Svetoslav Botev¹, Petko Nedialkov¹ & Georgi P. Petrov¹ Department of Astronomy, Faculty of Physics, Sofia University "St. Kliment Ohridski", Sofia, Bulgaria botev@phys.uni-sofia.bg

(Submitted on 8 June 2023; Accepted on 13 September 2023)

Abstract. The integral X-ray luminosities of 89 Milky Way Globular Clusters within 2 core radii r_c have been estimated using the average X-ray fluxes of individual sources detected in the recent *Chandra*, *XMM-Newton* or *Swift* missions. The X-ray luminosity function is constructed and a limit luminosity $L_X([0.5-7] \text{ keV}) = 10^{33.65} \text{ erg s}^{-1}$ is defined, which divides the sample into two groups: 18 high-luminosity clusters and 71 low-luminosity clusters. For both subsamples the Kolmogorov-Smirnov test was applied for the parameters ellipticity, eccentricity of the orbit and estimated number of intermediate mass black holes. The test results show that at a confidence level of 99.9%, the high X-ray luminosity clusters have fewer black holes with intermediate mass than the low X-ray luminosity clusters. In addition, the former have lower ellipticity and higher eccentricity compared to the latter, but at significantly lower confidence levels of 80%.

Key words: Globular clusters in the Milky Way, X-ray sources

Introduction

Globular clusters (GCs) are gravitationally bound aggregations with spheroidal symmetry, that contain tens of thousands to hundreds of thousands of stars. There are ~ 150 globular star clusters (> 10 Gyr, Martínez [2019]) in our galaxy (more precisely 157, according to Harris [1996]), which are located at distances between 500 pc and 120 kpc from the center of the Galaxy. A set of dozen GCs parameters, defined by Djorgovski and Meylan, is described in Meylan et al. [1997]. A few years later, Harris [1999] presented the most important characteristics and the main structural parameters of GCs.

Since the first X-ray missions, objects in the Galaxy have been the subject of prime interest. Barnard et al. [2012] pointed out that the first observed objects were predominantly low-mass X-ray binaries (LMXBs) and rarely background galaxies, supernova remnants, or high-mass X-ray binaries (HMXBs). Later on, some researchers like Giesler et al. [2018] throw a light on the circumstance that GCs may include stellar-mass black holes (BHs). The fact that the hard state is typical for BH and neutron star (NS) LMXBs at luminosities of about one tenth of the Eddington luminosity, L_{Edd} , is highlighted by Barnard et al. [2014]. For BH XBs a thermally dominated state is typical, which has never been observed in NS XBs (Barnard et al. 2014). As far as Eddington luminosity is concerned, the X-ray bursts of hydrogen-free matter can reach higher luminosities, according to Verbunt et al. [2009], because the Eddington limit is higher in the absence of hydrogen. According to Cheng et al. [2018], by dynamical encounters with encounter rate \varGamma (related to the stellar density ρ and velocity dispersion σ), hard binaries (with bound energy $|E_b| > E_k$ – average stellar kinetic energy of stars in GCs) transfer their energy to moving stars in close proximity and heat the globular cluster and become harder. However, according to Cheng et al. [2020], by binary-single interactions, soft binaries (with $|E_b| < E_k$) become softer. The rest of the main-sequence (MS) binaries

Bulgarian Astronomical Journal 40, 2024

become more compact, which leads to the formation of many exotic objects in GCs, such as LMXBs, millisecond pulsars (MSPs), cataclysmic variables (CVs), coronal active binaries (ABs) and blue straggler stars (BSS).

The clusters in the Milky Way require individual study because they are scattered (due to the aperture of X-ray telescopes) and because of their proximity to Earth. The observations of Berg et al. [2019] indicate whether a cluster possesses a bright X-ray source and confirm previously proposed correlation between luminous X-ray sources in GCs and dynamical interactions. The accuracy of the X-ray luminosities of these objects is not reliably determinable because they are at different distances from the observer. Here one has to account also that the place of the Solar System within the Milky Way disk prevents us to observe significant number of GCs in our galaxy.

A great number of authors make comparisons between the populations of clusters in M 31 and our galaxy: functions of luminosity, distribution, metallicity, age, etc. In relation to the Milky Way, it is established that there are two types of population, different types of sources, but without bright clusters. For example, Kong et al. [2002] found differences between X-ray GCs in M 31 and X-ray GCs in our galaxy. The luminosity of M 31 X-ray GCs is greater than $L_X = 2 \times 10^{37}$ erg s⁻¹ and in the Milky Way there are not similar objects. Furthermore, GCs in M 31 are younger than MW GCs.

The present investigation is motivated by preceding papers of Di Stefano et al. [2002] and Kostov et al. [2005] devoted to M 31 X-ray GCs. In both papers, statistically significant differences in the structural parameters of M 31 GCs containing and missing bright X-ray sources were established.

Based on *Chandra* observations, Di Stefano et al. [2002] constructed X-ray luminosity function of the M 31 and found that systems with $L_X > 10^{37} \text{ erg s}^{-1}$ are much more frequent in Andoromeda than in the Milky way. Making use of that threshold luminosity, they apply a Kolmogorov-Smirnov (K–S) test to determine if the structural parameters like optical colors and apparent magnitudes, color excesses, metallicities, radial velocities etc., taken from the catalog of Barmby et al. [2002] for populations with and without X-ray sources belong to the same distribution. For example, they proved at the 99% confidence level, that the GCs in M 31 with X-ray sources are optically brighter than the non–X-ray GCs. Di Stefano et al. [2002] were the first to address the structural parameter ellipticity, but due to a poor statistics they failed to distinguish between the populations with and without an X-ray source.

The second attempt was undertaken by Kostov et al. [2005], who studied a representative sample of 110 M 31 GCs due with newly measured X-ray fluxes by the missions *ROSAT*, *Chandra* and *XMM-Newton*, and with known ellipticity. They found a significant difference in ellipticity (at confidence level of 94%) between a sample of 23 bright X-ray source GC and 87 low X-ray luminosity sources in M 31. Kostov et al. [2005] concluded that the GCs in M 31 with bright X-ray sources are less eccentric than the GCs without X-ray sources.

Although most of the MW GCs have been formed between 12 and 15 Gyr ago, Barmby et al. [2002] suggest that the difference in optical luminosity between the inner and outer GCs in M 31 is due to the circumstance that the brighter GCs are younger (i.e., formed approximately 7–9 Gyr ago) than the fainter ones. That is why GCs located near the center of M 31 evolve

more rapidly than GCs that are situated near the center of the Milky Way. However, the evolution of GCs transforms their cores into smaller and denser ones and this leads to acceleration of the process of formation of X-ray binaries, which leads to more X-ray binaries in M31 GCs. Crossing time, relaxation time and evolution time $t_{cr} \ll t_{rlx} \ll t_{evol}$ are taken into account in King [1981]. Therefore, these parameters are a basis for construction of theories about the studied globular clusters in our galaxy. Besides, it is well known that the most luminous GCs both in the Milky Way and M31 are the most spherical ones. When analyzing the results, it is essential to consider the fact that at present we know of ~ 600 GCs in M31 and ~ 200 GCs in MW.

Such studies have not been provided for the Milky Way clusters and for this reason we have searched for the following globular clusters' parameters in the Galaxy: ellipticity, eccentricity of the orbit and estimated number of black holes with intermediate mass.

Many new parameters have recently become available for a number of GCs, which allows the application of K–S test for them.

In order to differentiate internal from external GCs, along with the agemetallicity relation, the following dynamical parameters are used: apocenter, maximum height from the disc Z_{max} and the orbital circularity parameter $\operatorname{Circ} = L_z/L_z^{circ}$; L_z and L_z^{circ} are, respectively, the Z-component of the angular momentum of a given GC, and the angular momentum of the same GC, moving on a circular orbit with equivalent total energy. The relation L_z/e , where e is eccentricity and L_z is the aforementioned Z-component of the angular momentum of a given GC, divides figuratively the Galaxy's disk and halo fractions.

