Astronomical instruments can be
divided into
two major categories. The first category might include all of the
instruments
which are used in the actual process of observing celestial objects.
Some
of these, like the meridian transit, are designed for specific tasks
such
as the precise determination of an observer's position on the earth or
a star's position in the sky; other observational instruments are
principally
collectors of the radiation emitted by stars, planets, nebulas, and
galaxies.
These latter, which are generally referred to as telescopes, enable
objects
invisible to the naked eye to be seen, photographed, or otherwise
detected.
In the second category may be grouped the auxiliary
instruments
which are used to standardize, record, or analyze the data obtained by
the observational equipment. Devices to provide an accurate standard of
time, to determine the brightnesses of stars, to record their spectra,
or to measure the positions of stars on photographic plates, are
examples
of instruments belonging to this second category.
It should be mentioned at the outset
that
the radiation gathered from a celestial object by a conventional
astronomical
telescope lies in the visible and near visible region of the
electromagnetic
spectrum. Over the past few decades, however, an entirely different
type
of astronomical telescope has come into wide use. These instruments,
known
as radio telescopes, have been developed as the result of the discovery
in 1928-1932 by Karl G. Jansky of the Bell Telephone Laboratories that
the center of our own galaxy is a powerful emitter of electromagnetic
radiation
in the radio wavelength region. Since Jansky's initial discovery, many
other celestial "radio sources" have been found. The operating
principles
and the evolution of radio telescopes, as well as the significance and
importance of the new field of radio astronomy which they have
fostered,
are treated under Radio Astronomy and Radar Astronomy. Also
described
elsewhere are certain other electronic devices, such as "image
intensifiers,"
which already belong, or soon will belong, to the growing list of
techniques
employed in modern astronomy. (See also Photometry.)
Early History
The origins of astronomical
observations
go back to remotest antiquity. The necessity of keeping track of time
for
agricultural and civil purposes must have led primitive man to a
serious
study of the daily rotation of the heavens, and to the motions of the
sun
and moon relative to the stars. Certainly by 2500 b.c., both the
Babylonians
and the Egyptians had developed calendars in which approximations to
our
present day, month, and year appeared as basic units. Besides crude
water
and sand clocks, the time of day was estimated by the direction and
length
of shadows cast by vertical objects such as buildings, pyramids, stone
columns, or simply stakes driven into the ground. Calibration of the
shadow
lengths and directions inevitably followed, and the forerunner of the
present-day
sundial was born. The earliest known sundial or shadow-clock is
Egyptian
and dates back to approximately 1000 b.c.(See also Sundial.)
From 1000 b.c. to around 300 b.c.,
little
was added to the science of observational astronomy. The practice of
carrying
out systematic astronomical observations, and the use of these in the
formulation
of theory, was revived in the third and second centuries b.c. by
astronomers
of the Alexandrian School, notably Aristyllus and Timocharis (third
century
b.c.), Aristarchus (c.220-c.150 b.c.), Eratosthenes (c.276-194 b.c.),
and
Hipparchus (c.190-c.125 b.c.).
The Gnomon
The principal instruments of the day
were
the gnomon and the armillary sphere. The gnomon was simply a pointed
vertical
column of known height erected on a horizontal plane. In addition to
telling
time, this simple devise was used to yield a variety of fundamental
data.
From the direction of the shadow cast at noon, the north-south line was
established enabling the azimuths (angular directions) of objects on
the
earth's surface to be estimated. From the known height of the gnomon,
and
the lengths of the shortest and longest noon shadows observed during
the
year, the angle of the ecliptic plane (the plane containing the
apparent
path of the sun) to the earth's equatorial plane and the latitude of
the
observer were calculated. The time interval between consecutive
observations
of the longest or shortest noon shadows gave the length of the tropical
year.
The Armillary Sphere
The armillary sphere was doubtless
developed
to increase the accuracy of the results obtained by the gnomon and to
extend
observations to the stars as well as the sun. One of the earliest
armillaries,
a solar instrument, consisted of two bronze concentric rings, several
feet
in diameter, mounted in the plane of the meridian. The inner ring
turned
within the outer ring and carried two small pegs mounted at opposite
ends
of a diameter. The inner ring was adjusted until the shadow cast by the
upper peg fell on the lower peg. An angular scale on the outer ring,
divided
into degrees, indicated the meridian altitude of the sun. Eratosthenes
may have used this type of "solstitial" armillary, instead of a gnomon,
to determine the angle of the ecliptic plane. Another kind of solar
armillary,
with which Eratosthenes was probably familiar, consisted of a single
ring
mounted in the plane of the celestial equator. The times of the
equinoxes,
and hence the length of the tropical year, can be determined with such
an instrument because the shadow of the upper half of the ring falls on
the inner surface of the lower half when the sun is at either equinox.
Armillaries designed for stellar
observation,
such as those used by Hipparchus, were much more complicated. They
consisted
of a number of rings, the largest of which was mounted on a stand and
adjusted
to lie in the plane of the meridian. Two pivot points on its inner rim,
representing the north and south celestial poles, supported and allowed
rotation of a slightly smaller second ring called the "solstitial
colure."
Permanently attached to the solstitial colure was a third ring of equal
size, graduated into degrees, and lying in the plane of the ecliptic.
The
solstitial colure ring also had pivots on its inner rim, representing
the
ecliptic poles, on which a fourth and smaller ring could turn. Like the
ecliptic ring, the fourth ring was graduated into degrees and, in
addition,
enclosed a fifth ring. Provision was made for the fifth ring, which
carried
diametrically opposite sights, to slide within the fourth ring. This
ring
thus remained in the plane of the fourth ring, from which the direction
of sighting was read. With such a device, called a zodiacal armillary (Fig.
2), the differences between the celestial latitudes and
longitudes
of stars and planets could be measured.
The Quadrant
The last Greek astronomer of
antiquity who
contributed to the development of astronomical instruments was Ptolemy
(fl. second century a.d.). Ptolemy discussed in his astronomical
writings
three new instruments: the quadrant, the triquetrum, and the
astrolabium,
or astrolabe.
The principle of the quadrant is
illustrated
in Fig.
3. As it was
originally used, the plane of the quadrant was adjusted to lie in the
plane
of the meridian. Vertical alignment was indicated by a plumb-bob
suspended
from the quadrant's center. Pivoted from this center was one end of a
movable
rod approximately equal in length to the radius of the quadrant. Sights
mounted on the rod enabled observations to be made of stars and planets
as they crossed the observer's meridian, and an angular scale inscribed
on the periphery of the quadrant denoted their meridian altitudes. It
is
not certain whether Ptolemy actually constructed such an instrument or
not. The Arabians, however, subsequently adopted the idea of the
quadrant
and greatly improved upon its design -- in particular,
quadrants
were developed which could rotate about a vertical axis.
The Triquetrum
The triquetrum of Ptolemy performed
the same
function as the quadrant and was devised to overcome the difficulty of
graduating arcs and circles. It consisted of a vertical post to which
two
intersecting rods or arms were hinged, the upper arm carrying sights.
From
a knowledge of the lengths of the arms and the distances between the
hinges,
the zenith distance (or, alternatively, the altitude) of a celestial
object
could be calculated.
