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Abstract. In the background of the Saez-Ballester (Saez and Ballester 1986) theory of
gravitation, the manuscript presents the study of Rényi holographic dark energy deter-
mined through interaction and non-interaction in the anisotropic and spatially homogeneous
Bianchi type-I space-time. We determine both non-interacting and interacting dark energy
models by considering a correlation between the metric potentials to solve the field equa-
tions of the model. This results in a dynamical deceleration parameter which demonstrates
a shift in the cosmic rate of acceleration from deceleration to acceleration, with a redshift z
change that is compatible with observations. Despite assuming several values to parameters
ωde close to −1 at z= 0 (the present epoch) and being in agreement with the most recent
observations, the equation of state parameter ωde for the two Rényi holographic dark en-
ergy models displays substantially different dynamic behaviour. Next, we discovered that the
squared sound speed, v2s , is negative, implying instability against perturbations. The ωde-ωde’
plane is constructed to investigate the evolution of the models’ EoS parameter turned out to
be in a zone of freezing. As should be the case in an expanding universe, the strong energy
conditions of the models are violated. Our models include the Chaplygin gas, ΛCDM limit,
and are inclined towards the steady-state model. Statefinders (r, s), and r − q planes were
also examined.
Key words: Saez-Ballester theory of gravity, Bianchi type model, Rényi holographic dark
energy, Cosmology, Dark energy.

1 Introduction

Cosmic acceleration is supposed to occur in our universe. The reason for this
is believed to be dark energy (DE), a mystery type of energy with extremely
high negative pressure. Different cosmological observations (Riess et al. 1998;
Perlmutter et al. 1999; Spergel et al. 2003; Tegmark et al. 2004) have demon-
strated the existence of this kind of energy. Its precise nature, however, is still
an unresolved issue that requires additional research. The cosmological con-
stant is the first and most simple option for DE, however, it has two significant
theoretical problems, including coincidence and fine-tuning problems. In order
to address the DE problem, two approaches have been suggested: one involves
studying the dynamics of numerous DE models, and the other involves modify-
ing the Einstein-Hilbert action of the general theory of relativity, which results
in modified theories of gravity. Using the variable equation of state (EoS) pa-
rameter ωde=pde/ρde (pde is the pressure and ρde is the energy density of DE),
the DE models may be divided from the cosmological constant. The familiar
DE models are scalar field models which include quintessence, phantom, quin-
tom, etc. (Padmanabham 2002, 2008; Bento et al. 2002; Caldwell 2002; Nojiri
and Odintsov 2003a) and the DE models which contain a family of Chaplygin
gas, agegraphic DE models, holographic DE (HDE), etc. (Kamenshchik et al.
2001; Bento et al. 2002; Sahni and Shtanov 2003; Hsu 2004; Cai 2007).

Among several dynamical DE models, HDE is attracting several researchers
in this field. HDE is based on the well-known holographic principle (Hooft
1993; Cohen et al. 1999; Susskind 1995). This principle creates an upper bound
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for the universe’s entropy in a cosmic framework, and there is a theoretic inter-
action between ultraviolet (UV) and infrared (IR) cutoffs. The energy density
ρde in a region associated with the UV can be obtained from

L3ρde ≤ LM2
p . (1)

The relation described in Eq. (1) can be used to determine the maximum value
of L in this instance, where the energy density of HDE is given by

ρde= 3c2M2
pL

−2. (2)

In this equation, M−2
p is the reduced Planck mass, M−2

p = 8πG, and c is a
numerical constant. Any modification to the area law of entropy, upon which
the energy density of the HDE is based, results in a modified holographic en-
ergy density. More recently, the Tsallis HDE (THDE) (Tsallis and Cirto 2013;
Tavayef et al. 2018), Sharma-Mittal HDE (SMHDE) (Jahromi et al. 2018),
and Rényi HDE model (RHDE) (Moradpour et al. 2018a) entropy formalisms
have been used to construct HDE models. There have been discussions of the
SMHDE, THDE and RHDE cosmological models in the Chern-Simons the-
ory of gravity in the contexts of the D-dimensional fractal universe, the DGP
braneworld (Younas et al. 2019; Maity and Debnath 2019; Iqbal and Jawad
2019). Prasanthi and Aditya (2020, 2021), Aditya et al. (2019) and Bhat-
tacharjee (2020) have investigated the observational constraints on the RHDE
and THDE models. In addition to using three distinct parametrizations of the
interaction between dark sectors (dark matter and DE), Sharma and Dubey
(2022) examined RHDE in a flat isotropic universe where the Hubble horizon
serves as the IR cut-off. The RHDEmodel with the particle and future horizons
as the IR cut-off has been studied by Chunlen and Rangdee (2021). RHDE
in Ruban’s Universe has been investigated by Santhi and Chinnappalanaidu
(2022), where Hubble Horizon takes care of the IR cutoff.