1 Aim of the research

The main goal of this research is a statistical comparison (through the K–S test) of samples of globular clusters from the Milky Way with different integral X-ray luminosities, for which the following parameters are available: X-ray fluxes of individual sources from the missions *Chandra, XMM-Newton* and *Swift*, core radius, distance, extinction E(B–V), ellipticity, eccentricity of the orbit, estimated number of black holes with intermediate mass.

Comparative samples include clusters associated with X-ray sources within $2r_c$ (core radius), with a total X-ray luminosity greater than or less than a prefixed limit of X-ray luminosity.

For this reason, the next sections of the paper are organized as follows. Section 2 represents K–S test and its usage for a quantitative assessment of the statistical distinguishability of two samples – in our case, consisting of Xray globular cluster sources with previously calculated different luminosities. In Section 3, we describe extracted data from the data sources – the catalogs, connected with recent large X-ray missions (see the first paragraph of this section) and pay attention to the processing data within $2r_c$ range. Section 4 reports our analysis, based on chosen structural parameters and compares them in a brief way. Afterwards we discuss shortly the observational results by means of discussing figures, presenting data correlations, and expressing a set of constrained data in an orderly constructed relative table. Then we explore the significance of our results for future investigations, concerning GCs in the Galaxy. Finally, we summarize our conclusions.

2 Statistical K–S test

In order to make a quantitative assessment of the statistical distinguishability of two samples, the K–S test has been applied. Its immediate application is appropriate for unbound distributions (cumulative probability) that are a function of one independent variable. The test calculates two quantities -- the so-called D-statistics (D-stat.) as well as the K–S confidence level, in order to reject the null hypothesis, according to which both distributions in principle are derived from one and the same parental distribution (i.e. they are statistically indistinguishable). The rejection of the null hypothesis corresponds to large values of confidence level, which means that small values of confidence level indicate statistical indistinguishability of the two samples.

3 Observational data

3.1 Data sources

The catalog of Harris [1996] is used as a reference source for GCs in the Galaxy and their ellipticities η . It contains detailed data for 157 clusters. This list can be supplemented by another 57 clusters, discovered after 2005 (see Ryu et al. [2018]), for which, however, accurate and homogenized morphological data are not available. A significant number of clusters (~30), located behind the bulge and close to the plane of the disc, are not detected yet.

Data on the X-ray fluxes of individual sources in the GCs are taken from recent catalogs of large X-ray missions, available through the Vizier Internet platform of the Astronomical Data Center in Strasbourg, France. These include: The *Chandra* Source Catalog (CSC), Release 2.0 (Evans et al. 2010-2019), *XMM-Newton* Serendipitous Source Catalog 4XMM-DR9 (Webb et al. 2020) and 2SXPS *Swift* X-ray telescope point source catalog (Evans et al. 2020).

In the present research, all sources were initially selected within the visible outlines of each globular cluster (that is up to distances at which the stellar density of the stars in the cluster decreases approximately to the background stellar density). Subsequently, in order to avoid bright background X-ray sources and following the result of Verbunt [2001] that the brightest sources were observed in the innermost areas of the clusters, in this research, the sources have been limited to within 2 core radii r_c in order to account for the integrated flux of the respective cluster.

Fig. 1 represents *Chandra* fluxes $F_{\rm X}[0.5-7]$ keV of individual X-ray sources in the vicinity of NGC 6440 globular cluster (in logarithmic scale on the ordinate axis) as a function of their distance from the cluster center (see the ratio r/r_c on the abscissa axis), as well as their space distribution superimposed in the view plane (see the upper right corner) on a 6×6 arcmin² optical image of the cluster from the *Digitized Sky Survey*¹. Generally, it illustrates the principle of selection by means of the radial distribution of the fluxes (and luminosities, as far as the sources are at the same distance from the observer)

¹ https://archive.stsci.edu/dss/

of the individual X-ray sources in the globular cluster NGC 6440 within 8 nuclear radii (about 1.12 arcmin on the sky).

Table 1 compiles the available data needed to calculate the X-ray luminosities L_X for some of the 147 Milky Way GCs from the Harris [1996] catalog. In this table are listed: heliocentric distance R_{Sun} , color excess E(B–V), core radius r_c , farmost distance of the individual X-ray source within 2 core radii from the globular cluster center r_{max} (if denoted with !, then it is the distance of the individual X-ray source closest to the globular cluster center), n_x – total number of registered individual X-ray sources within 2 core radii, summed Xray flux $F_X([0.5 - 7] \text{ keV})$ of all considered individual sources. The last column indicates the mission of the finally adopted fluxes C – for *Chandra*, S – for *Swift*, N – for *XMM-Newton* mission or AVE – for the average of two missions. Note that there are clusters with available X-ray data but without any sources detected within 2 core radii. The latter will be designated as low central Xray luminosity (low L_X) clusters (see Table 2). However, their ellipticity, total number of black holes with intermediate mass and orbital eccentricity can be used in K–S tests, always including them in the samples with X-ray luminosity lower than a certain threshold luminosity.

3.2 Processing data

The most numerous data on X-ray fluxes are included in the catalog of Evans et al. [2010-2019] from the mission *Chandra* in the range of photon energies 0.5 - 7 keV, with efficient energy of the order of 2.3 keV. For this reason, data for other fluxes has been converted to this range using the following relations:

Chandra \rightarrow Chandra: $F_{\rm X}([0.5-7] \text{ keV}) = (6.5/9.9)F_{\rm X}([0.1-10] \text{ keV});$

 $XMMN \rightarrow Chandra:$ $F_{\rm X}([0.5-7] \text{ keV}) = F_{\rm X}([0.5-1] \text{ keV}) + F_{\rm X}([1-2] \text{ keV}) + F_{\rm X}([2-4.5 \text{ keV}) + F_{\rm X}([4.5-10] \text{ keV})/3;$

Swift \rightarrow Chandra: $F_{\rm X}([0.5-7] \text{ keV}) = (6.5/9.7)F_{\rm X}([0.3-10] \text{ keV}).$

There are 24 clusters with 2 independent estimates from different X-ray missions. The difference of the XMMN X-ray total flux minus Chandra X-ray total flux of 24 Milky Way GCs in the range [0.5–7] keV (on the ordinate axis) as a function of Chandra X-ray total flux (on the abscissa axis) is given in logarithmic scale in Fig. 2, where both fluxes are summed within 2 core radii. In general, for 20 of the GCs the agreement is around or less than one order of magnitude. For them the averaged fluxes were adopted. Note that the flux amplitude reflects the X-ray variability of a certain source with time rather than the much lower error of the globular cluster total flux on a fixed time epoch.

For three outliers on Fig. 2, namely GCs Terzan 5, NGC 2808 and NGC 6626, however, we adopted the larger flux values without averaging, assuming that their high state represents their X-ray luminosity. For 8 clusters there are no individual sources within $2r_c$ and, therefore, they are assigned to the

S. Botev, P. Nedialkov & G. P. Petrov

Fig. 1. Chandra fluxes $F_{\rm X}([0.5-7] \text{ keV})$ of individual X-ray sources (filled circles) in the vicinity of NGC 6440 globular cluster as a function of their distance from the cluster center. Their space distribution (open squares) in the view plane is superimposed (upper right corner) on a $6 \times 6 \operatorname{arcmin}^2$ optical image of the cluster from *Digitized Sky Survey*.

Fig. 2. *XMMN* X-ray total flux minus *Chandra* X-ray total flux of 24 Milky Way GCs in the range [0.5-7] keV as a function of *Chandra* X-ray total flux. Both fluxes are summed within 2 core radii.

clusters with low X-ray luminosity (they are denoted as low L_X in Table 2, which means zero flux in the area of $2r_c$). Finally, numerical estimates of the total X-ray fluxes in the range of [0.5–7] keV within $2r_c$ for 89 GCs are available (see Table 2).