The Astrolabe
The astrolabe was one type of
portable solstitial
armillary, modified for stellar observation. Suspended by a small hook
or "eye," the instrument consisted initially of a single ring which
hung
in a vertical plane. Pivoted at the center of the ring was a rod equal
in length to the ring diameter, carrying sights at either end. When
aligned
on a star or planet, an angular scale inscribed on the armillary ring
indicated
the object's altitude.
Arabian Contributions
Following Ptolemy, Greek astronomy
rapidly
declined and terminated with the Arabian conquest of Alexandria in a.d.
641. Although the magnificent library and museum were destroyed, the
Arabs
encouraged learning and for the next 800 years developed an important
astronomical
tradition of their own. Observatories were established at a number of
cities
including Damascus, Cairo, Baghdad, and Meragha. Quadrants of various
types
and sizes were constructed, culminating in an enormous masonry
instrument,
180 feet (55 meters) high, erected in the 15th century by Ulug-Beg at
Samarkand.
Nasir al-Din al-Tusi built the first azimuth quadrant at Meragha about
1260. Actually, this instrument consisted of two quadrants that rotated
on the same vertical axis over a common azimuth circle, enabling the
altitudes
and azimuths of a pair of stars to be measured simultaneously. It is
probably
fair to say that Arabian instruments were more distinguished for their
craftsmanship than their originality. Angular scales on devices like
quadrants
and armillary spheres were subdivided to intervals of 10 minutes of arc
(1/6 of a degree). The astrolabe was developed to a high degree of
complexity
and became an indispensable tool to surveyors and navigators. Its main
use was in the determination of time. By auxiliary circles and scales,
ingeniously incorporated into the astrolabe design, altitude
measurements
of the sun, planets, and stars could be converted to time directly
without
the use of separate tables.
Oriental Contributions
The main stream of Greek and Arabian
astronomical
thought flowed to Europe by way of Spain after the conquest of that
country
by the Arabs in the 11th century. However, tributaries also flowed to
India
and China as the result of extensive caravan and trade routes. Both
India
and China were supposed to have developed elaborate and advanced
astronomies
many thousands of years before Christ. Unfortunately, no records have
been
found which substantiate these claims and the present view is that they
are largely legendary. It is known that the Chinese were active in
matters
concerning the calendar and the prediction of eclipses from
approximately
2300 b.c. until the fifth century b.c., at which time the study of
astronomy
seems to have been
abandoned.
However, the gradual assimilation of Arabian ideas during the latter
part
of the first millennium a.d. led to a revival of astronomical inquiry
in
both China and India. Observatories were again established at many
places.
One of the most elaborate facilities for which reliable records exist
was
the observatory at Peking, founded sometime around a.d. 1260. Most of
the
Peking instruments were of Arabian design. The armillary spheres,
however,
differed from the Arabian ones in that the ecliptic ring was replaced
by
a ring lying in the plane of the celestial equator and a fixed horizon
ring was added. Such an instrument, called an equatorial armillary, has
a number of advantages over the zodiacal models of the Greeks and
Arabs.
In the first place, the equatorial armillaries tend to be simpler
mechanically.
Secondly, they are easier to operate because, at a given location, the
fundamental reference plane (the celestial equator) does not change its
orientation in the sky with time. Finally, unlike the zodiacal
armillary,
the equatorial instrument remains in balance regardless of the
direction
in which a sighting is made. While it is possible that the equatorial
armillary
might be of Arabian origin, most of the evidence supports the view that
it was a Chinese invention.
Medieval Europe
The initial development of astronomy
in medieval
Europe was slow. One of the first observational centers of note was
established
at Vienna around 1450 by George Purbach, who devised a variation of the
triquetrum known as Purbach's Geometrical Square. Some time later
Purbach's
student, Johannes Müller, better known as Regiomontanus, erected an
observatory at Nürnberg. In addition to several modified quadrants
and a few of the first weight-driven clocks, the Nürnberg observatory
possessed a torquetum. This rather unwieldy instrument, thought to have
been introduced by Nasir al-Din al-Tusi at Meragha, consisted of a
number
of nonconcentric disks and rings, which permitted both the equatorial
and
ecliptic coordinates of a star or planet to be observed. Provision was
also made for altitude measurements. Tycho Brahe (1546-1601) had a low
opinion of the torquetum and, by the latter part of the 16th century,
the
instrument had fallen into general disuse.
Tycho Brahe's Instruments
Pretelescopic astronomical
instruments were
brought to their ultimate level of refinement by Tycho Brahe. Under a
royal
charter from Frederick II, the King of Denmark, Tycho established in
1576
the famous observatory, Uraniborg, on the island of Hveen. Uraniborg
surpassed
all previous astronomical centers.
To achieve maximum accuracy, Tycho made
his instruments as large as possible without sacrificing mechanical
rigidity.
One of the largest was the great mural quadrant. This instrument, which
was permanently mounted in the plane of the meridian, had an arc radius
of slightly over 6 feet (1.8 meters). According to Tycho, the angular
scale
inscribed on the quadrant could be read to within 10 seconds of arc
(1/360
of a degree). The sighting arrangement was unusual in that the
individual
sights were not connected by a common radial bar. One sight was fixed
in
position at the quadrant's center in an opening in the observatory
wall;
the other sight moved independently along the arc of the quadrant. As
described
below, the sights were also designed to reduce parallactic effects to a
minimum.
In addition to the mural quadrant, which
measured only meridian altitudes, Tycho made extensive use of two other
large quadrants of the azimuthal type. Both had circles approximately 6
feet (1.8 meters) in radius, angular scales divided to 10 seconds of
arc,
and parallax-free sights.
Included among the major items of
equipment
at Uraniborg were several large equatorial armillary spheres. Al
though used in China at least as early as 1260, the equatorial
armillary
had been entirely unknown in Europe, and Tycho considered himself its
inventor.
One armillary consisted of three steel rings. The first ring was
adjusted
to lie in the meridian plane; the second ring was permanently attached
to the meridian ring and lay in the plane of the celestial equator; the
third ring, called the declination circle, rotated within the celestial
equator about an axis representing the rotational axis of the earth.
Both
the equator and the declination circles were graduated and carried
movable
sights. A small cylinder mounted at the center and perpendicular to the
polar axis served as the fixed objective sight.
Tycho's largest equatorial armillary
consisted
of a graduated declination ring 9¹ feet (2.9 meters) in diameter that
rotated about a polar axis, and a graduated semicircular ring
representing
that part of the celestial equator below the horizon. The latter was
mounted
separately on stone piers and was thus entirely free of the declination
ring. The sighting system consisted of a single sliding sight on the
equatorial
circle and two declination sights mounted at the ends of separate
radial
arms of the declination circle. The radial arms pivoted around a small
cylinder which served as the objective sight. Two independent
declination
measurements of the same object could be obtained by using first one
declination
sight, rotating the entire declination circle through 180°, and then
using the other. Further, because the equatorial semicircular ring
stood
well clear of the sphere defined by rotating the declination circle,
the
declination of objects lying close to the celestial equator could be
measured
-- a feat not possible with the conventional equatorial armillary.