The study of modified theories of gravitation (such as Brans-Dicke (1961),
Saez-Ballester (SB) (1986) scalar-tensor theories, f(R) (Nojiri and Odintsov
2003b) and f(R, T ) (Harko et al. 2011) theories, where R is the curvature
scalar and T is the trace of the energy-momentum tensor) is significant to
explain the DE models. The literature on the subject provides a comprehensive
examination of DE models as well as modified theories of gravity (Copeland et
al. 2006; Setare 2007; Clifton et al. 2012; Bamba et al. 2012; Nojiri et al. 2017).
The metric potentials and a dimensionless scalar field are connected in the SB
theory of gravity. They have demonstrated that the weak fields are effectively
described by this minimal coupling. The SB field equations are provided by

Rij −
1

2
Rgij − wφn

(

φ,iφ,j −
1

2
gijφ,kφ

,k

)

=−
8πG

c4
Tij (3)

and the scalar field φ satisfies the equation

2φnφ,i
;i + nφn−1φ,kφ

,k= 0 (4)
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where w is a dimensionless constant, G is the gravitational constant, Tij is
the stress-energy tensor of the matter, and semicolons and commas indicate
covariant and partial differentiation, respectively. The following is the energy-
conservation equation:

T ij
;j = 0. (5)

The observable universe is almost homogenous and isotropic, as is well
known. As a result, cosmology has given the FRW models a lot of attention.
However, the fact that there were only a few anisotropies in the universe’s
early history prompts us to think of homogenous anisotropic Bianchi type (BT)
models. Specifically, the BT-I model, which represents a spatially homogenous,
anisotropic, and flat universe, is considered to be the basic anisotropic universe
model. To address the significance of anisotropies in the universe, several au-
thors have recently been looking into anisotropic BT models in the presence
of several matter distributions. As analyzed in detail by Quiros and Rangel
(2023), the SB theory is in fact Einstein theory of gravity with minimally
coupled mass-less scalar field. The BT-I generalized ghost pilgrim DE model
has been examined by Santhi et al. (2017a). In SB’s theory of gravitation,
BT-I and III modified holographic Ricci DE (MHRDE) have been studied
by Rao and Prasanthi (2017). The BT- V I0 MHRDE cosmological model in
the SB theory of gravity has been addressed by Santhi et al. (2017b). BT-V
DE model with cosmic strings has been examined by Mishra et al. (2018).
In the background of the f(R) gravity, Aditya and Reddy (2018a) studied
the BT-I string cosmological models, whereas Sharif et al. (2018) studied the
BT-I new HDE model. In scalar-tensor theories of gravity, Santhi and Ap-
palanaidu (2023) have examined several THDE models of the BT universe.
The anisotropic RHDE model in the SB theory of gravity has been explored
by Vinutha et al. (2023). Aditya (2023) and Aditya and Prasanthi (2023) have
studied anisotropic dark energy models in modified theories of gravitation.

In this study, inspired by the previous discussion, we investigate the locally
rotationally symmetric (LRS) BT -I RHDE model in SB theory of gravitation.
The following describes the way the paper is structured: In Section 2, we derive
the model’s field equations and solve them to describe non-interacting and
interacting models. In this section various physical features of the models are
also included. In Section 3, we compare our study to recent research works on
the subject and modern observational data. Section 3 also includes a summary
of the results obtained.

2 Field equations and models

Anisotropic LRS Bianchi type-I space-time is considered as

ds2=dt2 −A2(t)dx2 −B2(t)[dy2 + dz2] (6)

where A and B are metric potentials and solely functions of cosmic time t.
The physical parameters for the LRS BT-I model are defined as follows:
Mean Hubble’s parameter

H=
ȧ

a
=
1

3

(

Ȧ

A
+ 2

Ḃ

B

)

(7)
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where a(t) = (AB2)1/3 is the average scale factor. Expansion and shear scalars
are, respectively, defined as

θ=ui;i=
2Ȧ

A
+

Ḃ

B
(8)

σ2=
1

2
σijσij=

1

3

(

Ȧ

A
−

Ḃ

B

)2

. (9)

The SB field equations for DE and matter distribution are provided by
(with 8πG= 1 and c= 1)

Rij −
1

2
gijR− ωφn(φ,iφ,j −

1

2
gijφ,kφ

,k) =− (Tij + T ij), (10)

where Tij and T ij are the matter and DE energy-momentum tensors, respec-
tively. The scalar field satisfies the equation

2φnφ,i
;i + nφn−1φ,kφ

,k= 0, (11)

and energy-conservation equation is defined as

T
ij
;j + T ij

;j = 0. (12)

The energy-momentum tensors for matter Tij and anisotropic DE T ij are given
by

Tij=diag[1, 0, 0, 0]ρm

T ij= [1,− ωde,−(ωde + γ),− (ωde + γ)]ρde (13)

where ρm and ρde are the energy densities of matter and DE, ωde=
pde
ρde

is the

EoS parameter and skewness parameter γ is the deviation from EoS ωde on y
and z axes.