0	I Mission keV)	(12)	1 C	3 3	3 3	I	4 C	I	Ι	Ι	c c	0 AVE	3 C	4 S	I	ļ	I	0 N	3 C		3 AVE	I	I	Ι	3 N	Ι	4 S	Ι	3 C	
	$\begin{array}{c} \text{Adopted} \\ F_{\rm X}([0.5-7]] \end{array}$	${ m mW/m^2}$ (11)	$0.141e{-1}$	$0.615e{-1}$	$0.927e{-1}$	I	$1.648e{-1}$	Ι	Ι	I	zero flux	$0.361e{-1}$	$0.455e{-1}$	$5.900e{-1}$	l	I	I	0.112e-0	$0.172e{-1}$	Ι	$0.512e{-1}$	I	Ι	Ι	$1.601e{-1}$	Ι	$4.690e{-1}$	I	$0.281e{-1}$	
	$F_{\rm X}([0.5-7]{ m keV})$	${ m mW/m^2}$ (10)	I	Ι	Ι	I	I	Ι	Ι	Ι	Ι	$6.693e{-11}$	Ι	I	I		I	$0.112e{-}09$	Ι	Ι	$0.345e{-13}$	I	I	Ι	Ι	Ι	I	Ι	Ι	
	n_x	(6)	I	I	I	I	Ι	Ι	Ι	Ι	I	1	I	I	I	I	I	က	I	Ι	ъ	I	Í	Ι	Ι	Ι	I	I	I	I
 	r_{max}	arcmin (8)	I	Ι	I	I	Ι	Ι	Ι	Ι	Ι	0.170	I	I	I	I	I	0.318	I	Ι	2.378	I	I	Ι	Ι	Ι	Ι	I	I	I
	$F_{\rm X}([0.5-7] { m ~keV})$ Ch./Sw.	mW/m^2 (7)	$0.141e{-11}$	$0.615e{-13}$	$0.927 \mathrm{e}{-13}$	Ι	$1.648e{-}14$	1	Ι	Ι	$1.827e{-}13$	$0.526e{-11}$	$0.455e{-13}$	$5.900e{-}14$	I		I	$(0.118e{-}12)$	$0.172e{-13}$	1	$0.680e{-13}$	Ι			$1.601e{-}13$		$4.690e{-14}$	Ι	$0.281e{-13}$	
)	n_x	(9)	155	6	18	I	1	Ι	I	Ι	1	-	4	1	I	I	I	(11)	ς Γ	Ι	17	I	I	Ι	2	Ι	0	I	က	
	r_{max}	$_{(5)}^{\mathrm{arcmin}}$	0.720	2.372	0.306	I	0.209	I	Ι	I	0.596!	0.170	0.204	1.741	I	I	I	0.388	1.964	I	2.375	I	I	Ι	3.111	Ι	0.893		0.716	
	r_c	$_{(4)}^{\mathrm{arcmin}}$	0.36	1.35	0.18	0.25	0.35	0.01	0.17	0.25	0.17	0.09	0.16	0.31	0.32	0.25	I	0.25	1.87	0.41	1.30	0.33	0.33	0.09	1.75	1.00	0.58	1.00	0.35	0 C C
	E(B-V)	$_{(3)}^{\mathrm{mag}}$	0.04	0.03	0.05	0.03	0.01	0.15	0.00	0.02	1.24	0.02	0.01	0.14	0.08	0.08	0.21	0.22	0.30	0.04	0.24	0.01	0.01	0.02	0.39	0.20	0.05	0.32	0.02	0.01
	R_{Sun}	$_{(2)}^{\mathrm{kpc}}$	4.5	8.9	8.6	30.1	16.3	11.1	123.3	90.1	27.2	12.1	12.9	10.8	82.6	34.7	39.4	9.6	8.1	92.5	4.9	108.7	48.3	19.3	5.8	21.2	10.3	6.6	17.9	17 1
nissions.	ID	(1)	NGC 104	NGC 288	NGC 362	Whiting 1	NGC 1261	Pal 1	AM1	Eridanus	$\operatorname{Pal} 2$	NGC 1851	NGC 1904	NGC 2298	NGC 2419	Ko2	P_{yxis}	NGC 2808	E3	Pal 3	NGC 3201	$\operatorname{Pal}4$	K_{01}	NGC 4147	NGC 4372	${ m Rup}106$	NGĈ 4590	NGC 4833	NGC 5024	

Mission	(12)	AVE	U	U	I	Z	I	I	I	U	U	I	U	U	AVE	Ι	I	I	I	U	U	s	U	U	U	s	Ι	AVE	Ι	U	Ι	Ι	Ι	ζ
${ m Adopted}_{F_{X}([0.5-7] m ~keV)}$	mW/m^2 (11)	$0.544e{-}12$	$0.477 \mathrm{e}{-12}$	$0.330e{-}13$	I	zero flux	Ι	I	I	zero flux	$0.138e{-}12$	I	$0.503e{-}13$	$0.147e{-13}$	$0.336e{-}14$	Ι	I	I	I	$0.143e{-}12$	$0.256e{-12}$	$3.696e{-14}$	$0.939e{-}13$	$0.883e{-13}$	$0.257e{-}13$	$4.455e{-}14$	I	$0.138e{-}12$	I	$0.927e{-13}$	Ι	I	Ι	0 1 2 0 - 1 1
$F_{\rm X}([0.5-7]{ m keV})$	${ m mW/m}^2$ (10)	$0.476e{-}12$	1	I	1	$3.414e{-}15$	Ι	Ι	1	I	Ι	I	I	Ι	$6.110e{-15}$	Ι	Ι	I	I	I	Ι	Ι	Ι	I	I	Ι	Ι	$0.164e{-}12$	I	I	I	Ι		
n_x	(6)	31	I	I	I	-	I	I	I	I	Ι	I	I	I	μ	I	I	I	I	I	I	I	I	I	I	I	I	x	Ι	I	I	I		
r_{max}	arcmin (8)	4.651		I		9.256!	I	I		I	Ι	Ι	I	I	0.042	Ι	I	I	Ι	I	Ι	I	Ι	I	I	Ι	I	1.106	I	Ι	I	Ι	Ι	
$F_{\rm X}([0.5-7] { m keV})$ Ch./Sw.	$m_{(7)}^{m}$	$0.612e{-}12$	$0.477\mathrm{e}{-12}$	$0.330e{-}13$	1	I	I	I	1	$5.346e{-15}$	$0.138e{-}12$	Ι	$0.503e{-}13$	$0.147e{-13}$	$6.091e{-}16$	Ι	I	Ι	I	$0.143e{-}12$	$0.256e{-}12$	$3.696e{-14}$	$0.939e{-}13$	$0.883e{-13}$	$0.257e{-}13$	$4.455e{-}14$	Ι	$0.112e{-}12$	Ι	$0.927e{-13}$	I	Ι	I	8 160n-11
n_x	(9)	121	9	4	I	I	I	I	I	1	9	I	10	10	1	I	I	I	I	11	48	1	6	1-	10	1	I	12	I	4	I	I	Ι	, -
r_{max}	$\operatorname{arcmin}_{(5)}$	4.715	0.716	0.569	I	Ι		I	I	0.753!	4.700	I	0.716	0.773	0.123	Ι	I	I	I	0.302	2.332	1.132	1.909	0.195	1.937	1.106	I	1.150	I	1.472	I	Ι	I	0.038
r_c	$_{(4)}^{\rm arcmin}$	2.37	0.37	0.28	0.41	1.43	0.09	0.06	0.84	0.06	2.29	1.40	0.44	0.42	0.08	0.90	0.47	0.90	0.82	0.15	1.16	0.97	0.94	0.15	1.18	0.56	0.50	0.62	0.12	0.79	0.39	0.33	0.77	0.00
E(B-V)	$\max_{(3)}$	0.12	0.01	0.24	0.05	0.00	0.05	0.09	0.23	0.13	0.03	0.09	0.03	0.45	0.54	0.54	0.28	0.73	0.04	0.18	0.35	0.05	0.36	0.75	0.73	0.33	0.46	0.02	0.01	0.19	1.42	0.31	0.28	1 00
R_{Sun}	$_{(2)}^{\rm kpc}$	5.2	10.2	11.7	32.2	16.0	25.2	35.0	18.8	32.1	23.2	12.5	7.5	7.7	10.6	18.9	10.4	8.0	76.5	10.0	2.2	15.4	8.9	10.1	8.2	6.4	8.3	7.1	30.5	4.8	9.8	11.5	4.4	10.3
ID	(1)	NGC 5139	NGC 5272	NGC 5286	$\mathrm{AM}4$	NGC 5466	NGC 5634	NGC 5694	IC 4499	NGC 5824	$\operatorname{Pal}5$	NGC 5897	NGC 5904	NGC 5927	NGC 5946	BH176	NGC 5986	Lynga 7	$\tilde{P}al14$	NGC 6093	NGC 6121	NGC 6101	NGC 6144	NGC 6139	Terzan 3	NGC 6171	1636-283	NGC 6205	NGC 6229	NGC 6218	FSR1735	NGC 6235	NGC 6254	NGC 6256

