological models in f(R) theory under various
physical conditions (Katore 2015; Santhi et al. 2018; Aditya and Reddy 2018c).
In f(R, T ) gravity, Rao et al. (2016) studied Bianchi type-V Ih model, Mishra
et al. (2015) examined non-static cosmological models, Sahoo et al. (2016)
examined Bianchi-type string cosmological models and Aditya et al. (2016)
investigated numerous Bianchi-type models. Sahoo et al. (2020) explored the
bouncing scenario, whereas Maurya and Ortiz (2020) studied anisotropic fluid
spheres in f(R, T ) theory of gravity. Singh and Beesham (2020) investigated
LRS Bianchi type-I model with constant Hubble parameter in f(R, T ) grav-
ity. Sharma (2021) constructed the Tsallis holographic dark energy model in
f(R, T ) gravity. Nishant et al. (2020) investigated a flat accelerating universe
of the model with a linearly varying deceleration parameter.

The study of scalar fields (SFs) in general relativity has stimulated the
interest of numerous researchers, because of their physical significance in cos-
mology. Now particle physics theories confirm the presence of SFs. For exam-
ple the Higgs mechanism explaining the mass of the particles is a massive SF.
Also, the recent scenario of accelerated expansion of the universe is explained
by quintessence SF. It, also, helps to produce inflation at early stages of evo-
lution of the universe. Scalar fields are thought to accelerate the expansion of
the universe and aid in the solution of the horizon problem. Scalar fields in
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cosmology are matter fields with spin-less quanta that characterize gravita-
tional fields. Massive scalar fields and zero mass scalar fields are the two types
of scalar fields. Long-range interactions are defined by zero-mass scalar fields,
while short-range interactions are described by massive scalar fields. In general
relativity, massless and massive scalar meson fields have been widely explored.
Singh (2009) obtained Bianchi type-V model in Lyra’s geometry in the pres-
ence of massive scalar field. Singh and Rani (2015) presented Bianchi type-III
cosmological model in Lyra’s geometry in the presence of a massive scalar field.
The following studies are relevant to our research. Several researchers have in-
vestigated DE models with SFs in the context of the anisotropic background in
the literature (Prasanthi and Aditya 2020, 2021; Aditya et al. 2019; Aditya and
Reddy 2018a, 2018b, 2019; Santhi et al. 2016a, 2016b, 2017a, 2017b, 2017c).
Naidu et al. (2015) investigated Bianchi type-V DE models in the presence of
a scalar-meson field in general relativity. Reddy et al. (2019) investigated the
Kantowski-Sachs DE model in the presence of the scalar-meson field. Aditya
et al. (2019) studied the Kaluza-Klein DE model in the Lyra manifold in
the presence of massive SF. Aditya and Reddy (2019) discussed the Bianchi
type-III model in the presence of a massive SF in f(R, T ) gravity. Raju et
al. (2020a, 2020b, 2020c) studied several aspects of anisotropic DE models
with a massive SF. Aditya et al. (2021a) looked into the Bianchi type-V I0 DE
model with SF, whereas Naidu et al. (2020, 2021) explored Bianchi type-I and
Kaluza-Klien cosmological models in the presence of a perfect fluid and an at-
tracting massive SF. Observational constraints on dark energy and SF models
were examined by Naidu et al. (2021), Aditya et al. (2021b), and Bhaskara
Rao (2021, 2022). In the Lyra manifold, Aditya et al. (2022) investigated the
Bianchi type-IX dark energy model in the presence of a massive scalar meson
field.

The theoretical argument and recent experimental data support the exis-
tence of an anisotropic phase that approaches an isotropic phase (in the fu-
ture). Hence, this motivates one to consider universe models with an anisotropic
background. Bianchi type metrics are the best for Bianchi type universes which
are the class of cosmological models that are homogeneous but not necessar-
ily isotropic. The significance of Bianchi type cosmological models resides in
their homogeneity and anisotropy, which allows for the study of the Universe’s
isotropization through time. Due to the simplicity of the field equations and
relative ease of solution, Bianchi space-times proved useful in developing mod-
els of spatially homogeneous and anisotropic cosmologies. An increasing inter-
est in anisotropic cosmological models of the Universe has been generated by
anomalies observed in the cosmic microwave background (CMB) and research
into big scale structure.