With the use of (13), the field Eqs. (10)-(12), for metric (6), may be rep-
resented as

2
B̈

B
+

Ḃ2

B2
−

w

2
φnφ̇2=− ωdeρde (14)

Ä

A
+

B̈

B
+

ȦḂ

AB
−

w

2
φnφ̇2=− (ωde + γ)ρde (15)

2
ȦḂ

AB
+

Ḃ2

B2
+

w

2
φnφ̇2=ρde + ρm (16)

φ̈+ φ̇

(

Ȧ

A
+ 2

Ḃ

B

)

+
n

2

φ̇2

φ
= 0. (17)
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ρ̇m +

(

Ȧ

A
+ 2

Ḃ

B

)

ρm + ρ̇de +

(

Ȧ

A
+ 2

Ḃ

B

)

(1 + ωde)ρde + 2γρΛ
Ḃ

B
= 0, (18)

where the overhead dot stands for ordinary differentiation with respect to time
t.

The field equations (14)-(17) create a system of four differential equations
with seven unknowns, namely, A, B, ρde, ρm, ωde, γ and φ. As a result, to
find an exact solution to the nonlinear equations, we assume a condition that
the shear scalar is proportional to the scalar expansion, leading to a relation
between the metric potentials as (Collins et al. 1980)

A=Bk (19)

where k 6= 1 is a constant that preserves space-time’s anisotropy. Thorne
(1967) provides a reasonable description for this relationship and emphasizes
its significance. Modern observations imply that Hubble’s expansion of the
universe is currently isotropic within ≈ 30% (Kristian and Sachs 1966; Kan-
towski and Sachs 1966), while redshift observations offer the range as σ

H ≤ 0.3.
Collins et al. (1980) determined that normal congruence follows this require-
ment ( σ

H is constant) for a spatially homogeneous metric.
Using Eq. (19) in Eqs. (14) and (15), we get

Bk+1Ḃ=b0 exp

(
∫

γρdeB

(1− k)Ḃ
dt

)

. (20)

To obtain the explicit solution of the model, we assume (Adhav 2011; Santhi
et al. 2016, 2017a; Aditya and Reddy 2018b)

γ=
γ0(1− k)Ḃ

Bρde
(21)

where γ0 is an arbitrary constant.
From Eqs. (20) and (21), we obtain the metric potentials as

A=

[

(k + 2)

(

b0
γ0

exp(γ0t) + b1

)]
k

k+2

; B=

[

(k + 2)

(

b0
γ0

exp(γ0t) + b1

)]
1

k+2

(22)
where b0 and b1 are integrating constants. Using Eq. (22) in Eq. (17), we obtain
the scalar field as

φ=

[

(n+ 2)φ0

2b1γ0(k + 2)
log

(

b0
γ0

+ b1exp(− γ0t)

)]
2

n+2

. (23)

Using Eq. (22) the metric (6) can, now, be written as

ds2 = dt2 −

[

(k + 2)

(

b0
γ0

exp(γ0t) + b1

)]
2k

k+2

dx2

−

[

(k + 2)

(

b0
γ0

exp(γ0t) + b1

)]
2

k+2

[dy2 + dz2] (24)
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The mean Hubble parameter can be obtained as

H=
1

3

(

Ȧ

A
+ 2

Ḃ

B

)

=
b0exp(γ0t)

3
(

b0
γ0
exp(γ0t) + b1

) . (25)

Rényi holographic dark energy:We consider a system with n, states with prob-
ability distribution Pi and satisfies the condition Σn

i=1Pi = 1, Tsallis entropy
is defined as (Tsallis 1988)

ST =
1

δ
Σn

i=1(P
1−δ
i − Pi) (26)

δ = 1 − U , where, U is a real parameter which may be originated from the
non-extensive features of system such as the long range nature of gravity. In
addition, there is another Q-generalized entropy definition as

SR =
1

δ
lnΣn

i=1P
1−δ
i (27)

which returns to Rényi (1970). One can combine Eqs. (26) and (27) with
each other to reach the relationship between Tsallis and Renyi entropies as
(Komatsu 2017; Moradpour et al. 2017, 2018b)

SR=
1

δ
ln(1 + δST ). (28)

ST =
A

4
. Here A= 4πL2 and L is the IR cutoff, is the Bekenstein entropy and

T = (4πL)−1 is the Hawking temperature and d is a constant. We can deter-
mine the RHDE density using the relation ρdedV ∝ T dS as

ρde=
3d2

L2
(1 + πδL2)−1. (29)

Here we assume the RHDE model with the Hubble horizon cutoff L=H−1. We
find the Hubble cutoff by inserting it into Eq. (29) as