 Table 1. (continued)

	Mission	(12)	I	AVE	S	Ι	U	U,	AVE	I	U	U	U	U	I	U	ļ	I	U	AVE	Z	ļ	U	U	I	υ	I	AVE	I	U	υ	I	I	I	Z
	$\begin{array}{c} \text{Adopted} \\ F_{\rm X}([0.5-7] \text{ keV}) \end{array}$	mW/m^2 (11)	I	$0.808e{-12}$	$5.454e{-}14$	Ι	$0.489e{-13}$	$1.618e{-}14$	$0.919e{-}13$	I	$0.519\mathrm{e}{-13}$	$0.891\mathrm{e}{-14}$	$0.137e{-}13$	$1.624e{-}15$	Ι	$0.655e{-}14$	I	I	$2.330e{-11}$	$0.110\mathrm{e}{-12}$	zero flux	I	$0.472\mathrm{e}{-13}$	$2.489e{-11}$	Ι	zero flux	I	$0.613e{-}12$	I	$0.414e{-13}$	$0.625e{-}12$		Ι	Ι	$0.308e{-}09$
	$F_{\rm X}([0.5-7]{ m keV})$ XMMN	${ m mW/m^2}_{ m (10)}$	I	$0.103e{-11}$	Ι	Ι	Ι	I	$8.546e{-14}$	I	I	I	I	Ι	Ι	I	Ι	I	I	$0.127 e{-12}$	$3.486e{-13}$		I	I		I	I	$8.701e{-13}$	I	I	I		I	Ι	0.308e-09
	n_x	(6)		2	I	I	Ι	I	Г	I	I	I	I	I	Ι	I	I	I	I	9	1	I	I	I	I	I	I	1	I	I	I	I	I	I	0
ued)	r_{max}	arcmin (8)	I	0.381	Ι	I	Ι	I	0.381	I	I	ļ	I	I	Ι	I	I	I	I	4.207	8.140!	ļ	I	I	I	Ι	I	0.016	I	I	I		Ι	I	0.246
Table 1. (contir	$F_{\rm X}([0.5-7] { m keV}) \ { m Ch./Sw.}$	mW/m^2 (7)	I	$0.586e{-12}$	$5.454e{-}14$	1	$0.489e{-13}$	$1.618e{-}14$	$0.983e{-13}$	I	$0.519\mathrm{e}{-13}$	$0.891e{-}14$	$0.137e{-}13$	$1.624e{-}15$	Ι	$0.655e{-}14$	Ι	I	$2.330e{-11}$	$0.923\mathrm{e}{-13}$	I		$0.472e{-13}$	$2.489e{-11}$	I	$1.408e{-}14$		$0.356e{-}12$	I	$0.414e{-13}$	$0.625e{-}12$		Ι	1	$(0.536e{-}12)$
	n_x	(9)	I	27	1	Ι	4	1	15	I	×	2	0	1	Ι	0	I	I	-	10	I	I	13	1	I	1	I	22	I	4	4	I	Ι	I	(34)
	r_{max}	$\operatorname{arcmin}_{(5)}$	I	0.394	0.556	I	0.506	0.040	0.340	I	0.437	0.082	0.515	0.114	Ι	0.098	I	Ι	0.022	3.911	I	ļ	2.251	0.020	I	0.639!		0.238	I	0.339	0.108	I	I	Ι	0.318
	r_c	arcmin (4)	1.20	0.22	0.43	0.07	0.29	0.05	0.21	0.17	0.26	0.03	0.45	0.05	0.24	0.05	0.83	0.25	0.03	2.17	0.90	0.03	1.13	0.06	0.34	0.04	0.54	0.12	0.79	0.25	0.05	0.66	0.26	0.50	0.16
	E(B-V)	$_{(3)}^{\mathrm{mag}}$	0.40	0.47	0.38	0.28	0.60	0.36	0.54	0.54	0.02	0.91	0.38	0.46	0.28	0.77	0.22	0.73	1.87	0.71	2.00	1.12	0.09	3.07	1.17	1.99	1.24	0.37	0.60	0.72	0.18	1.46	0.36	1.58	2.28
	R_{Sun}	$_{(2)}^{\mathrm{kpc}}$	45.1	6.8	8.8	15.3	9.4	9.5	5.9	10.4	8.3	7.8	7.9	8.5	15.1	9.2	5.6	25.0	7.5	3.5	7.2	8.2	7.6	8.2	10.9	6.7	8.2	9.9	9.3	10.6	2.3	5.8	20.6	13.7	6.9
	ID	(1)	$\operatorname{Pal}15$	NGC 6266	NGC 6273	NGC 6284	NGC 6287	NGC 6293	NGC 6304	NGC 6316	NGC 6341	NGC 6325	NGC 6333	NGC 6342	NGC 6356	NGC 6355	NGC 6352	IC1257	Terzan 2	NGC 6366	${ m Terzan}4$	HP1	NGC 6362	Liller 1	NGC 6380	Terzan 1	$\operatorname{Ton} 2$	NGC 6388	NGC 6402	NGC 6401	NGC 6397	$\operatorname{Pal} 6$	NGC 6426	Djorg 1	${ m Terzan} 5$