The need for measuring the angular
distance
between any two objects in the sky prompted the development by Tycho of
another class of instrument, which he called the sextant. Although
similar
in principle to the crude cross-staffs used previously, the sextant was
capable of high precision. As shown in Fig.
4, the instrument consisted basically of a graduated arc
representing
the sixth part of a circle and a movable radius. Sights were mounted at
the sextant's center, at the free end of the movable radius, and at one
end of the arc. As originally designed by Tycho, a single observer
adjusted
the movable radius by a screw until the two objects under study were
sighted
simultaneously from the sextant's center. In later models, the roles of
the sights were reversed, and two observers were required for an
observation.
A small cylinder at the "hinge" of the sextant became the fixed
objective
sight, and the sights at the end of the arc and movable radius became
the
viewing sights. The largest sextant at Uraniborg, of radius 5¹ feet
(1.7 meters), was of this type.
It was difficult to measure small
angular
distances with the sextant because of the tendency for the observers'
heads
to collide. One way in which Tycho overcame this problem was by the use
of a special device called an Arcus Bipartitus. As shown in Fig.
5, this instrument consisted of two small cylindrical sights
supported at the ends of a short crossbar. The crossbar in turn was
attached
to one end of a central rod some 5¹ feet (1.7 meters) long. Two 30°
arcs, having the cylindrical sights as centers, were mounted at the
opposite
end of the central rod. Two traveling sights, one on each arc,
completed
the apparatus.
The accuracy which Tycho achieved in his
observations did not result solely from the large dimensions of his
instruments.
Equally important were the angular scales and sighting systems
employed.
Previously, the reading accuracy of an angular or linear scale could
only
be increased by adding more and more subdivisions. Tycho rejected this
procedure as impractical and adopted instead the Method of Transversals
to subdivide his angular scales. This idea, of unknown origin, is quite
elegant in its simplicity and is shown in Fig.
6. In this drawing, the scale divisions correspond to 10
minutes
of arc (1 minute of arc = 1/60 of a degree). A series of dots connects
a given division mark on one side of the scale to the consecutive mark
on the opposite side. In effect, the dots divide the scale interval
into
ten equal parts, thus increasing the reading accuracy of the scale from
10 minutes to 1 minute of arc. The angular scales on Tycho's largest
instruments
were divided directly into minutes; by the use of transversals, a
reading
accuracy of 10 seconds of arc was attained (1 second of arc = 1/3,600
of
a degree).
Before Tycho, sighting systems were
rather
primitive. Both the objective and the viewing sights usually consisted
of a metal plate in which a small hole had been drilled. Alignment was
supposedly achieved if the object under study appeared to be in the
middle
of the hole of the objective sight when seen through the hole of the
viewing
sight. Because of the finite sizes of the holes, however, the sighting
procedure was rather uncertain -- in particular, the condition of
alignment
depended upon the actual position of the eye behind the viewing sight,
an effect which Tycho called parallax. To utilize the inherent accuracy
of his instruments, Tycho devised a simple, virtually parallax-free
sighting
system. Instead of a single hole, two parallel slits were cut in the
viewing
sight. The objective sight consisted of a small cylinder with axis
parallel
to the slits and diameter equal to the slit spacing. Correct alignment
was achieved when a star or planet as viewed through either slit
appeared
tangent to the corresponding edge of the cylinder.
It is interesting to note that, although
Tycho's instruments were probably capable of accuracies within 10
seconds
of arc, such accuracies were not, in fact, achieved. Tycho was
apparently
unaware that the human eye, without optical aid, has a limiting angular
resolution of about 2 minutes of arc. So long as sightings are made by
the naked eye, this value represents the highest accuracy attainable by
any instrument regardless of size. Yet, Tycho's quest for precision was
far from futile -- his ideas and contributions exerted a powerful
influence
long after his death in 1601.
OPTICAL TELESCOPES
The Invention of the Telescope
Although glass had been known to the
Egyptians
as early as 3800 b.c., and the Phoenicians became expert in its
manufacture,
its optical applications were not fully appreciated until medieval
times.
Roger Bacon (1214-1294) was one of the first to investigate the
properties
of lenses and mirrors. The introduction of spectacles took place in
Italy
around 1300 and, by the early part of the 16th century, optical centers
had also been established in Germany and Holland. The first telescopes
appeared in Holland in 1608. Some doubt exists as to the identity of
the
inventor. Both James Metius and Zacharias Jansen claimed the honor, but
Hans Lippershey appears to have been the first to use lenses in
combination.
Galileo first heard of the Dutch invention in the spring of 1609.
Lacking
a detailed description, he set about to discover the principle of the
telescope
himself and, within a matter of weeks, had produced his first
instrument
which he immediately directed to the heavens. There thus began a new
and
exciting era of observational astronomy, undreamt of by Tycho, which
has
continued to the present day.
Galileo made a number of telescopes
ranging
up to 5 centimeters in aperture, 170 centimeters in focal length, and
having
magnifying powers from approximately 8 to 30. All were basically of the
same design, as shown in Fig.
7, and consisted of a plano-convex or double-convex
objective
lens and a plano-concave or double-concave eyepiece. The Galilean
system
gives bright and erect images but has a comparatively small angular
field.
In addition, it suffers from the same major defects as any other simple
lens system, namely, spherical and chromatic aberration.
Spherical aberration arises from the
fact
that different radial zones of a lens, possessing spherical surfaces,
have
effectively different focal lengths. Rays of light which pass through
the
edge of a lens, for example, are refracted to a different focus than
those
rays which pass through its center, resulting in a blurred image. The
effect
is illustrated in Fig.
8.
Chromatic aberration arises because the index of refraction of glass
varies
with wavelength. This means that a simple lens cannot bring all colors
of light to the same focus; the image of a white object, like a star or
planet, appears to be surrounded by a number of colored concentric
rings.
Chromatic aberration is illustrated in Fig.
9.
The Development of the Telescope
The development of astronomical
instruments
from Galileo's time up to the present is a long, complicated, and
fascinating
story, involving the skills and talents of scores of individuals. It is
impossible to include here a complete account of the endless
experiments
in optical techniques that were attempted, of the individual advances
that
were made, or of the hundreds of telescopes, each theoretically
possessing
some unique advantage over its predecessors, that were actually
constructed.
Only the broadest outlines of the subject can be described.
The aberrations present in Galileo's
telescopes
were recognized and subsequent efforts were devoted to their
suppression
or elimination. The task was all the more difficult because the nature
of light itself and the cause of chromatic aberration in particular
were
imperfectly understood. René Descartes, in 1637, suggested the use
of hyperbolic lens surfaces instead of spherical, but attempts to make
such lenses failed. Marin Mersenne in 1636, improving upon a suggestion
made twenty years earlier by the Jesuit, Niccolo Zucchi, proposed a
telescope
consisting of two parabolic mirrors. Again, the problem of making
parabolic
surfaces was considered insurmountable and the idea was abandoned.
Early Refracting Telescopes
Some improvements in the performance
of telescopes
were made later in the 17th century when it was realized that the
effects
of spherical and chromatic aberration decreased with increasing focal
length.