ρde=
3d2H2

1 + πδH−2
. (30)

The fractional energy densities of matter (Ωm) and DE (Ωde) are given as

Ωm=
ρm
ρcr

=
ρm
3H2

and Ωde=
ρde
ρcr

=
d2

1 + πδH−2
, (31)

ρcr is the critical energy density. The non-interactive and interacting RHDE
models are studied in the following sections, and the physical importance of
various cosmological parameters is discussed.
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2.1 Non-interacting model

We are considering non-interacting DE and matter in this case. As a result,
we have from Eq. (12) that both of these are conserved individually

ρ̇m + 3Hρm= 0, (32)

ρ̇de + 3H(1 + ωde)ρde + 18
γ0(1− k)H2

(k + 2)2
= 0. (33)

Differentiating Eq. (30) with respect to time, we obtain

ρ̇de=ρde

(

4Ḣ

H
−

2HḢ

H2 + πδ

)

. (34)

In view of Eqs. (25) and (34), from Eq. (33), we obtain the EoS parameter of
RHDE as

ωde=− 1 +
2Ḣ

3(H2 + πδ)
−

4Ḣ

H2
−

2γ0(1− k)

(k + 2)2HΩde

(35)

where

Ḣ=
−b20 exp(2γ0 t)

3
(

b0
γ0
exp(γ0t) + b1

)2
+

b0 γ0 exp(γ0 t)

3
(

b0
γ0
exp(γ0t) + b1

) . (36)

Here Hubble parameter H(t) and fractional energy density of RHDE Ωde are
respectively given in Eqs. (25) and (31).
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Fig. 1. Plot of DE energy density parameter Ωde versus redshift z for γ0= 0.3, b0= 0.018
and b1=− 0.03.

RHDE energy density parameter Ωde: Fig. 1 depicts the behaviour of the den-
sity parameter Ωde in terms of redshift z for various values of parameter
d. Also, we assumed constant values (k= 0.95, γ0= 0.3, b0= 0.018, d= 1.8,
b1=− 0.03, n=− 1.5 and w= 10) here, so that the energy density parameter
Ωde approaches 0.73 at the current era. Hinshaw et al. (2013) have investigated
observational constraints on the total density parameter of DE Ωde based on
the final nine-year WMAP data in conjunction with additional cosmological
data sets such as CMB and BAO, as
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Fig. 2. Plot of EoS parameter ωde versus redshift z for k= 0.95, γ0= 0.3, b0= 0.018 and
b1=− 0.03.
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Fig. 3. Plot of ωde − ω′

de plane for k= 0.95, γ0= 0.3, b0= 0.018 and b1=− 0.03.
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Fig. 4. Plot of v2s versus redshift z for k= 0.95, γ0= 0.3, b0= 0.018 and b1=− 0.03.

– Ωde= 0.721± 0.025 (WMAP)
– Ωde= 0.728± 0.019 (WMAP+eCMB)
– Ωde= 0.707± 0.010 (WMAP+eCMB+BAO)
– Ωde= 0.740± 0.015 (WMAP+eCMB+H0)
– Ωde= 0.7135+0.0095

−0.0096 (WMAP+eCMB+BAO+H0).

At a 68% confidence level, Ade et al. (2014) established the following limits on
the DE density parameter Ωde= 0.717+0.028

−0.024 (WMAP-9) and Ωde= 0.717+0.023
−0.020

(Planck+WP) by suggesting alternative combinations of observational ap-
proaches. As shown in Fig. 1, the RHDE density parameter Ωde also meets
the previously mentioned constraints, demonstrating the unified nature of our
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results.

EoS parameter ωde: The fluid EoS parameter connects its pressure p and en-
ergy density ρ by the relation, ω=p

ρ . Different EoS values correlate to dis-

tinct eras of the universe in its early decelerating and current accelerating
expansion phases. For ω=1

3
, ω= 1 and ω= 0 (decelerating phases), it contains

radiation, stiff fluid and matter-dominated (dust), respectively. It symbolizes
the quintessence for −1 <ω< − 1/3, the cosmological constant for ω= − 1,
and the phantom for ω< − 1. Fig. 2 depicts the behaviour equation of the
non-interacting model’s EoS parameter in terms of redshift for different val-
ues of d and δ. It can be observed that initially the model begins in the
matter-dominated era, varies in the quintessence epoch, and eventually ap-
proaches the phantom epoch by crossing the phantom divided line (ωde=−1).
This behaviour is commonly known as the quintom-like nature. Furthermore,
as the parameter δ increases, the model evolves with high phantom values.
The present value (at z= 0) of the EoS parameter of our obtained model
(z, ωde) = (0,− 0.81) is in good agreement with recent Planck data (Aghanim
et al. 2020).