$\begin{array}{l} Adopted \\ [0.5-7] keV \end{array}$	$\frac{mW/m^2}{(11)}$ (12)	0.148e–11 AVE	$0.994e{-10}$ AVE	$1.250e{-11}$ C	$0.153e{-}12$ C			1 1	- $ -$		– – 9.448e–14 3.907e–13 8.778e–15 C			– – – – – – – – – – – – – – – – – – –		– – – – – – – – – – – – – – – – – – –	– – – – – – – – – – – – – – – – – – –	9.448e-14 9.448e-14 8.778e-15 8.778e-15 7.361e-15 0.284e-13 0.604e-13	9.448e-14 9.448e-14 3.307e-13 8.778e-15 8.778e-15 7.361e-15 0.284e-13 0.284e-13 0.0144e-12 0.014e-13 AVE 0.258e-15 C	9.448e-14 9.448e-14 8.778e-15 8.778e-15 8.778e-15 7.361e-15 0.284e-13 0.0141e-12 0.0141e-12 0.0141e-12 0.288e-15 0.288e-15 5.882e-15 5.882e-15 C	$\begin{array}{c} - \\ 9.448e^{-14} \\ 3.907e^{-13} \\ 8.778e^{-15} \\ 8.778e^{-15} \\ 8.778e^{-13} \\ 7.361e^{-15} \\ 0.141e^{-12} \\ 0.141e^{-13} \\ 0.141e^{-13} \\ 0.141e^{-13} \\ 0.141e^{-13} \\ 0.258e^{-12} \\ 0.258e^{-1$				9.448e-14 9.448e-14 8.778e-15 8.778e-15 7.361e-15 0.284e-13 0.0141e-12 0.0141e-12 0.0141e-12 0.014e-13 3.787e-15 0.258e-12 0.258e-12 0.6753e-14 C 0.258e-12 0.6753e-14 C 0.815e-13 0.815e-14 0.815e-14 0.815e-14 0.815e-14 0.815e-14 0.815e-14 0.815e-14	9.448e-14 9.448e-14 8.778e-15 8.778e-15 8.778e-15 7.361e-15 0.284e-13 0.0141e-12 0.0141e-12 0.0141e-13 0.0014e-13 0.0014e-14 0.0014e	9.448e-14 9.448e-14 8.778e-15 8.778e-15 8.778e-15 7.361e-15 0.284e-13 0.141e-12 0.0141e-12 0.0141e-12 0.0141e-12 0.0141e-12 0.0141e-12 0.0141e-12 0.0141e-12 0.0141e-13 0.0141e-13 0.282e-15 0.282e-15 0.282e-15 0.2815e-13 0.250e-13 0.350e	$\begin{array}{c} & & & & & \\ & & & & & & \\ & & & & & & $	$\begin{array}{c} & & & & & \\ & 9.448e-14 & & & & \\ & 3.907e-13 & & & & \\ & 8.778e-15 & & & & \\ & 8.778e-15 & & & & \\ & 7.361e-15 & & & & \\ & 0.141e-12 & & & & \\ & 0.284e-13 & & & & \\ & 0.141e-12 & & & & \\ & 0.155e-13 & & & & \\ & 0.155e-12 & & & & \\ & 0.155e-12 & & & & \\ \end{array}$	$\begin{array}{c} & & & & \\ 9.448e-14 & & & & \\ 3.907e-13 & & & & \\ 8.778e-15 & & & & \\ 8.778e-15 & & & & \\ 7.361e-15 & & & & \\ 0.141e-12 & & & & \\ 0.141e-12 & & & & \\ 0.141e-12 & & & & \\ 0.258e-13 & & & & \\ 0.258e-12 & & & & \\ 0.258e-12 & & & & \\ 0.258e-12 & & & & \\ 0.815e-13 & & & & \\ 0.815e-12 & & & & \\ 0.155e-12 & & & \\ 0.1$	$\begin{array}{c} & 0.448e{-}14 & 0.288e{-}14 & 0.288e{-}13 & 0.288e{-}13 & 0.288e{-}13 & 0.288e{-}15 & 0.288e{-}15 & 0.288e{-}15 & 0.288e{-}15 & 0.288e{-}12 & 0.288e{-}12 & 0.288e{-}12 & 0.288e{-}12 & 0.258e{-}12 & 0.26e{-}12 & 0.2$	$\begin{array}{c} \begin{array}{c} & 0.448e-14\\ 0.448e-14\\ 3.907e-13\\ 8.778e-15\\ 8.778e-15\\ 7.361e-15\\ 0.284e-13\\ 0.284e-13\\ 0.284e-13\\ 0.284e-13\\ 0.144e-13\\ 0.284e-13\\ 0.6758e-12\\ 0.6758e-12\\ 0.815e-13\\ 0.815e-13\\ 0.815e-13\\ 0.815e-13\\ 0.815e-13\\ 0.155e-12\\ 0.815e-13\\ 0.172e-09\\ 0.15e-09\\ 0.15e-09$	9.448e-14 9.448e-14 8.778e-15 8.778e-15 8.778e-15 7.361e-15 0.284e-13 0.0141e-12 0.0141e-12 0.0141e-12 0.0141e-13 0.0171e-13 0.01588888888888888888888888888888888888
$F_{\rm X}([0.5-7] \text{ keV})$ XMMN $F_{\rm X}($	mW/m^2 (10)	$3.028e{-13}$	$1.887e{-10}$ (1	-	I	Ι				Ι	· ·		-		$1.003e{-}13$ (I	$0.678e{-13}$			Ι		-	Ι	$0.223e{-}12$ (I	$1.501e{-}09$	0.172e-09 (
u^x	(6)	1	1	I	I	I	I	Ι	I	Ι	Ι	I	I	I	Ι	1	I	I	I	I	IJ	I	I	I	I	I	Ι	×	I	1	1	I	
r_{max}	arcmin (8)	0.043	0.083	I	I	I	Ι	Ι	I	Ι	Ι	I	I	I	Ι	0.078	I	I	I	I	1.004	I	Ι	I	I	I	Ι	0.972	I	0.391!	0.128	I	
$F_{\rm X}([0.5-7] { m keV}) \ { m Ch./Sw}.$	$\frac{mW}{(7)}$	$0.266e{-11}$	$0.101e{-10}$	$1.250\mathrm{e}{-11}$	$0.153e{-}12$	Ι	I	$9.448e{-}14$	$3.907e{-13}$	$8.778e{-15}$	I	$4.177e{-}14$	$7.361e{-}15$	$0.284\mathrm{e}{-13}$	$0.141e{-}12$	$2.059e{-}14$	$3.787e{-15}$	$0.258e{-}12$	$5.882e{-15}$	Ι	$0.952e{-}13$	$6.753e{-}14$	$4.191e{-}15$	Ι	1	$0.350e{-}13$	I	$0.862e{-13}$	I	Ι	$(0.119e{-}11)$	$8.647e{-14}$	
n_x	(9)	18	6	-	0	I	Ι	-	μ	1	Ι	1	1	ю	0	1	μ	14	Η	I	14	-	Η	I	I	က	Ι	x	I	I	(32)	, ,	
r_{max}	$_{(5)}^{\rm arcmin}$	0.235	0.237	0.103	0.053	Ι	I	0.064	0.312	0.052	I	0.266	0.862!	0.266	0.398	0.113!	0.087	0.362	0.830	Ι	0.978	0.090	0.401!	I		0.650	I	0.897	I	Ι	0.461	0.264	
r_c	arcmin (4)	0.14	0.13	0.05	0.05	0.15	0.95	0.03	0.33	0.06	0.90	0.05	0.36	0.13	0.38	0.03	0.05	0.18	0.85	0.60	0.53	0.55	0.03	1.01	0.83	0.35	0.40	0.70	0.26	0.06	0.24	0.22	
E(B-V)	$\max_{(3)}$	1.07	0.47	2.35	0.64	3.14	0.15	1.76	0.94	1.08	2.40	0.48	0.34	0.54	1.02	0.66	0.76	0.14	6.80	0.07	0.63	5.16	0.44	1.08	2.06	0.53	0.36	7.85	0.10	0.28	0.40	0.41	
R_{Sun}	$_{(2)}^{\rm kpc}$	8.5	11.6	6.8	11.6	7.8	11.3	7.1	6.3	10.6	5.8	7.7	6.8	7.9	7.8	5.3	3.0	7.5	3.6	21.4	6.0	4.9	7.4	5.4	4.8	10.9	6.5	5.5	13.5	7.9	5.5	9.4	
ID	(1)	NGC 6440	NGC 6441	${ m Terzan}6$	NGC 6453	UKS1	NGC 6496	Terzan 9	$D_{jorg} 2$	NGC 6517	${ m Terzan}10$	NGC 6522	NGC 6535	NGC 6528	NGC 6539	NGC 6540	NGC 6544	NGC 6541	2MS-GC01	ESO-SC06	NGC 6553	2MS-GC02	NGC 6558	IC 1276	${ m Terzan}12$	NGC 6569	BH261	GLIMPSE02	NGC 6584	NGC 6624	NGC 6626	NGC 6638	

 Table 1. (continued)