Johannes Hevelius of Danzig and the Huygens brothers, Christiaan and
Constantine,
were among the first to build long telescopes. Hevelius' largest
instrument
was a monster, with a focal length of 150 feet (45 meters). The tube
consisted
of an open V-shaped wooden trough, braced with diaphragm stops, which
carried
the objective lens at its upper end and the eyepiece at its lower
end. The whole structure was suspended from a mast 90 feet (27 meters)
high and was manipulated by a complicated system of ropes and pulleys.
Christiaan Huygens dispensed with the telescope tube altogether and
simply
mounted the objective lens on a platform which could slide up and down
a vertical pole. Observations were made from the ground with the
observer
steadying the eyepiece on a wooden stand. A length of thread connected
the objective lens and eyepiece -- when drawn taut, the lenses could be
aligned and the position of focus found.
Refracting telescopes of long focal
length,
ranging from 20 to 300 feet (6-90 meters), continued to be built during
the latter part of the 17th and into the 18th centuries. Various
attempts,
all more or less unsuccessful, were made to overcome the formidable
difficulties
in operating such unwieldy instruments. One of the most ingenious
proposals
was made by the Englishman, Robert Hooke, in 1668. As shown in Fig.
10, Hooke intended to reflect the light rays gathered by the
objective lens back and forth between plane mirrors before they entered
the observer's eye. A drastic reduction in tube length was therefore
gained
without sacrificing the advantages of long focus. Unfortunately,
Hooke's
idea was never put into practice because of the difficulty in his day
of
making optically flat surfaces for the mirrors.
About 1663, Isaac Newton began his
famous
experiments on the dispersion and refraction of light. Among other
things,
he was the first to differentiate clearly between spherical and
chromatic
aberration. Curiously, Newton held the view that all substances
possessed
the same dispersive power and that it was therefore impossible to
eliminate
or suppress chromatic aberration in any optical system consisting of
lenses.
While this erroneous conclusion no doubt delayed the invention of the
achromatic
lens (which, by using two different types of glass, corrects chromatic
aberration), it had a salutary effect on the development of the
reflecting
telescope, since mirrors were known to be inherently free of chromatic
aberration.
Early Reflecting Telescopes
The reflecting systems of Zucchi and
Mersenne
have already been mentioned. About 1664, James Gregory proposed the
design
illustrated in Fig.
11.
The primary mirror was a concave paraboloid with a hole at its center,
and the secondary mirror a concave ellipsoid. In addition to freedom
from
chromatic aberration, Gregory's design is noteworthy in that it is also
free of spherical aberration as a result of the nonspherical mirror
surfaces
employed. Gregory's attempts to construct this telescope ended in
failure
because of practical difficulties encountered in casting and polishing
the mirrors.
The first person to devise successful
methods
for casting mirrors and polishing them to the correct form ("figuring")
appears to have been Newton himself. In 1668, Newton produced his first
reflector, a scientific toy only 6¸ inches (16 cm) long and having
a mirror diameter of 1¸ inches (3.1 cm). As shown in Fig.
12, Newton replaced Gregory's ellipsoidal secondary mirror
by
an optical flat, which simply diverted the converging cone of rays from
the primary mirror to one side of the telescope tube. Like the
Gregorian,
the Newtonian reflector is free of both spherical and chromatic
aberration.
Newton made his mirrors of speculum metal, a shiny alloy of tin and
copper
somewhat resembling silver in appearance. The copper in the alloy
caused
the mirror to tarnish after a time, and frequent repolishings were
necessary.
It is interesting to note that speculum mirrors were the only kind
available
for astronomical use until approximately 1850 when the silver-on-glass
coating process was discovered.
Another design for a reflecting
telescope
was suggested about 1672 by a Frenchman, Guillaume N. Cassegrain, about
whom very little is known. Although Newton was harsh in his criticism
of
the system, it has come into wide use today. The primary mirror is a
concave
paraboloid and the secondary mirror a convex hyperboloid. As shown in Fig.
13, light rays reflected from the secondary pass through a
hole
in the primary and come to focus behind the primary. In an alternate
scheme,
called a modified Cassegrain, a small optical flat placed immediately
in
front of the primary brings the light out to the side of the telescope
tube and eliminates the necessity of a perforated primary. Like the
Gregorian
and Newtonian telescopes, the paraboloid-hyperboloid combination of the
Cassegrain is free of spherical aberration.
Efforts to improve the techniques of
casting
and figuring speculum mirrors continued during the sixty-year interval
following Newton's death in 1727. John Hadley was the first to devise a
laboratory method for testing the parabolic figure of a mirror. He
placed
a tiny illuminated pinhole at the mirror's center of curvature
and
examined the reflected cone of light in the vicinity of the image. From
the appearance of this cone, Hadley could infer the state of the
mirror's
surface and was thus able to pass, by successive polishings, from a
spherical
to a paraboloidal figure.
Two other 18th-century opticians who
contributed
to the initial development of the reflector were James Short and John
Herschel.
Short produced a large number of excellent Gregorian-type telescopes.
Herschel
was equally prolific in making Newtonian telescopes, although he is
perhaps
best known for his prodigious attempts to cast large mirrors. In 1789,
he completed the largest telescope that had ever been built -- a
Newtonian
with a focal length of 40 feet (12 meters) and a mirror diameter of 48
inches (1.2 meters).
A major event bearing upon the future of
the refractor occurred in 1729 when Chester Moor Hall, a barrister by
profession,
designed the first achromatic lens. Consisting of a concave component
of
flint glass and a convex component of crown glass, the "doublet"
possessed
far better color correction than any of the simple long-focal-length
lenses
used previously. Hall never submitted a claim for his invention nor did
he attempt to publicize it. It was not until 1760 that John Dollond,
who
knew of Hall's work, took out a patent in his own name and began
manufacturing
achromatic lenses commercially. Owing to casting problems peculiar to
flint
glass, the first English achromatic lenses were marred by internal
striations,
were never larger than four or five inches (10 or 13 cm) in diameter,
and
(from the standpoint of light-gathering ability) were unable to compete
with the mirrors being made by Short and Herschel.
This situation, unfavorable to the
refracting
telescope, was vastly improved by Pierre Louis Guinand of Lac Brenet,
near
Geneva, Switzerland. After many experiments conducted during the years
1784 to 1790, Guinand succeeded in casting 5-inch and 6-inch (13-cm and
15-cm) flint blanks of a quality never before achieved and in the
1820's
produced blanks 12 inches (30 cm) in diameter. One of Guinand's closely
guarded secrets was his discovery that a far greater homogeneity in the
glass melt was obtained if the stirring paddles used were made of fire
clay instead of wood.
The 19th Century
From 1806 to 1814 Guinand worked in
Germany
and, while there, was understudied by a young man named Joseph von
Fraunhofer.
Fraunhofer quickly became one of the most skilled glassmakers and lens
designers in the entire history of German optics. His greatest
telescope
was probably the 9¹-inch (24-cm) Dorpat refractor, which was installed
at the Pulkovo Observatory in Russia around 1825. Besides possessing a
superb objective lens, this telescope was unique in that it also
possessed
the first equatorial mounting in the modern sense.