ωde−ω′
de plane: Here, the behaviour of ωde−ω′

de (where prime respresents the
derivative with regard to ’ln(a (t))’) plane is presented. This plane was initially
suggested to investigate the evolution of the quintessence DE (Caldwell and
Linder 2005). This plane can be divided into two portions, which are referred
to as freezing (ωde< 0, ω′

de< 0) and thawing (ωde< 0, ω′
de> 0). By taking the

derivative of Eq. (35) with regard to ln(a (t)), we obtain

ω′
de =

6Ḧ(H2 + πδ) + 12Ḣ2H

9H(H2 + πδ)2
−

4

3

[

Ḧ

H2
−

2Ḣ2

H3

]

+
2γ0(1− k)

(k + 2)2

[

Ḣ

H2Ωde
+

Ω̇de

ΩdeH

]

, (37)

where

Ḧ=
2b30 exp(3γ0 t)

3
(

b0
γ0
exp(γ0t) + b1

)3
−

b20 γ0 exp(2γ0 t)
(

b0
γ0
exp(γ0t) + b1

)2
+

b0 γ20 exp(γ0 t)

3
(

b0
γ0
exp(γ0t) + b1

) (38)

and

Ω̇de=
2HḢπδd2

(H2 + πd)2
. (39)

We plotted the behaviour of the ωde−ω′
de plane for our non-interacting RHDE

model for different values in Fig. 3. Our non-interacting RHDE model initially
starts from the thawing region and varies in the freezing region at the present
epoch. Modern cosmological observations support that the freezing region un-
veils a higher cosmic acceleration era than the thawing region. Hence, our
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model exhibits cosmic acceleration in the freezing region and good agreement
with the observations.

Squared sound speed v2s : This parameter v2s is used to investigate the model’s
stability. If v2s> 0, we get a stable model; otherwise (v2s< 0), one can get an
unstable model. Here, v2s has the following form:

v2s =
ṗde
ρ̇de

= ωde + ω̇de
ρde
ρ̇de

= −1 +
2Ḣ

3(H2 + πδ)
−

4Ḣ

H2
−

2γ0(1− k)

(k + 2)2HΩde
+

{

6Ḧ(H2 + πδ) + 12Ḣ2H

9(H2 + πδ)2

−
4

3

[

Ḧ

H
−

2Ḣ2

H2

]

+
2γ0(1− k)

(k + 2)2

[

Ḣ

HΩde
+

Ω̇de

Ωde

]}

×

(

H(H2 + πδ)

4Ḣ(H2 + πδ − 2H2Ḣ)

)

(40)

Fig. 4 exhibits the behaviour of v2s versus redshift. We notice that v2s is ini-
tially positive, implying that our model is unstable. Furthermore, as the uni-
verse evolves, v2s< 0 demonstrates model instability. It should be noted that
several authors in the literature (Myung 2007; Jawad et al. 2013; Jawad and
Chattopadhyay 2015) have done stability analysis of DE models in several
gravitational theories, where they have similarly obtained unstable behaviour
of the DE models.

2.2 Interacting model

Here, we presume that DE and matter interact with one another. As a
result, the energy-conservation equation Eq. (18) can be written for matter
and DE as

ρ̇m + 3Hρm=Q, (41)

ρ̇de + 3H(1 + ωde)ρde + 18
γ0(1− k)H2

(k + 2)2
=−Q. (42)

Here Q is assumed as follows

Q= 3βqHρde (43)

where Q is the matter-DE interaction term and is a coupling constant (Xu
2020; Sobhanbabu and Santhi 2021). Because the positive parameter β will
result in negative ρm in the flat universe, the parameter β is assumed to be
negative. Q can shift its sign from Q< 0 to Q> 0 as the universe’s expansion
changes from deceleration (q> 0) to acceleration (q< 0). For Q< 0, energy
moves from matter to RHDE, whereas for Q> 0, energy flows from RHDE to
matter.
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Using Eqs. (25) and (34) in Eq. (42), we obtain the EoS parameter as

ωde=− 1− βq +
2Ḣ

3(H2 + πδ)
−

4Ḣ

H2
−

2γ0(1− k)

(k + 2)2HΩde

(44)
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Fig. 5. Plot of EoS parameter ωde versus redshift z for γ0= 0.3, d= 1.8, b0= 0.018 and
b1=− 0.03.
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Equation of state parameter ωde: Fig. 5 depicts the behavior of our non-in-
teracting model’s EoS parameter for various values of δ and β. This model
originates in the matter-dominated epoch, fluctuates in the quintessence era,
and eventually reaches the phantom epoch by crossing the phantom divided
line (ωde=− 1). This is referred to as the universe’s quintom-like nature. Fur-
thermore, as β grows, the model progresses with high phantom values, whereas
the EoS parameter increases, and the model becomes more oriented towards
the ΛCDM model. Furthermore, the current value of our non-interacting
model’s EoS parameter (z, ωde) = (0, − 0.83) is in agreement with modern
Planck data (Aghanim et al. 2020).
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ωde − ω′
de plane: We get ω′

de by taking the differentiating of Eq. (44) with
regard to ln(a (t)), which is the same as Eq. (37). As a result, the behaviour
of our non-interacting model from the ωde − ω′

de plane is very similar to that
of the interacting model (ref. Fig. 3).