	Mission	(12)	C	AVE _	AVE	AVE	0	0	U	I	l	U	U	I	I	I	Í	AVE	I	I	U	I	I	l	I	U	AVE	U	I	l	Z
	Adopted $F_{\rm X}([0.5-7] \text{ keV})$	mW/m^2 (11)	$0.181e{-}12$	$0.259e{-}12$	$0.463e{-}14$	$0.311e{-}12$	$0.147e{-}09$	$0.478e{-13}$	$0.812e{-}12$		Ι	0.199 - 12	$0.201e{-13}$	I	I	Ι	I	$0.111e{-}12$	I	I	$0.111e{-}12$	I	I	I	Ι	4.653 e 13	$0.333e{-}13$	$8.415e{-}15$	I	I	zero flux
	$F_{\rm X}([0.5-7] { m keV})$	${ m mW/m^2} m (10)$		$0.244\mathrm{e}{-12}$	$0.743e{-}14$	$0.456e{-}12$	Ι	Ι	I	I	I	I	I	I	Ι	Ι	Ι	0.772e - 13	I	I	6.838 - 15	I	I	I	I	Ι	0.362 e 13	I	I	I	$0.334e{-}14$
	n_x	(6)	L	<u>ග</u>		1	I	I	I	I		I	I	I	Ι	Ι	Ι	∞	I	I	Π	I	I	I	Ι	I		I	I		1
ued)	r_{max}	arcmin (8)	L	2.533 - 2.533	0.081	0.047	I	I	I		I	I	I	I	I	Ι	I	3.498	I		6.083!	I	I	I	I	I	0.100	I	I	I	5.514!
Table 1. (contin	$F_{\rm X}([0.5-7] { m keV})$ Ch./Sw.	$m_{(7)}^{W/m^2}$	$0.181e{-}12$	$0.274\mathrm{e}{-12}$	$1.826e{-15}$	$0.166e{-12}$	$0.147e{-}09$	$0.478e{-13}$	$0.812e{-}12$	1	I	$0.199e{-}12$	$0.201e{-13}$	I	Ι	Ι	Ι	$0.145e{-}12$	Ι	I	$0.111e{-}12$	I	I	I	Ι	$4.653e{-}13$	$0.304e{-}13$	$8.415e{-}15$	I	I	Ι
	n_x	(9)	ŝ	16	-	17	x	9	4	I	I	6	9	I	Ι	Ι	I	21	I	I	16	I	I	I	Ι	1	က	1	I	I	I
	r_{max}	$_{(5)}^{\rm arcmin}$	0.134	2.647	0.013	1.163	1.456	0.178	0.170		Ι	0.173	0.581	I	I	Ι	I	3.490	I	I	1.262	I	I	I	I	0.359!	0.280	0.125	I	Ι	I
	r_c	$\underset{(4)}{\operatorname{arcmin}}$	0.10	1.33 0.56	0.03	0.59	0.76	0.09	0.08	0.83	0.62	0.17	0.34	0.44	0.49	0.81	1.19	1.80	1.00	1.19	0.63	0.09	0.22	0.46	0.17	0.14	0.32	0.06	0.02	0.48	0.86
	E(B-V)	$\max_{(3)}$	0.09	0.34	0.07	4.85	0.45	0.15	0.22	0.05	1.50	0.04	0.77	0.26	0.07	1.66	0.10	0.08	0.12	0.35	0.25	0.16	0.10	0.05	0.05	0.10	0.06	0.03	0.02	0.05	0.00
	R_{Sun}	$_{(2)}^{\rm kpc}$	10.0	$3.2 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 10 \\ 10$	9.0 0.0	4.2	6.9	26.5	7.1	8.7	7.9	4.0	7.4	9.4	22.8	5.9	28.6	5.4	26.3	13.4	4.0	20.9	15.6	17.0	41.2	10.4	11.5	8.1	19.0	26.0	26.3
	ID	(1)	NGC 6652	NGC 6656 Pal 8	NGC 6681	GLIMPSE01	NGC 6712	NGC 6715	NGC 6717	NGC 6723	NGC 6749	NGC 6752	NGC 6760	NGC 6779	Terzan 7	$\operatorname{Pal}10$	$\operatorname{Arp} 2$	NGC 6809	${ m Terzan}8$	Pal11	NGC 6838	NGC 6864	NGC 6934	NGC 6981	NGC 7006	NGC 7078	NGC 7089	NGC 7099	Pal12	Pal13	NGC 7492

4 Results and discussion

4.1 X-ray luminosity function for globular clusters of the Milky Way

Calculation of the X-ray luminosity L_X (proportional to the total X-ray flux F_X) of clusters in the Galaxy requires considering not only the distance, but also the absorption of X-ray photons by neutral hydrogen atoms along the line of sight. When X-ray photons pass through a cloud of cool interstellar gas, some of them are absorbed, ionizing the gas.

The equation for radiation transfer in this case has the form:

$$\frac{dF_{\nu}}{d\nu} = \sigma_{\nu} n_H F_{\nu} \,, \tag{1}$$

where the radiation coefficient is equal to zero. In this formula n_H is the concentration of hydrogen atoms and σ_{ν} is the cross section of photoionization for the K Hydrogen orbit. The cross section of photoionization for the K orbit of the hydrogen-like ions is calculated by the formula:

$$\sigma_{\nu} = 7.10^{-18} N_K Z^4 \left(\frac{13.56}{h\nu}\right)^3 [\text{cm}^2], \qquad (2)$$

where $h\nu$ is the energy of the photon (in eV), N_K is the number of electrons in the K orbit (equal to 1 for hydrogen and hydrogen-like ions, and 2 for other ions), and Z is the charge of atomic nuclei. The transfer equation can be written as:

$$\frac{dF_{\nu}}{d\tau_{\nu}} = -F_{\nu} \,, \tag{3}$$

where $\tau_{\nu} = \sigma_{\nu} \int_{0}^{R_{sun}} N_{H} d\mathbf{r} = \sigma_{\nu} N_{H}$, R_{sun} is the globular cluster distance from the Sun, and N_{H} is the Hydrogen column density along the line of sight measured as the number of atoms in a column with a cross section 1 cm². The column density of hydrogen N_{H} is obtained from the color excess E(B-V)of a cluster, given in the catalog of Harris [1996], assuming a standard gasdust ratio $N_{H}/E(B-V) = 4.8 \times 10^{21}$ atoms cm⁻² mag⁻¹ as given in Bohlin et al. [1978]. The real flux can be obtained from the solution of the transfer equation $F_{\nu}^{0} = F_{\nu} \exp(\tau_{\nu})$, and then the X-ray luminosity of the cluster is

$$L_X = F_{\nu}^{\ 0} 4\pi R_{sun}^2 \,, \tag{4}$$

for photons with energy 2.3 keV, equal to the effective energy of the X-ray photons, registered by *Chandra* in the range [0.5-7] keV. It should be noted here that even for the clusters with the greatest extinction as GLIMPSE 02,

with color excess E(B-V) = 7.8 mag, X-ray opacity is barely $\tau_{\nu} = 0.054$, which is due to the weak absorption of solid X-rays by interstellar hydrogen.

Fig. 3 represents the number of GCs vs log L_X , where the function of the X-ray luminosity in the range 0.5 - 7 keV is calculated from the total fluxes of individual sources within $2r_c$ for GCs from the Milky Way. Unfortunately, for 17 of the clusters with a certain X-ray luminosity, the ellipticity is not known, with the largest share in the clusters with high luminosity log $L_X > 34.5$, where L_X is in units erg s⁻¹.

Fig. 3. X-ray luminosity function in the range of [0.5-7] keV within 2 core radii for all 89 GCs (solid line) and 72 GCs with known ellipticity (dashed line). Note the lack of that structural parameter for globulars with $\log L_X > 34.5$.

In addition to the ellipticity parameter η , other data have been extracted from Weatherford et al. [2020] for the estimated number of black holes with an intermediate mass $(N_{BH}/N_{cluster}) \times 10^5$, and from Bajkova et al. [2020] for the eccentricity of the orbit *e* of the GCs. The data for these parameters, together with the calculated luminosities, are given in Table 2, which contains the following columns: the object ID, log L_X , ellipticity η , numbers ratio $N_{BH}/N_{cluster}$, eccentricity *e*.