Basically the German, or Fraunhofer,
equatorial
mounting consists of a polar axis which is accurately aligned with
the
rotational axis of the earth. A declination axis, mounted at the upper
end and perpendicular to the polar axis, carries the telescope tube at
one of its extremities and counter-weights at the other. The two
rotational
degrees of freedom about the declination and polar axes permit the
telescope
to be directed to any part of the sky. A great advantage of the
equatorial
mounting is the fact that the polar axis can be continuously driven at
the sidereal rate (the rate at which stars appear to move in the sky)
by
a clock mechanism, thus counteracting the daily rotation of the heavens
and enabling the telescope to track a star automatically. Fraunhofer
incorporated
such a drive in the Dorpat refractor. Visual observations could be made
with greater ease than ever before. When photography was
introduced
into astronomy in the latter part of the 19th century and long time
exposures
became commonplace, the clock-driven equatorial mounting became an
absolute
necessity.
Due largely to Fraunhofer and his
successors,
by 1850 the refracting telescope had become the principal observational
tool at the majority of observatories. Most professionals of the day
felt
that the difficulties inherent in casting large speculum mirrors would
discourage further development of the reflecting telescope and prevent
its widespread adoption. Although one dissenter from this general
opinion,
William Parsons, third Earl of Rosse, succeeded in producing several
36-inch
(91-cm) Newtonians and later, in 1845, a colossus 72 inches (1.8
meters)
in diameter, the making of speculum mirrors remained a tricky and
uncertain
business. A major breakthrough occurred around 1853 when Justus von
Liebig
perfected a method for precipitating metallic silver out of a solution
and depositing it as a thin reflecting film upon a glass surface. In
1856,
Carl August von Steinheil and Léon Foucault, a French physicist,
independently applied Liebig's idea to astronomical mirrors. From this
point onward, with a few exceptions, mirrors were made exclusively of
glass,
a much lighter substance than speculum metal and far easier to cast,
grind,
and polish. Besides these advantages, silver-on-glass mirrors possess a
higher reflectivity in the visible range than speculum
mirrors.
Furthermore, after tarnishing, the original luster of a silver-on-glass
mirror can easily be restored by dissolving the old silver coating and
depositing a new one. In the case of a speculum mirror, however, the
optical
surface itself had to be repolished.
As valuable as Foucault's efforts were
in
perfecting the silver-on-glass process, his most important contribution
to the development of the reflector was a simple technique for
determining
the exact figure of a mirror. Like John Hadley some 200 years earlier,
Foucault placed a pinhole source at the mirror's center of curvature
and
arranged the image to be formed alongside the source. However, unlike
Hadley,
Foucault examined the rays converging to a focus by placing his eye
behind
a knife-edge, which he then slowly introduced into the image. If the
surface
of the mirror darkened uniformly, Foucault knew the mirror was
spherical;
if it did not darken uniformly, Foucault was able to deduce where and
by
how much the mirror surface deviated from sphericity. This technique,
called
the Foucault knife-test, is incredibly sensitive and is very much in
use
today -- bulges or hollows in a mirror surface with a relief as little
as one millionth of an inch are easily detectable. Armed with his
knife-edge,
Foucault was able to produce mirrors with an accuracy of figure never
before
achieved.
Modern Refracting Telescopes
Present-day refractors have changed
little
from the instruments of Joseph von Fraunhofer's time. Possibly the most
important advances made over the past 75 years have been in the field
of
glassmaking. New types of glass have become available which permit the
execution of advanced lens designs, characterized by smaller and
smaller
aberrations. However, even today, chromatic aberration cannot be
entirely
eliminated from a lens system. Refracting telescopes, for example, are
designed at the outset with their intended use in mind. If the
instrument
is to be employed visually, the objective lens is highly corrected in
the
colors to which the eye is most sensitive, namely, yellow and green. If
photography is intended, the telescope is normally corrected for the
blue
and ultraviolet. The two largest refractors in existence, both visual
instruments,
are the 40-inch (1-meter) telescope at the Yerkes Observatory in
Williams
Bay, Wis., and the 36-inch (91-cm) instrument at the Lick Observatory
on
Mount Hamilton, Calif. Both instruments date back to roughly 1890.
Their
equatorial mountings are of the Fraunhofer type and were manufactured
by
the Warner and Swasey Company of Cleveland, Ohio. The enormous
objective
lenses were cast in France and were figured by the famous American
optical
firm of Alvan Clark and Sons.
So long as lenses are made of glass, the
40-inch (1-meter) at Yerkes represents the practical limit in size of
refractors.
Although glass blanks larger than 40 inches in diameter have been cast
during the past 50 years, they are seldom, if ever, sufficiently free
of
internal defects to make satisfactory lenses. Even if an acceptable
blank
were obtained, the resulting lens, supported only by its edge, would
distort
so badly from its own weight as to be useless optically.
Modern Reflecting Telescopes
Large mirrors do not suffer from
these disadvantages.
In the first place, light is reflected only from the front surface of a
mirror and, therefore, the quality of the glass in its interior is
immaterial.
Secondly, a mirror can be supported from the back as well as the sides,
thus reducing the problem of distortion. Further relief from distortion
can be obtained by honeycombing the back of a mirror, thereby
decreasing
its mass. Finally, in all reflectors, the mirror is located at the
bottom
of the telescope, close to the supporting axes of the mounting. It is
therefore
generally easier to counterbalance and to design against mechanical
flexure
in a reflector than in a refractor where a massive lens must be carried
at the upper end of a long slender tube. For these reasons, plus the
ever
increasing demand for greater light-gathering ability, it is not
surprising
that the large reflector has been vigorously exploited.
Many reflecting telescopes, exceeding 50
inches (1.3 meters) in aperture (useful mirror diameter), are in use in
both the northern and southern hemispheres. Most of these instru
ments are Newtonian-Cassegrains in the sense that the secondary mirrors
are interchangeable. In some, the Newtonian form is dispensed with
altogether,
and observations are carried out at the prime focus directly. A few of
the largest reflectors can operate in yet a third form, called a coudé.
The coudé is similar to the modified Cassegrain except that the
optical flat immediately in front of the primary mirror diverts the
light
rays down an opening in the polar axis. The advantage of the coudé
is that its focus is located at the bottom of the polar axis and
remains
fixed in position regardless of the orientation of the telescope.
Elaborate
spectroscopic or photoelectric equipment can be housed separately. Fig.
14 is a schematic drawing of the coudé arrangement.
From 1919 to 1948, the 100-inch
(2.5-meter)
Hooker telescope, on Mount Wilson in California, was the largest
reflector
in the world. The primary mirror was cast by the St. Gobain glassworks
in France and was figured by G. W. Ritchey between 1910 and 1915. The
main
tube is mounted in a rectangular steel frame that forms the major part
of the polar axis. One disadvantage of this type of mounting is that
stars
near the north celestial pole are inaccessible. Because of high
operating
costs and newer technology, the Hooker telescope was closed in 1985.