The primary objective of this study is to investigate the dynamics of the
Locally-Rotationally-Symmetric (LRS) Bianchi type-I cosmological model in
the presence of a perfect fluid and a massive scalar meson field. Because they
are among the simplest models with an anisotropic backdrop, Bianchi type-I
models are essential in cosmology. The following is how we organised our work
in this paper: We derive the f(R, T ) gravity field equations using LRS Bianchi
type-I space-time in the presence of perfect fluid and attracting massive scalar
field in Sect. 2. Also, we solve the field equations and provide the corresponding
cosmological model in Sect. 2. Sect. 3 contains the cosmic parameters that
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correspond to our model and discusses their physical importance in modern
cosmology. A summary and conclusions are included in the final section.

1 Field equations and the model

We consider the LRS Bianchi type-I metric of the form, which is spatially
homogeneous and anisotropic

ds2=dt2 −A2(t)dx2 −B2(t)(dy2 + dz2), (13)

where A(t) and B(t) represent the scale factors of the universe. The volume (V )
and average scale factor (a(t)) of LRS Bianchi type-I space-time are specified
as

V=
√
−g=AB2, a(t) = (AB2)

1
3 (14)

The anisotropic parameter Ah is given by

Ah=
1

3

3
∑

i=1

(

Hi −H

H

)2

(15)

where H1=
Ȧ
A
, H2=H3=

Ḃ
B

are the directional Hubble’s parameters and

H=1
3

(

Ȧ
A
+ 2 Ḃ

B

)

is the mean Hubble’s parameter. The expansion scalar (θ)

and shear scalar (σ2) are defined as

θ=
Ȧ

A
+ 2

Ḃ

B
(16)

σ2=
1

3

(

Ȧ

A
− Ḃ

B

)2

(17)

The deceleration parameter is given by

q=
d

dt

(

1

H

)

− 1. (18)

To derive the field equations of our model, we assume the particular choice of
the function f(R, T ) as (Harko et al. 2011)

f(T ) =λT , λ = constant. (19)

Now, for the metric (13), using comoving coordinates and Eqs. (5)-(6), the
explicit form of the f(R, T ) gravity field equations (12) and the Klein-Gordon
equation, take the form:

2
B̈

B
+

Ḃ2

B2
−p (8π + 3λ) + λρ = 4π

(

ϕ̇2 −M2ϕ2
)

(20)
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Ä

A
+

B̈

B
+

ȦḂ

AB
−p (8π + 3λ) + λρ = 4π

(

ϕ̇2 −M2ϕ2
)

(21)

2
ȦḂ

AB
+

Ḃ2

B2
+ ρ (8π + 3λ)− λp = −(4π + 2λ)ϕ̇2 − 4πM2ϕ2 (22)

ϕ̈+ ϕ̇

(

Ȧ

A
+ 2

Ḃ

B

)

+M2ϕ= 0 (23)

where an overhead dot denotes differentiation with respect to cosmic time t.
The geometrical and physical parameters to utilize in solving the f(R, T ) field
equations for the Bianchi type-I space-time provided by Eq. (13) are given in
Eqs. (14)-(18).

Field Eqs. (20)–(23) are a set of four independent equations with five un-
knowns A, B, ϕ, p and ρ. Hence, we employ the following physically plausible
conditions to obtain a determinate solution:

– We may use that the shear scalar σ2 is proportional to the scalar expansion
θ (Collins et al. 1980) which leads to

A=Bk (24)

where k 6= 1 is a constant that maintains the spatial anisotropic nature.
Given that the Hubble expansion of the current universe is isotropic within
30% (Thorne 1967; Kantowski and Sachs 1966; Kristian and Sachs 1966),
velocity-redshift measurements for extragalactic sources are possible. In ad-
dition, the red-shift study determined that the limit in our current Galaxy
is σ

H
≤ 0.3. Collins et al. (1980) have also shown that the normal con-

gruence to the homogeneous expansion meets the requirement that σ
H

is
constant.