4.2 Function K–S tests for samples of X-ray globular clusters of different luminosities

In this research, 52 K–S tests were performed for the ellipticity parameter, varying the limit X-ray luminosity and dividing the clusters into 2 samples: with luminosity greater than or equal to the limit and with a luminosity less than the limit. Data on both ellipticity and X-ray luminosities are available for

Table 2. Properties of 89 Milky Way globular clusters used to perform the K–S test

Globular	$\log L_X$	η	$N_{BH}/N_{cluster}$	e
ID	$[erg \ s^{-1}]$	ellipticity	$\times 10^5$	eccentricity
(1)	(2)	(3)	(4)	(5)
NGC 104	33.534	0.09	2.75	0.16
NGC 288	32.766	_	11.3	0.80
NGC 362	32.914	0.01		0.98
NGC 1261	32.719	0.07	11.7	0.94
Pal 2	low L_X	0.05	—	0.97
NGC 1851	35.801	0.05	3.22	0.99
$\operatorname{NGC}1904$	32.957	0.01	-	0.97
$\operatorname{NGC}2298$	32.916	0.08	4.43	0.87
$\operatorname{NGC}2808$	36.092	0.12	5.87	0.87
${ m E}3$	32.131	-	-	0.18
$\operatorname{NGC} 3201$	32.168	0.12	13.7	0.52
$\operatorname{NGC}4372$	32.810	0.15	-	0.42
$\operatorname{NGC}4590$	32.775	0.05	6.81	0.54
$\operatorname{NGC} 5024$	33.032	0.01	6.69	0.43
$\operatorname{NGC}5139$	33.246	0.17	_	0.73
NGC 5272	33.774	0.04	3.22	0.51
NGC 5286	32.734	0.12	2.53	0.89
NGC 5466	$low L_{Y}$	0.11	20.3	0.80
NGC 5824	$low L_X$	0.03	20.0	$0.00 \\ 0.45$
Pal5	33 0/0	0.00	_	$0.10 \\ 0.27$
NGC 5004	32 530	0.14	11.0	0.27
NCC 5027	32.000	0.14	17.0	0.82
NGC 5927	32.020 21 656	0.04	17.4	0.11
NGC 5940	31.000	0.10	2 02	0.89
NGC 0095	00.204 20.170	0.00	5.05	0.97
NGC 0121	32.172	0.00	40.1	0.97
NGC 6101	33.021	0.05	49.1	0.61
NGC 6144	32.950	0.25	14.7	0.21
NGC 6139	33.035	0.05	—	0.54
Terzan 3	32.318	_	-	0.18
NGC 6171	32.340	0.02	13.2	0.72
NGC 6205	32.920	0.11	14.1	0.79
NGC 6218	32.408	0.04	12.6	0.37
$\operatorname{NGC}6256$	33.019	-	-	0.92
$\operatorname{NGC}6266$	33.652	0.01	-	0.62
$\operatorname{NGC}6273$	32.705	0.27	-	0.59
$\operatorname{NGC}6287$	32.715	0.13	-	0.75
$\operatorname{NGC}6293$	32.243	0.03	-	0.91
$\operatorname{NGC}6304$	32.585	0.02	12.6	0.29
$\operatorname{NGC}6341$	32.631	0.10	3.47	0.94
$\operatorname{NGC}6325$	31.815	0.12	-	0.12
NGC 6333	32.011	0.04	-	0.74
$\operatorname{NGC}6342$	31.149	0.18	-	0.31
$\operatorname{NGC}6355$	31.824	_	_	0.56
Terzan 2	35.201	_	_	0.86
NGC 6366	32.210	0.16	6.58	0.45
Terzan 4	$\log L_{\rm V}$	_	_	0.68
NGC 6362	32.514	0.07	_	0.37
Liller 1	35 311	-	_	0.81
Terzan 1	$\log L_{m}$	_	_	0.70
NGC 6388	33 858	0.01	_	0.19
NCC 6401	39 748	0.01		0.03
NCC 6907	32.140 39 Eng	0.10	1 ⊑	0.01
Torran F	36 951	0.07	1.0	0.40
NCC 6440	00.201 94 110	0.01	_	0.71
INGU 0440	54.110	0.01	—	0.78

Globular	$\log L_X$	η	$N_{BH}/N_{cluster}$	e
ID	$[erg \ s^{-1}]$	ellipticity	$\times 10^5$	eccentricity
(1)	(2)	(3)	(4)	(5)
NOCCAAL	20.000	0.00		0.00
NGC 6441	36.206	0.02	—	0.66
Terzan 6	34.847	_	-	0.86
NGC 6453	33.393	0.09	—	0.61
Terzan 9	32.761	—	—	0.92
Djorg 2	33.271	_	—	0.57
NGC 6517	32.075	0.06	-	0.90
NGC 6522	32.473	0.06	-	0.67
NGC 6535	31.611	0.08	2.61	0.64
NGC 6528	32.328	0.11	-	0.60
NGC 6539	33.014	0.08	-	0.30
$\operatorname{NGC}6540$	32.309	—	—	0.32
$\operatorname{NGC}6544$	30.613	0.22	—	0.98
$\operatorname{NGC}6541$	33.240	0.12	3.32	0.50
$\operatorname{NGC}6553$	32.547	0.17	-	0.19
$\operatorname{NGC}6558$	low L_X	-	-	0.72
$\operatorname{NGC}6569$	32.698	0.00	-	0.23
$\operatorname{NGC}6624$	low L_X	0.06	0.25	0.78
$\operatorname{NGC}6626$	35.795	0.16	-	0.75
$\operatorname{NGC}6638$	32.962	0.01	-	0.96
NGC 6637	33.098	0.01	14.6	0.94
$\operatorname{NGC}6642$	31.621	0.03	—	0.94
$\operatorname{NGC}6652$	33.336	0.20	2.61	0.96
$\operatorname{NGC}6656$	32.503	0.14	6.61	0.53
$\operatorname{NGC}6681$	31.652	0.01	5.94	0.74
NGC 6712	35.924	0.11	_	0.94
$\operatorname{NGC}6715$	33.604	0.06	2.38	0.58
NGC 6717	33.691	0.01	2.17	0.59
NGC 6752	32.581	0.04	2.09	0.23
NGC 6760	32.122	0.04	_	0.44
NGC 6809	32.588	0.02	18.3	0.66
NGC 6838	32.328	0.00	17.3	0.18
NGC 7078	33.780	0.05	2.55	0.50
NGC 7089	32.722	0.11	2.55	0.94
NGC 7099	31.820	0.01	1.94	0.78
NGC 7492	$low L_{\rm V}$	0.24		0.80
1.00.101		0.21		0.00

Table 2. (continued)

72 clusters (see Table 2). The test results are presented graphically in Fig. 4, where the confidence level of statistically different ellipticity is obtained by K–S test between a sample with a higher and a sample with a lower than a varying threshold X-ray luminosity L_{Xlim} ([0.5–7] keV). As it can be seen from both representations, the probability of statistical indistinguishability of the ellipticity parameter in X-ray and non-X-ray clusters is lower for higher luminosity limits and varies from 0.2 at log $L_X^{lim} = 33.65$ to ~1 at log $L_X^{lim} = 33.24$. Near the maximum of the X-ray luminosity function log $L_X^{lim} \sim 32.8$, there is another probability minimum. Therefore, it cannot be postulated that the X-ray and non X-ray clusters in the Galaxy, separated by a luminosity limit log $L_X^{lim} = 33.65$, are statistically different for significance levels more than 20%. To the extent that the behavior of the probability curve in Fig. 4 is more or less smooth, the accuracy of the measured X-ray luminosities does not affect

the validity of the K–S tests as strongly as the luminosity threshold. Here, it is essential to determine the ellipticity of the clusters with high X-ray luminosity, which is unknown at present. On the other hand, for parameters such as ellipticity, there are no errors are available in the Harris [1996] catalogue. It is assumed to be on the order of one to two hundredths and, therefore, should not severely affect the results of the K–S tests.

Fig. 4. Confidence level of statistically different ellipticity by the means of K–S test between a sample with a higher and a sample with a lower than a varying threshold X-ray luminosity L_{Xlim} ([0.5–7] keV).