In 1948, the 200-inch (5-meter) Hale
reflector,
until 1974 the largest telescope in existence, was put into operation
on
Mount Palomar, California. This enormous instrument is the realization
of the dream of George Ellery Hale, a leader in the development of
modern
astronomical instruments. The horseshoe-shaped northern bearing of the
polar axis carries a large fraction of the 540-ton weight of the
telescope
and is floated on a thin film of oil that is forced between the bearing
surfaces at a pressure of about 20 atmospheres. A cage mounted inside
the
telescope tube at its upper end enables an observer to ride with the
telescope
and work directly at the prime focus 55 feet (17 meters) above the
primary
mirror. The Hale telescope can also operate as a Cassegrain or a coudé
with focal lengths of 267 and 500 feet (81 and 152 meters),
respectively.
The 200-inch mirror is made of Pyrex, a
glass having a low coefficient of expansion. The blank was cast in
December
1934 at the Corning Glass Works in New York State and took some ten
months
to cool and anneal. The back of the blank was deeply ribbed, or
honeycombed,
to reduce weight and to provide cells or pockets for the complicated
system
designed to support the finished mirror.
The largest telescope at present is the
236-inch (6-meter) reflector of the Academy of Sciences of the U.S.S.R.
It is situated near Zelenchukskaya, in the Caucasus Mountains, at an
altitude
of 7,120 feet (2,170 meters). The 925-ton telescope was designed by B.
K. Ioannisiani and manufactured in Leningrad. It was put into operation
in 1974, and a new mirror was installed in 1979. The mounting is
computer
controlled and is altazimuth rather than the usual equatorial. The
focal
length is 79 feet (24 meters).
The large reflectors in the United States include the
158-inch (4-meter) instrument of the Kitt Peak National Observatory
near
Tucson, Arizona, installed in 1970, and the 120-inch telescope of the
Lick
Observatory in California, completed in 1959. To observe the southern
sky,
several large telescopes were constructed in the southern hemisphere in
the 1970's. The 158-inch reflector of the Inter-American Observatory at
Cerro Tololo, Chile, is operated by the Kitt Peak National Observatory.
Another large reflector is the 150-inch (3.8-meter) telescope of the
European
Southern Observatory at La Serena, Chile. In Australia, the 158-inch
Anglo-Australian
Telescope (with an unusually wide field of view), was inaugurated at
Siding
Spring, near Dubbo in New South Wales, in 1974. A slightly smaller
telescope
on Mount Stromlo, near Canberra, was already in operation.
No account of the evolution of the
reflecting
telescope would be complete without some mention of the vacuum
technique
developed during the 1930's by R. C. Williams and by J. D. Strong and
C.
H. Cartwright for coating astronomical mirrors. Up to this time,
mirrors
had always been silvered by the chemical-precipitation process dating
back
to Foucault. In the modern method, the mirror is placed inside a
chamber
from which the air is evacuated. Small loops of aluminum wire are
suspended
from tungsten coils installed in the roof of the vacuum chamber. After
a vacuum of the order of 10-8 atmosphere is attained, a pulse of
current
is passed through the tungsten coils, causing the aluminum to vaporize
and to deposit as a thin uniform film over the mirror surface below.
Apart
from the convenience and reliability of the method, aluminized mirrors
possess two major advantages over silvered mirrors. In the first place,
aluminum reflects better than silver in the visible and ultraviolet
range.
Secondly, an aluminized mirror never tarnishes -- immediately upon
exposure
to air, a tough, colorless protective layer of aluminum oxide that is
only
one molecule thick forms over the metallic surface. Needless to say,
aluminized
mirrors are used almost exclusively today.
Schmidt-Type Telescopes
In general, the area in the sky which
can
be photographed by a conventional reflector is rather small. This
circumstance
arises from two factors. First, the long focal lengths of most
reflectors
set initially a narrow limit on the attainable field. Secondly, all
conventional
reflectors suffer to one degree or another from inherent aberrations
known
as coma and astigmatism. These two aberrations conspire to destroy the
quality of stellar images formed at an angle to the optical axis of the
telescope. To put it another way, the quality of stellar images on a
photograph
taken by a reflector deteriorates rapidly with increasing distance from
the photograph's center. In the case of the Hale 200-inch reflector,
for
example, the area at the prime focus in critical definition is only as
large as a postage stamp, which corresponds to an angular region in the
sky measuring approximately 2.5 by 2.5 minutes of arc. Special lens
systems
to correct coma can be designed and placed immediately in front of the
photographic plate, effectively enlarging the usable field by a factor
of 10 or 15. Even so, the conventional reflector remains a narrow-field
instrument.
The need for a wide-angle high-speed
reflector-type
camera possessing excellent image quality over its entire field was
satisfied
by Bernhard Schmidt of the Hamburg Observatory in 1932. Schmidt devised
the basic optical system shown in Fig.
15, which consists of a spherical primary mirror and a thin
nonspherical correcting plate, located at the mirror's center of
curvature.
The spherical primary assures the absence of coma and astigmatism; the
correcting plate is designed to eliminate the spherical aberration of
the
mirror.
Although the correcting plate is
extraordinarily
difficult to make and the focal plane of the instrument is curved, many
Schmidt-type telescopes have been constructed over the past 35 years.
Their
high photographic speed and large angular field have been employed with
great effect in studies of the aurora, meteors, and artificial
satellites.
The largest Schmidt in existence is located at the Karl Schwarzschild
Observatory
overlooking Tautenberg, near Jena, Germany. Completed in 1960, this
instrument
can also be used as a conventional telescope with a quasi-Cassegrain
and
coudé foci. When used as a Schmidt telescope, the light-gathering
element is a 79-inch (200-cm) spherical mirror with a focal length of
157.5
inches (400-cm). The 52.8-inch diameter Schmidt correcting plate
provides
a 4.7 by 4.7 degree angular field.
The second largest Schmidt telescope is
that located at Mount Palomar. This instrument accommodates a
photographic
plate 14 inches square (90 cm sq), corresponding to an angular field in
the sky measuring 6 by 6 degrees. The primary mirror is 72 inches (183
cm) in diameter and the correcting plate, which was figured by Hendrix,
has a clear aperture of 48 inches (122 cm). The National Geographic
Palomar
Sky Survey, the most complete ever undertaken, was compiled from plates
taken by the 48-inch Schmidt.
The Maksutov Telescope
Other forms of wide-angle high-speed
cameras
have been suggested by various workers. One of these schemes was
proposed
by the Russian D. D. Maksutov around 1941 (see Fig.
16). Like the Schmidt, the Maksutov camera employs a
spherical
primary mirror. However, unlike the Schmidt, spherical aberration is
removed
by a meniscus lens instead of a complex nonspherical correcting plate.
Since a meniscus lens is relatively easy to make, the Maksutov system
is
attractive from a practical point of view, and its performance is high.
Stellar Spectroscope
The simplest spectroscope consists of
a glass
or quartz prism or, more commonly today, a diffraction grating placed
in
front of the objective lens of the telescope. Light collected by the
telescope
passes through the prism or grating, where it is split into its
components,
producing a characteristic spectrum.
The use of spectroscopes and
spectrographs
in conjunction with modern astronomical telescopes enables the
astronomer
to obtain more detailed information about various celestial bodies. By
measuring the displacement of the spectral lines (the Doppler shift),
he
can determine the velocity of a star moving toward or away from the
earth.