– A power-law relation between the scalar field ϕ(t) and the average scale
factor a(t) of the model is given by (Johri and Sudharsan 1989; Johri and
Desikan 1994)

ϕ ∝ [a(t)]n (25)

where n is a power index. To reduce the mathematical complexity of the
system, here, we consider the following relation between the scalar field
and the metric potentials

ϕ=ϕ0 [a(t)]n (26)

which is, clearly, a consequence of Eq. (25). Several authors, in the litera-
ture, have considered the above relation to study anisotropic cosmological
models with massive scalar fields (Singh and Rani 2015; Raju et al. 2020a,
2020b; Aditya et al. 2021a; Naidu et al. 2020, 2021; Bhaskara Rao et al.
2021, 2022). Here the question of over-determinacy is settled by satisfying
the field equations.

Now from Eqs. (23), (24) and (26), we get the metric potentials

A=(k1sinh (k2t+ c2) )
3k

(n+3)(k+2)
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B = (k1sinh (k2t+ c2) )
3

(n+3)(k+2) (27)

and scalar field ϕ(t) as

ϕ (t)=ϕ0 (k1sinh (k2t+ c2) )
n

n+3 (28)

where k1 =

√

− c1n(n

3
+1)(k+2)2

3M2 , k2 =

√

−3M2(n

3
+1)

n
, c1 and c2 are integrating

constants. Since Pradhan et al. (2012) and Mishra et al. (2013) presented an

average scale factor a(t) = [sinh(t)]
1
n in conjunction with the investigation

of dark energy models in anisotropic backdrop, it is worth noting that the
solution achieved here is quite interesting and physically acceptable. They
discovered that it produces some feasible results that match modern cosmic
data. Many researchers have used this type of average scale factor to study
various elements of dark energy models in the literature (Amirhashchi et al.
2011; Mishra et al. 2016; Rao and Prasanthi 2017). Based on these results,
studying the scalar field model with this hyperbolic solution for scale factors
(Eq. (27)) is interesting.

Now the metric (13) with the help of Eq. (27) can be written as

ds2 = dt2 −
(

(k1sinh (k2t+ c2) )
6k

(n+3)(k+2)

)

(

dx2
)

−
(

(k1sinh (k2t+ c2) )
3

(n+3)(k+2)

)

(dy2 + dz2). (29)

Eq. (29) along with Eq. (28) shows LRS Bianchi type-I universe with massive
scalar fields in f(R, T ) theory of gravity along with the following physical and
cosmological parameters which are very crucial in the discussion of cosmology.

2 Cosmological parameters and discussion

Spatial volume

V (t) =(k1sinh (k2t+ c2) )
3

n+3 . (30)

The average scale factor is given by

a (t) = (k1sinh (k2t+ c2) )
1

n+3 . (31)

The mean Hubble parameter is

H (t) =
k2coth (k2t+ c2)

n+ 3
. (32)

The scalar expansion is

θ=
3k2coth (k2t+ c2)

n+ 3
. (33)
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The shear scalar is

σ2=
(k − 1)k2coth (k2t+ c2)

(n+ 3)(k + 2)
. (34)

The average anisotropic parameter is

Ah=2

(

k − 1

k + 2

)2

(35)

Now using Eqs. (27) and (28) in the field equations (20)-(22) we get the energy
density ρ and the pressure p as

ρ =
1

(8π + 3λ)2 − λ2

{

3λ

2

{

(

9 k2
2coth(k2t+ c2)

2 )

(n+ 3)2(k + 2)2
+

3 k2
2

(n+ 3) (k + 2)

−

3 k2
2cosh(k2t+ c2)

2

(n+ 3) (k + 2) sinh(k2t+ c2)
2

}

+

{

(

9k2k2
2cosh(k2t+ c2)

2 )