Squared sound speed v2s : This parameter v2s , in this case, can be obtained as

v2s=−1−β q+
2Ḣ

3(H2 + πδ)
−

4Ḣ

H2
−

2γ0(1− k)

(k + 2)2HΩde

+{
6Ḧ(H2 + πδ) + 12Ḣ2H

9(H2 + πδ)2

−
4

3

[

Ḧ

H
−

2Ḣ2

H2

]

+
2γ0(1− k)

(k + 2)2

[

Ḣ

HΩde
+

Ω̇de

Ωde

]

}

(

H(H2 + πδ)

4Ḣ(H2 + πδ − 2H2Ḣ)

)

(45)
Figure 6 depicts the behaviour of v2s in terms of redshift z. Initially v2s> 0 for
high values δ= 0.0445 indicating a stable model, and for z ≤ 0.5 the squared
sound speed v2s< 0 indicating that the model is unstable at late times. The
examination of DE models in several alternative theories of gravity in the
literature (Myung 2007; Jawad et al. 2013; Jawad and Chattopadhyay 2015)
demonstrates this behaviour of the model.

Scalar field φ(t): Eq. (23) gives the scalar field of the models, and Fig. 7
exhibits the behaviour of the φ(t) in terms of redshift for different values of
b1. The scalar field decreases as the cosmos evolves, as shown in Fig. 7. As the
scalar field diminishes, so does the related kinetic energy. According to the
literature, Raju et al. (2020a, 2020b) analyzed the anisotropic DE and cosmic
string cosmological model with a massive scalar field and discovered that the
scalar field decreases as cosmic time increases. Aditya et al. (2022) discussed
the BT-IX DE model in Lyra geometry with a massive scalar meson field. Rao
et al. (2021, 2022) studied BT-I and BT-II massive scalar field models and
discovered that the scalar field is a decreasing function. The above discussion
concluded that the study of our scalar field is similar to the above-discussed
DE models.

Energy conditions: The study of energy conditions was initiated by the
Raychaudhuri equations, which are crucial in any consideration of the congru-
ence of null and time-like geodesics. Other broad theorems about how strong
gravitational fields behave are illustrated using the energy conditions. The
typical energy scenarios are as follows:

– Dominant energy condition (DEC): ρde ≥ 0, ρde ± pde ≥ 0,
– Strong energy conditions (SEC) : ρde + pde ≥ 0, ρde + 3pde ≥ 0,
– Null energy conditions (NEC): ρde + pde ≥ 0,
– Weak energy conditions (WEC): ρde ≥ 0, ρde + pde ≥ 0.

Fig. 8 depicts the energy conditions for various values of parameter d for our
RHDE models. It is clear that the NEC are violated, and the model results in
a Big Rip. It can also be seen that the WEC meets the requirement ρde ≥ 0. In
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Fig. 7. Plot of scalar field φ versus redshift z for k= 0.95, γ0= 0.3, b0= 0.018 and n=− 1.5.

addition, Fig. 8 shows that the DEC ρde+pde is not satisfied. Additionally, our
models violate the SEC, which is appropriate. This tendency, which is caused
by the universe’s late-time acceleration, is consistent with recent observational
data.
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Deceleration parameter: The deceleration parameter’s (q) signature indi-
cates whether the model accelerates or decelerates. If q> 0, the model exhibits
decelerating expansion, constant expansion if q= 0, and accelerating scenario
if −1 ≤ q< 0. For q= − 1, the universe shows de Sitter (exponential) expan-
sion, and for q<−1, it exhibits super-exponential expansion. In both scenarios
(interacting and non-interacting), the deceleration parameter for our model is
provided by

q=− 1−
Ḣ

H2
=− 1−

b1γ0
b0 exp(γ0 t)

(46)

Figure 9 depicts the behavior of the deceleration parameter in terms redshift
z for different b1 values. It should be emphasized that both models indicate
a smooth evolution from the universe’s early decelerated phase to its current
accelerated phase. In this region 0.65 <z< 0.8, the universe changed from a
decelerating to an accelerating phase. This is consistent with recent obser-
vations in cosmology (Capozziello et al. 2014; Muthukrishna and Parkinson
2016). Capozziello et al. (2014) investigated cosmographic limitations on the
cosmic deceleration-acceleration transition redshift in f(R) theory of gravity
and discovered that the accelerating expansion’s transition redshift (zt) is pro-
vided by 0.3 <zt< 0.8. Muthukrishna and Parkinson (2016) investigated cos-
mographic evaluation of the transition to acceleration using SN-Ia and BAO
and obtained boundaries on the transition redshift for the various expansions,
finding zacc> 0.14 at 95% confidence in the most conservative case.
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Fig. 9. Plot of deceleration parameter q versus redshift z for k= 0.95, γ0= 0.3 and b0= 0.018.