This displacement of spectral lines also provides considerable data on
spectroscopic binaries, or double stars, which cannot be resolved by a
telescope alone. From the intensities and profiles of the spectral
lines,
information about temperature, pressure, stratification, and chemical
composition
of stars is obtained.
Because of the opacity of the earth's atmosphere,
only
a very narrow range of electromagnetic wavelengths can be studied
spectroscopically
from the earth's surface. High-altitude balloons, research rockets, and
satellites carrying spectroscopic equipment have extended the range to
the infrared and ultraviolet portions of the spectrum and even to the
X-ray
and gamma-ray regions. Radio telescopes using techniques of microwave
and
radio-frequency spectroscopy are employed for wavelengths ranging from
a few millimeters to about 15 meters.
SOLAR INSTRUMENTS
Professional observations of the sun
in white
light are not normally carried out with conventional telescopes. The
large
reflectors gather so much solar radiation that heating of the optical
components
becomes a serious problem. On the other hand, most refractors are too
short
to form sufficiently large solar images.
The main requirement for a solar
telescope
is therefore that of great focal length, just like the refractors of
Hevelius
and Huygens. The difficulties of maneuverability encountered with these
earlier instruments can be avoided by the use of a device called a
coelostat
which produces a beam of sunlight whose direction in space remains
constant.
The concept of the coelostat is not new. It was first suggested in
Hevelius'
time. Later, from 1830 to approximately 1900, the device was brought to
its present level of development by a variety of workers, including
Hale.
The Coelostat
The modern coelostat consists of two
optically
flat mirrors whose centers normally lie in the meridian plane. As shown
in Fig.
17, one mirror
is mounted above the other. The lower mirror is attached to a polar
axis
which is clock-driven at one half the solar rate. The upper mirror is
fixed.
Light rays from the sun fall on the lower mirror and are reflected to
the
upper mirror which, for the case illustrated, diverts the rays into a
parallel
horizontal beam. This beam then passes through a stationary objective
lens,
which forms an image of the sun in its focal plane. The size of the
solar
image depends upon the focal length of the lens. The fact that the
lower
mirror is clock-driven enables the coelostat to "track" the sun
automatically.
Having the centers of both mirrors lie in the meridian plane prevents
rotation
of the solar image.
One difficulty with the horizontal solar
telescope is that air turbulence along the optical path tends to impair
the quality of the final solar image. Most of the major installations
are
therefore built vertically to minimize effects of turbulence in the
air.
The largest solar telescope is the McMath Telescope at Kitt Peak in
Arizona.
An 80-inch (2-meter) mirror at the top of a tower 100 feet (33 meters)
high reflects sunlight 450 feet (140 meters) down a diagonal tunnel to
a 60-inch (1.5-meter) image-forming mirror near the bottom of the
tunnel.
This mirror reflects the light 300 feet (90 meters) back up the tunnel,
where a 48-inch (1.2-meter) mirror reflects the image of the sun into
an
observing room 25 feet (7.5 meters) below ground level. Under the
observing room a shaft 72 feet (22 meters) deep houses several powerful
spectrographs, including one 55 feet (17 meters) long.
The Coronagraph
Another solar instrument, called a
"coronagraph,"
was invented by Bernard Lyot around 1930. This device enables the
corona
of the sun to be studied at any time without waiting for the occurrence
of a solar eclipse. Basically, the coronagraph consists of a
high-quality
refractor in whose focal plane a small disk occults the image of the
sun.
The diameter of the disk exactly equals the diameter of the solar
image,
so that an artificial eclipse is produced, and only the faint light
from
the sun's corona reaches the camera mounted at the end of the
coronagraph.
For good results, the objective lens must be superbly polished and must
be entirely free of any internal defects such as striations or bubbles.
Extraordinary precautions are taken to reduce scattered light by
mounting
a series of diaphragm stops inside the coronagraph tube. Observations
can
only be carried out under the most favorable atmospheric conditions --
clean air is absolutely essential. For this reason, coronagraphs are
normally
installed at high-altitude stations.
The Spectroheliograph and Spectrohelioscope
The solar telescope and coronagraph
are instruments
which operate in the "integrated" or white light of the sun. Between
1891
and 1895 George Ellery Hale developed a monochromatic solar instrument
called a "spectroheliograph" or a "spectrohelioscope," depending upon
whether
the instrument is used photographically or visually. Monochromatic
studies
of the sun reveal far more detail on the solar surface than is possible
to detect in white light.
Hale's device consisted of a coelostat which formed a
small image of the sun on the small slit of a high-dispersion
spectrograph.
A second slit, located immediately below the first slit and lying in
the
spectrograph's focal plane, isolated a narrow band of wavelengths from
the solar continuum. If now the solar image is made to traverse the
first
slit, and a photographic plate behind the second slit is moved at the
same
rate, a monochromatic photograph of the sun is obtained. By placing the
eye instead of a photographic plate behind the second slit, and then
vibrating
both slits in unison through a small amplitude, a monochromatic image
of
part of the solar disk can be seen. The image appears steady because of
the persistence of vision.
A more convenient viewing arrangement,
far
simpler mechanically, was suggested by J. A. Anderson. In Anderson's
modification,
the slits remain stationary and two square prisms mounted on a common
vertical
shaft, one in front of each slit, are rotated at high speed. The
combined
effects of refraction in the prisms, plus rotation, result essentially
in a scanning of part of the solar disk. When the prisms are rotated
rapidly,
the successive scans are blended by the eye and the monochromatic image
again appears steady.
Another technique for observing the sun
in monochromatic light was introduced by Lyot in 1933 and has since
received
development at the hands of a number of other workers. Based upon an
idea
conceived by R. W. Wood in 1914, the device, called a monochromator, is
placed in the light path of a refracting telescope. The monochromator
is
an extremely complicated optical filter consisting of a series of
polaroid
screens separated by quartz plates. The filter functions on the
principle
of the interference of light and can be designed to pass an extremely
narrow
band of wavelengths. Because of this fact, the monochromator
gives
somewhat better monochromatic definition of the solar image than the
spectrohelioscope.
However, one complication in the use of the monochromator is the fact
that
its performance is highly temperature-sensitive, and thermostatic
control
to within 0.1°C. is necessary.
ANGLE-MEASURING INSTRUMENTS
Improvements in the Quadrant. The
evolution
of divided instruments, like the quadrant and sextant, from Tycho
Brahe's
time to the present is almost as complicated a history as the history
of
the telescope. It is therefore impractical to record here each
successive
improvement in instrument design that occurred, or the accompanying
advances
made in machining techniques. As with the telescope, only broad lines
of
development can be followed.
The Telescopic Sight
A significant advance in the field of
divided
instruments was made in the era immediately following Tycho. In 1640
William
Gascoigne, an amateur astronomer from Middleton, England, installed the
first crosshairs made of spiderweb in the focal plane of a refractor.