An advantage of the tabular representation (see Table 2) is the possibility to see the mean values and the standard deviation of the ellipticities for both samples. In the present study, the following result was obtained: at limit luminosity log $L_X^{lim} = 33.65$ clusters with higher X-ray luminosity have an average ellipticity of 0.054, which is 0.03 less than the ellipticity of clusters with X-ray luminosity lower than the limit.

Our knowledge of GCs in the Galaxy has improved recently. Thanks to the data from the Gaia mission, especially for the values of their radial velocities and their proper motions, we now have the spatial velocities and parameters of their orbits such as eccentricity, for instance (Bajkova et al. 2020).

Simioni et al. [2020], analyzing the parametric space of globular clusters, have managed to identify 2 types: some are captured/accreted by the Galaxy, and others are born in it, as the intercepted clusters have orbits that are more eccentric than those of the galactic ones. Sollima [2020] has studied 18 GCs in the Galaxy and, on the basis of increased stellar density, has found tails in 7 of them, which is in turn a fertile field for studying the spatial distribution and kinematics of X-ray sources in them. Accepting threshold value of X-ray luminosity log $L_X^{lim} = 33.65$ in order to divide the globular clusters from our galaxy into two samples, we conducted 2 more K–S tests for the parameters: estimated number of black holes with intermediate mass $(N_{BH}/N_{cluster}) \times 10^5$, according to Weatherford et al. [2020], and the eccentricity of the orbit according to data from Bajkova et al. [2020]. These results, together with the estimation of the ellipticity parameter η from Harris [1996], are presented in Fig. 5, which shows the cumulative fractions of GCs vs their ellipticity η (upper panel), orbital eccentricity e (middle panel) and number of black holes with intermediate mass $(N_{BH}/N_{cluster}) \times 10^5$, repsectively.

Properties of Milky Way globular clusters associated with X-ray sources

Fig. 5. Cumulative probability functions of the globular cluster parameters ellipticity η (upper panel), orbital eccentricity e (middle panel) and number of black holes with intermediate mass (N_{BH}/N_{cluster}) × 10⁵ (lower panel) for the samples with X-ray luminosity $L_X > 10^{33.65} \text{ erg s}^{-1}$ (solid lines) and the samples with X-ray luminosity $L_X \leq 10^{33.65} \text{ erg s}^{-1}$ (dashed lines).

The hypothesis of statistical indistinguishability can be confidently rejected (for a very high level of significance of 0.999) for the parameter number of black holes with intermediate mass, but the fact that both samples contain only 10 clusters with high and 27 clusters with low X-ray luminosity should be taken into account, and this result should be considered preliminary.

Similar to the results for the ellipticity parameter, for the orbital eccentricity parameter, the statistical indistinguishability hypothesis cannot be rejected with very high confidence (significance level: 0.76).

Summary and conclusion

On the basis of the results obtained in this research, the following summary and conclusions can be made:

- X-ray fluxes of individual sources detected within 89 Milky Way GCs (Harris,1996) were collected and analised;
- for every cluster in the sample the total X-ray luminosities within $2r_c$ (GC nucleus radius) have been calculated and homogenized and the X-ray luminosity function has been constructed;
- -3 pairs of samples were prepared for three cluster parameters: ellipticity (11 clusters with high and 61 clusters with low X-ray luminosity), eccentricity of the orbit (16 clusters with high and 65 clusters with low X-ray luminosity) and estimated number of black holes with intermediate mass (10 clusters with high and 27 clusters with low X-ray luminosity);
- using the K–S test, the confidence level (expressed in %) of two samples, for which a parameter is available, was estimated to be statistically different. There are indications that the clusters with higher X-ray luminosity are characterized by lower ellipticity, higher eccentricity and a smaller number of black holes with intermediate mass.

Acknowledgements

This research has made use of the VizieR catalogue access tool, CDS, Strasbourg, France. The Digitized Sky Surveys were produced at the Space Telescope Science Institute under U.S. Government grant NAG W-2166.

This study is financed by the European Union-NextGenerationEU, through the National Recovery and Resilience Plan of the Republic of Bulgaria, project SUMMIT BG-RRP-2.004-0008-C01.

References

Bajkova, A., et al., 2020, Milky Way Subsystems from Globular Cluster Kinematics Using Gaia DR2 and HST Data, ApJ, 895, 69
Barmby, P., et al., 2002, M31 Globular Clusters in the Hubble Space Telescope Archive. II.

Structural Parameters, AJ, 123, 1937 Barnard, R., et al., 2012, 12 Years of X-Ray Variability in M31 Globular Clusters, Including

8 Black Hole Candidates, as Seen by Chandra, ApJ, 757, 40

Barnard, R., et al., 2014, Fifty M31 Black Hole Candidates Identified by Chandra and XMM-Newton, ApJ, 791, 33
Berg, M., 2019, X-ray sources in Galactic globular clusters and old open clusters, Proceedings IAU, 14 (S351), 367

Bohlin, R., et al., 1978, A survey of interstellar H I from Lalpha absorption measurements,

Bohni, et al., 1978, A savey of interstetial II I from Lapita absorption measurements, ApJ, 224, 132
Cheng, Z., et al., 2018, A Chandra Survey of Milky Way Globular Clusters. I. Emissivity and Abundance of Weak X-Ray Sources, ApJ, 858, 33
Cheng, Z., et al., 2020, Exploring the Mass Segregation Effect of X- Ray Sources in Globular Clusters. IV. Evidence of Black Hole Burning in ω Centauri, ApJ, 904, 198
Di Stefano, R., et al., 2002, Bright X-ray Sources in M31 Globular Clusters, ApJ, 570, 618

Evans, I., et al., 2010 – 2019, The Chandra Source Catalog (CSC), Release 2.0, ApJS, No1, 189. 37

Evans, P., et al., 2020, 2SXPS An improved and expanded Swift X-ray telescope point source catalogue, ApJS, 247, 54E

Giesler, M., et al., 2018, Low-mass X-ray binaries from black hole retaining globular clusters, MNRAS, 477, 1853
Harris, W.E., 1996, Catalog of Parameters for Milky Way Globular Clusters, AJ, 112, 1487
Harris, W.E., 1000, Clabular Cluster Science and Cluster

Harris, W.E., 1999, Globular Cluster Systems, Globular Clusters, CUB (Cambridge University Press)

King, I., 1981, The Dynamics of Globular Clusters, QJRAA, 22, 227

Kong, A., et al., 2002, X-Ray Point Sources in the Central Region of M31 as Seen by Chandra, ApJ, 577, 738

Kostov, A., et al., 2005, Structural Parameters Comparison between X-Ray and Non-X-Ray Globulars in M31, Meetings in Physics at University of Sofia, 6, 86

Martínez, K., 2019, Globular Clusters: Jewels to Trace the Structure of Galaxies, PhD thesis, Institute of Astronomy, National Autonomous University of Mexico, Mexico City, Mexico
 Meylan, G., et al., 1997, Internal dynamics of globular clusters, A&AR, 8, 1, 143
 Ryu, J., et al., 2018, IDiscovery of Two New Globular Clusters in the Milky Way, ApJ, 863,

L38

Simioni, M., et al., 2020, Statistical analysis of Galactic globular cluster type properties, MNRAS, 495, 3981
 Sollima, A., 2020, The eye of Gaia on globular clusters structure: tidal tails, MNRAS, 495,

2222

Verbunt, F., 2001, A census with ROSAT of low-luminosity X-ray sources in globular clusters, A&A, 368, 173

Verbunt, F., et al., 2009, X-ray Sources in Globular Clusters, ChJAA (Chinese journal of

astronomy & astrophysics), 3 (S1), 225
Weatherford, N., et al., 2020, A Dynamical Survey of Stellar-mass Black Holes in 50 Milky Way Globular Clusters, ApJ, 898, 162
Webb, N., et al., 2020, The XMM-Newton serendipitous survey (IX. The fourth XMM-

Newton serendipitous source catalogue), A&A, 641, A136