Statefinder parameters: In recent years, a number of DE models have been
put out to explain the universe’s accelerated expansion. These multiple DE
models’ Hubble and deceleration parameters all have the same present value,
making it impossible for them to distinguish between the DE models. In order
to accomplish this, Sahni et al. (2003) combined the deceleration and Hubble
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parameters, which are written as

r=

...
a

aH3
, s=

r − 1

3(q − 1/2)
(47)

The regions shown below are defined by these statefinders: ΛCDM for (r, s) =
(1, 0) and CDM model for (r, s) = (1, 1); r< 1 gives quintessence and s> 0
gives phantom DE phases; r> 1 with s< 0 establishes the Chaplygin gas
model.
The statefinder parameter for our models are

r = 10−
18γ0

b0 exp(γ0t)

(

b0

γ0
exp(γ0t) + b1

)

+
9γ2

0

b20 exp(2γ0t)

(

b0

γ0
exp(γ0t) + b1

)2

(48)

s =

[

3−
6γ0

b0 exp(γ0t)

(

b0

γ0
exp(γ0t) + b1

)

+
3γ2

0

b20 exp(2γ0t)

(

b0

γ0
exp(γ0t) + b1

)2
]

×

(

−

3

2
−

b1γ0

b0 exp(γ0 t)

)

(49)

Figure 10 depicts the r − s plane’s trajectory. The r − s plane resembles
the ΛCDM model at late times. It can be seen that the behaviour of the r−s
plane is similar to that of dynamical DE models such as Chaplygin gas (s< 0
and r> 1).
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Fig. 10. Plot of statefinders for k= 0.95, γ0= 0.3 and b0= 0.018.

r−q plane: Figure 11 depicts the development of our models in the r−q plane.
The values (r, q) = (1, 0.5) represents standard cold dark matter (SCDM)
whereas (r, q) = (1,− 1) represents the steady state (SS) model. The ΛCDM
model evolves along the dotted line (see Fig. 11) from a fixed point in the
SCDM model to a fixed point in the SS model. At late times, our model comes
close to the SS model. Aditya et al. (2022) and Singh and Kumar (2016) ex-
amined the r− q plane analysis of the DE model in the presence of a massive
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scalar meson field and HDE model with constant bulk viscosity. The r − q
trajectory of our model is found to be quite comparable to the DE models
previously presented in the literature (Aditya et al. 2022; Singh and Kumar
2016).
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Fig. 11. Plot of the r − q plane for k= 0.95, γ0= 0.3 and b0= 0.018.

3 Discussion and Final Remarks

There have been some interesting studies on the accelerating expansion of the
universe. There are two approaches put out to explain this cosmic accelera-
tion. Studying numerous dynamical DE models is one method while taking
into account alternate theories of gravitation is another method. Here, using
the SB theory of gravity (1986), we investigated the accelerated expansion
while assuming RHDE in the LRS Bianchi type-I universe. By utilizing the
relationship between the metric potentials, we have obtained a solution to the
SB field equations, which yields a variable deceleration parameter. We have
thought about scenarios of matter and DE that interact and do not interact.
We investigated several cosmological parameters to assess the validity of these
results. Our findings are as follows:

– The total RHDE density parameter Ωde decreases as the universe evolves
(Fig. 1). We selected the fixed values (k= 0.95, γ0= 0.3, b0= 0.018, d=1.8
and b1= − 0.03) so that we arrive at the energy density parameter Ωde
approaching 0.73 at the present epoch. It can be concluded that the RHDE
density parameter Ωde meets the observational limits from WMAP, Planck
data, and BAO (Hinshaw et al. 2013; Ade et al. 2014). As the universe
evolves, the scalar field of our models decreases (Fig. 7). We can see that
as the scalar field decreases, so does the associated kinetic energy increase.
According to the literature (Raju et al. 2020a, 2020b; Aditya et al. 2022;
Rao et al. 2021, 2022), the study of our scalar field is very similar to
the previously mentioned dark energy models. The NEC is violated, and
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hence the model results in a Big Rip (Fig. 8). The WEC satisfied ρde ≥ 0,
however, the DEC ρde + pde did not satisfy. Additionally, as should be the
case, our model violates the SEC. This tendency, which is caused by the
universe’s late-time acceleration, is consistent with recent observational
data.

– The ωde − ω′
de plane for our RHDE models (similar to non-interactive and

interacting models) is shown in Fig. 3, and the trajectories meet both freez-
ing and thawing zones. However, in the present and the future, the models
only show freezing regions. Recent observations confirm that models that
differ in the freezing area are the best candidates for explaining cosmic ac-
celeration. This plane’s trajectories are also consistent with observational
data (Ade et al. 2014) ωde=−1.13+0.24

−0.25, ω
′
de< 1.32 (Planck+WP+BAO).