(n+ 3)2(k + 2)2sinh(k2t+ c2)
2

+
kk2

2

(n+ 3) (k + 2)
−

3kk2
2cosh(k2t+ c2)

2

(n+ 3) (k + 2) sinh(k2t+ c2)
2

+
9k2

2cosh(k2t+ c2)
2

(n+ 3)2(k + 2)2sinh(k2t+ c2)
2

}

−

(8π + 3λ)

(coth(k2t+ c2))−2

{

9k2
2

(n+ 3)2(k + 2)2

+
18kk2

2

(n+ 3)2(k + 2)2

}

−

4λπ

(k1sinh (k2t+ c2) )
−2n

(n+3)

{

ϕ0
2n2k2

2

(n+ 3)2tanh(k2t+ c2)
2

−M
2
ϕ0

2

}

− (8π + 3λ)

{

4πM2
ϕ0

2 +
(4π + 2λ)ϕ0

2n2k2
2

(n+ 3)2tanh(k2t+ c2)
2

}}}

(36)

p =
1

(8π + 3λ)2 − λ2

{

3(8π + 3λ)

2

{

(

9k2
2coth(k2t+ c2)

2 )

(n+ 3)2(k + 2)2
+

3k2
2

(n+ 3) (k + 2)

−

3k2
2cosh(k2t+ c2)

2

(n+ 3) (k + 2) sinh(k2t+ c2)
2

}

+

{

(

9 k2k2
2cosh(k2t+ c2)

2 )

(n+ 3)2(k + 2)2sinh(k2t+ c2)
2

+
3kk2

2

(n+ 3) (k + 2)
−

3kk2
2coth(k2t+ c2)

2

(n+ 3) (k + 2)
+

9k2
2coth(k2t+ c2)

2

(n+ 3)2(k + 2)2

}

−

λ

coth(k2t+ c2)
2

{

9k2
2

(n+ 3)2(k + 2)2
+

18kk2
2

(n+ 3)2(k + 2)2

}

−

4(8π + 3λ)π

(k1sinh (k2t+ c2) )
−2n

(n+3)

{

−M
2
ϕ0

2 +
ϕ0

2n2k2
2

(n+ 3)2tanh(k2t+ c2)
2

}

−

λ

(k1sinh (k2t+ c2) )
−2n

(n+3)

{

4πM2
ϕ0

2 +
(4π + 2λ)ϕ0

2n2k2
2

(n+ 3)2tanh(k2t+ c2)
2

}}

(37)

Scalar Field:

The behavior of a scalar field over cosmic time for various values of a parameter
n that plays an essential role in its evolution is seen in Fig. 1. With cosmic time,
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we see that the scalar field diminishes. We can observe that the SF is decreasing
and hence the kinetic energy is increasing. This result is quite similar to that of
the scalar field models in literature (Jawad et al. 2015; Singh and Rani 2015;
Naidu et al. 2015; Aditya et al. 2019). It can also be shown that when the
parameter n is increased, the SF ϕ(t) decreases initially whereas it increases
at present epoch. Hence, we plotted the other cosmological parameters for
various values of n to analyze the effects of the SF on the evolution of other
dynamical parameters.

Fig. 1. Plot of scalar field versus cosmic time t for c2 = 0.84, M = 0.115, c1 = 0.00001,
ϕ0 = 10 and k = 0.95.

Energy conditions:

We investigate the well-known energy conditions for our model. The energy
conditions are also used to demonstrate a number of general theorems about
the behavior of large gravitational fields. The standard energy conditions are
as follows:
– Null energy conditions (NEC): ρDE + pDE ≥ 0,
– Weak energy conditions (WEC): ρDE ≥ 0, ρDE + pDE ≥ 0,
– Strong energy conditions (SEC): ρDE + pDE≥ 0, ρDE + 3pDE≥ 0,
– Dominant energy condition (DEC): ρDE ≥ 0, ρDE ± pDE≥ 0.
Fig. 2 depicts the model’s energy conditions. As cosmic time t increases, the
energy density appears to decrease. Energy density increases when the scalar
field increases, as illustrated in Fig. 2. Based on these results we can conclude
that, when the scalar field is modified, the behavior of energy density changes
significantly. The NEC is violated, causing the model to have a Big Rip. As
predicted, our model fails the other energy conditions. This is due to the uni-
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verse’s late-time acceleration, which current observational evidence supports.
Hence, the model suggests early inflation.