The stability analysis shows that the models (ref. Figs. 4 and 6) are stable
in the past but unstable in the present and future eras. Our models’ stabil-
ity analysis is very comparable to that of RHDE models in the literature
(Bhattacharjee 2020; Prasanthi and Aditya 2021).

– For adequate parameter values, the deceleration parameter undergoes sig-
nature flipping. So, the models demonstrate a smooth transition from the
early decelerated phase to the present accelerated phase of the universe.
The transition redshift of the universe (Fig. 9) at 0.65 <z< 0.8. At a 95%
confidence level, this is in agreement with SN-Ia and BAO cosmological
observations.

– At late times, the statefinder plane (r − s) corresponds to the ΛCDM
model, and its behaviour is identical to that of the dynamical DE model,
such as Chaplygin gas (s< 0 and r> 1) (Fig. 10). At late times, the model
approaches the SS model (r− q plane and Fig. 11). The r− q trajectory of
our model is found to be quite similar to the DE models in the literature
(Aditya et al. 2022; Singh and Kumar 2016).

In this section, we give comparisons of our results with current research on
this topic and with observational data.

Sadri and Vakili (2018) investigated the new HDE model in the context
of the BD theory of gravity. They have identified an EoS parameter capable
of reaching the phantom era ωde< − 1 without the need for interaction be-
tween dark sectors. Sharif et al. (2018) examined BT-I NHDE models in the
BD theory of gravity and obtained the EoS parameter, which leads to an ac-
celerated expansion of the universe. Aditya and Reddy (2018a) used the SB
theory of gravity to investigate new HDE in the BT-I universe. They con-
structed interacting and non-interactive DE models and discovered that the
interacting model approaches the ΛCDM model, whereas the non-interacting
model marks the phantom division line and attains a constant value in the
phantom region. In the framework of the SB theory of gravity, Santhi and
Sobhanbabu (2020) discussed the BT-III universe with THDE and the mod-
els demonstrate quintom behaviour. Sobhanbabu and Santhi (2021) examined
the Kantowski-Sachs THDE model with interaction and discovered quintom
behaviour. Sharma and Dubey (2022) explored the RHDEmodel in the context
of a flat FRW Universe using three distinct parametrizations of the interaction
term and discovered that two models change only in the phantom area and
one model just in the quintessence region. Bhattacharjee (2020) discussed how
THDE and RHDE models interact with hybrid expansion laws. According to
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his results, the Tsallis HDE model varies in the quintessence zone and will ap-
proach the phantom divide line in the future, but the RHDE model fluctuates
in the phantom region.

Examination of the EoS parameters reveals that the anisotropic RHDE
models (both interacting and non-interacting) start in the material-dominated
zone, cross the phantom dividing line, and reach a constant value in the phan-
tom region. This is similar to and unlike the various models outlined above.
In particular, as the β increases, the model approaches the ΛCDM model in
the near future. Furthermore, it is useful to show here that the current values
of the EoS parameter value in our model ωde ≈ −0.92 are in good agreement
with Planck’s observed data (Aghanim et al. 2020)
ωde=− 1.56+0.60

−0.48 (Planck + TT + lowE) ;

ωde = −1.58+0.52
−0.41 (Planck + TT, TE, EE + lowE);

ωde=− 1.57+0.50
−0.40 Planck + TT, TE, EE + lowE + lensing);

ωde=− 1.04+0.10
−0.10 (Planck + TT, TE,EE + lowE + lensing +BAO).

It demonstrates the agreement of our findings with the cosmic evidence pre-
sented above. According to the comparison above, our RHDE models are more
viable in the SB theory of gravity. At 0.65 <z< 0.8, the universe transitioned
from the decelerating to the accelerating phase. This is consistent with recent
observations in cosmology. Furthermore, the current value of the deceleration
parameter q(t) for our models is q ≈ −0.8, which is consistent with the modern
observations (Capozziello et al. 2019; Amirhaschchi and Amirhaschchi 2019)
given as q= − 0.930 ± 0.218 (BAO + Masers + TDSL + Pantheon + Hz).
Finally, we briefly summarize our results as follows:

– The deceleration parameters show transitions from previous deceleration
epochs to the current cosmic acceleration, which is consistent with current
observations.

– When compared to recent measurements, the EoS parameter displays quin-
tom behaviour and consistent ranges.

– ωde − ω′
de plane shows a freezing region within the observational range.

– The model is stable in the past, but unstable in the current and future
epochs.

– The statefinder parameters meet the Chaplygin gas behaviour and the
ΛCDM limit.

– Eventually, the model approaches a stationary model, as shown in the r−q
plane.
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