Fig. 2. Plot of energy conditions versus cosmic time t for c2 = 0.84,M = 0.115, c1 = 0.00001,
ϕ0 = 10, k = 0.95 and λ = −8.65.

EoS parameter:

The equation of state (EoS) parameter describes the behavior of our model.
For standard cosmological theories, we have the ω = −1 vacuum model, the
ω = 0 dust model, the ω = 1

3 radiation model, and the ω = +1 stiff fluid
model. It is defined as

ω =
p

ρ
(38)

The behavior of our model’s EoS parameter in terms of cosmic time is seen
in Fig. 3. It can be observed that the EoS value totally varies in the phantom
region (ωde < −1) and it differs in the aggressive phantom region as the scalar
field grows. The present values of the EoS parameter of our model are (n, ω)=
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(−0.23, −1.025), (−0.26,−1.09), (−0.29,−1.12). It is also worth mentioning
that the EoS value in our model matches recent Planck observations very well
(Aghanim et al. 2020).

Fig. 3. Plot of equation of state parameter versus cosmic time t for c2 = 0.84, M = 0.115,
c1 = 0.00001, ϕ0 = 10, k = 0.95 and λ = −8.65.

Deceleration parameter:

The deceleration parameter (q(t)) is critical in describing the model’s behavior.
When q > 0, the cosmological model decelerates as expected, however when
q = 0, the model expands at a constant rate. If −1 ≤ q < 0, we have a
cosmological model with accelerated expansion, and when q < −1, we have a
model with exponential growth. For our model, it is obtained as

q(t) = −1 + (n+ 3)(sech(k2t+ c2))
2 (39)

The deceleration parameter of our model varies in the area q > 0 and eventu-
ally reaches the value q = −1, as shown in Fig. 4. This proves that our model
exhibits a transition from an early decelerated phase to the present acceler-
ated epoch of the universe. This is compatible with the recent scenario of the
Universe.

Statefinder parameters:

These parameters help us identify between the many DEmodels that have been
developed over time. Because the parameters r and s are directly derived from
the metric, they have a geometrical character, making them model dependent.
Sahni et al. (2003) proposed two new dimensionless parameters known as
statefinders, which have the following definitions:

r=

...
a

aH3
, s=

r − 1

3
(

q − 1
2

) .
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Fig. 4. Plot of deceleration parameter versus cosmic time t for c2 = 0.84, M = 0.115,
c1 = 0.00001, ϕ0 = 10 and k = 0.95.

For our model, the above parameters are obtained as

r = 1 +
3(n+ 3)

(tanh (k2t+ c2))2
− (n+ 3)(2n+ 3)

(sinh (k2t+ c2))2
− 2(n+ 3)2

(coth (k2t+ c2))2
(40)

s =

{

3(n+ 3)

(tanh (k2t+ c2))2
− (n+ 3)(2n+ 3)

(sinh (k2t+ c2))2
− 2(n+ 3)2

(coth (k2t+ c2))2

}

×
{

− 9

2
+ 3(n+ 3)(sech(k2t+ c2))

2

}

−1

(41)

There is a limit for (r, s) = (1, 1) (CDM limit) and for (r, s) = (1, 0) (ΛCDM
limit). The model corresponds to the Chaplygin gas model for r > 1 and s < 0.
When r < 1 and s > 0, the DE model’s quintessence and phantom regions are
also obtained. It is very clear from Fig. 5 that our model becomes a ΛCDM
model at late times. Also, in terms of evolution, our model is similar to the
Chaplygin gas model.

r-q plane:

The fixed points (r, q) = (1, 0.5) and (r, q) = (1,−1), respectively, exhibit the
standard cold dark matter (SCDM) and steady state (SS) models. Starting at
the fixed point of the SCDM model (r, q) = (1, 0.5), the ΛCDM model evolves
along the vertical dotted line (r = 1) untill it reaches the fixed point of the
SS model (r, q) = (1,−1). The evolution of our model in the r − q plane is
seen in Fig. 6. The r− q trajectory shows that the deceleration parameter (q)
has shifted sign, going from positive to negative. At a later stage, our model
approaches the SS model. The r − q trajectory also shows that our massive
scalar field model in the f(R, T ) theory of gravity behaves very similarly to
the scalar field models in literature (ref. Singh and Kumar 2016; Aditya et al.
2022).
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3 Conclusions

Several researchers are looking at cosmological models based on the f(R, T )
theory of gravity in order to explain the interesting question of accelerated
expansion of the universe. Hence, we solved the f(R, T ) field equations in the
presence of matter and a massive SF in this work and constructed a Bianchi
type-I universe. We used a relationship between the metric potentials and a
power law between the SF and the average scale factor to construct a deter-
ministic model. In light of new cosmological scenarios and observations, we
analyzed several dynamical cosmological parameters and gave their physical
discussion. Some conclusions are as follows:

– The spatial volume of our model increases with cosmic time, hence the
universe is expanding spatially. The physical quantities H, θ, σ2 of the
model are finite initially (at t = 0) and tend to a constant value for suf-
ficiently large values of cosmic time. The average anisotropy parameter of
our model is constant and hence the model is anisotropic. However it may
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be noted that it becomes isotropic and shear free for n = 1. The scalar
field in the model decreases with cosmic time and hence the corresponding
kinetic energy increases. This result is quite similar to that of the scalar
field models in literature (Jawad et al. 2015; Singh and Rani 2015; Naidu
et al. 2015; Aditya et al. 2019).

– The energy density of our model appears to decrease with the passage of
time whereas the energy density increases when the scalar field increases
(Fig. 2). When the scalar field is modified, the behavior of energy density
changes significantly. The NEC is violated, causing the model to have a
Big Rip. Based on these results, the model suggests an early inflation.

– The EoS parameter of our model totally varies in the phantom region
(Fig. 3). Also, its behavior differs in the aggressive phantom region as the
scalar field grows (Fig. 3). The present values of the EoS parameter of
our model are (n, ω)= (−0.23, −1.025), (−0.26,−1.09), (−0.29,−1.12). It
is important to mention that the EoS value in our model matches recent
Planck observations very well (Aghanim et al. 2020)
ωde = −1.56+0.60

−0.48(Planck + TT + lowE);

ωde = −1.58+0.52
−0.41(Planck + TT,TE,EE+lowE);

ωde = −1.57+0.50
−0.40(Planck + TT,TE,EE+lowE+lensing);

ωde = −1.04+0.10
−0.10(Planck + TT,TE,EE+lowE+lensing+BAO).

– We observe that, initially, the deceleration parameter (q(t)) of our model is
positive and finally approaches −1. Hence, the model starts in a decelerated
phase and finally approaches an accelerated expansion (Fig. 4). The present
value of q(t) for our model is q ≈ −0.98 which is in accordance with the
observational data (Capozziello et al. 2019; Amirhashchi and Amirhashchi
2019) given as q = −0.930±0.218 (BAO+Masers+TDSL+Pantheon+
Hz) and q = −1.2037 ± 0.175 (BAO + Masers + TDSL + Pantheon +
H0 + Hz). Statefinders analysis confirms that our model behaves as the
Chaplygin gas model and finally approaches to ΛCDM (Fig. 5). It can
be seen from the r − q trajectory that our model approaches the steady
state model at late times (Fig. 6). This behavior is quite similar to that of
the scalar field models in literature (Singh and Kumar 2016; Aditya et al.
2022).

All of the dynamical parameters are observed to behave in a way that is con-
sistent with current experimental observations in modern cosmology. Hence,
our model will help to understand the significance of massive scalar fields in
modern cosmology.
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