By
using a positive eyepiece, such as the simple double convex lens
suggested
20 years earlier by Kepler, Gascoigne was able to focus on the image of
a star or planet and the crosshairs simultaneously. In short, Gascoigne
invented the telescopic sight, and for the first time it became
possible
to point a telescope at an object with an accuracy of alignment far
greater
than the angular resolution of the naked eye. Following Gascoigne, the
telescopic sight was adopted on virtually all divided instruments.
The Vernier Scale
Another important development in the
direction
of greater accuracy took place in 1631 when Pierre Vernier invented an
ingenious technique, more sophisticated than the method of
transversals,
for reading a linear or angular scale. The basic principle is
illustrated
in Fig.
18. Vernier
replaced the fixed zero point by a small auxiliary scale. In the case
illustrated,
10 divisions of the so-called vernier scale V equal 9 divisions of the
main scale S. It follows that the interval between divisions on V
equals
0.9 times the interval between divisions on S. When the zero points of
V and S are aligned, as shown in Fig.
18(a), the 1 mark on V will lie to the right of the 1 mark
on
S by 0.1 times the main-scale interval; similarly, the 2 mark on V will
lie to the right of the 2 mark on S by 0.2 times the main-scale
interval,
and so on. Suppose now the main scale S is moved to the right of the
fixed
vernier V by an arbitrary distance, say, 0.6 times the main-scale
interval
as shown in Fig.
18(b).
The zero of the vernier will lie between the zero and 1 marks on the
main
scale and, further, the 6 mark on V will be aligned with the 6 mark on
S. In other words, the numerical value of the vernier mark which
coincides
with a mark on the main scale indicates the decimal part to be added to
the main-scale reading.
Micrometer Scales
Angular scales on modern instruments
may
also be read by using micrometers, in which the decimal part of the
main-scale
reading is indicated by the fractional revolution of a precision screw
of known pitch.
As a result of the advances described
above,
plus improvements in mechanical design and execution, the azimuth
quadrant
of Tycho's time has evolved over the past 250 years into an instrument
now called the theodolite, a more accurate version of the familiar
engineer's
transit. A portable, electronic digital theodolite is manufactured by
the
Nikon Company. The altitude and azimuth scales are engraved on glass
plates,
approximately 3 inches (8 cm) in diameter, which are totally enclosed
within
the instrument and are viewed by an internal optical system. By means
of
a micrometer arrangement, these scales can be read to an accuracy of
approximately
± 0.4 seconds of arc.
The Sextant
The evolution of the ancient
astrolabe is
most interesting. As far back as the latter part of the 17th century,
Newton
proposed a device that he called an octant, which performed the same
function
as the astrolabe. It is not certain whether Newton actually constructed
an octant or not. However, in 1731, an American, Thomas Godfrey, and,
in
1732, the Englishman Hadley had produced working models. This basic
system,
illustrated in Fig.
19,
is the underlying principle of the modern marine sextant. The sea
horizon
is viewed through a telescope and through the clear part of a
half-aluminized
mirror called the horizon glass. A second mirror, called the index
glass,
is rotated about an axis until light rays from the object under study
are
reflected by the index glass to the aluminized part of the
horizon
glass and into the viewing telescope. When properly adjusted, the
observer
sees the celestial object tangent to the sea horizon. A radial arm
permanently
attached to the index glass travels over a circular arc, having the
rotational
axis of the index glass as center, and indicates the altitude of the
object
directly. Special sextants employing artificial bubble horizons have
been
developed for the navigation of aircraft.
The Meridian Transit
It remains to describe the
development of
the great mural quadrants. Just as Tycho regarded his mural quadrant as
the primary standard of precision at Uraniborg, so today, instruments
of
the meridian type play the most fundamental role in positional
astronomy.
The telescopic sight replaced naked-eye sights on mural quadrants after
1640. However, with the greater sighting accuracy that resulted, it was
soon found that mechanical flexure in mural quadrants of conventional
design
introduced observational errors that could not be neglected. In 1684,
Olaus
Roemer circumvented this difficulty by constructing the first meridian
transit. Basically, this instrument consists of a refracting telescope,
equipped with crosshairs, which is mounted on a horizontal axis
oriented
in the east-west direction. The ends of the axis are supported above
the
ground by separate piers on either side of the telescope. Rotation
about
the horizontal axis causes the telescope to move in the meridian plane.
Meridian angles were originally measured by a long pointer moving over
an associated angular scale. Roemer's transit possessed greater
mechanical
rigidity than any other mural quadrant of that time. Later, in 1704,
Roemer
produced an improved version of the transit instrument, called a
meridian
circle. The awkward pointer was replaced by a large circular angular
scale
mounted concentrically on the rotational axis. The scale rotated in the
meridian plane with the telescope, and meridian angles were read
opposite
a fixed zero point.
Around 1730 the last basically new
meridian-type
instrument was developed by George Graham. This device consisted of a
fixed
telescope pointing to the zenith and, because of the virtual absence of
motion of its parts, was capable of extremely high accuracy. James
Bradley
discovered the effects known as the "aberration of starlight" and
"nutation"
from observations taken with a zenith telescope.
Over the past two hundred years,
meridian-type
instruments have been developed to an incredible level of reliability
and
accuracy -- angles as small as 0.01 seconds of arc can now be measured.
Such instruments are usually found in the major governmental
observatories
of the world where they are used to establish, among other things, the
precise positions of fundamental stars and the basic unit of time.
OTHER INSTRUMENTS AND ACCESSORIES
Clocks
Clocks are an essential feature of an
astronomical
observatory, where two kinds of time are kept -- mean solar and
sidereal.
The mean-time clocks are simply high-precision clocks running on normal
standard time. They are used for general purposes, including the timing
of observations. Sidereal clocks measure time by the apparent motion of
the stars. Aside from the fundamental determination of time itself, the
sidereal clock is used for finding latitude and longitude and for
various
other purposes. If the local sidereal time is known, together with the
right ascension and declination of an invisible object, a telescope may
be pointed at the object. An observatory clock is by far the most
accurate
clock made; it is quite large, usually beats seconds, and has a 24-hour
dial. Often it has an electric connection to be used with a chronograph
or with other instruments.
Chronograph
A chronograph is an excellent means
of recording
astronomical observations accurately and permanently. A revolving drum
covered with a sheet of paper causes a pen to trace a continuous line
on
the sheet. The main observatory clock is connected with this device,
and
an electric contact marks off each second. Any series of observations
involving
time, such as star transits, may be run onto the chronograph, and such
signals are recorded as breaks in the otherwise continuous record of
time
on the sheet.
Spectrograph. The spectrograph is an exceedingly
valuable
instrument; indeed, some observatories specialize in research in
stellar
spectroscopy. Photographs made with this device reveal, in the
arrangement
of spectral lines, the elements composing the various stars. (Each
element
always gives lines spaced at definite intervals in the band of
electromagnetic
radiation.) Such photographs may be made in a few minutes or in several
hours, depending upon the star's brightness.
In the spectrograph, either a prism, a
train
of prisms, or a grating of thousands of fine lines very close to one
another
is used to separate the star's light into its spectral colors. The
light
enters the instrument as it emerges from an optical telescope through a
slit only a few thousandths of a millimeter wide, passes through a
collimater
lens where the rays become parallel, then through one or more prisms,
and
finally through another lens which focuses the spectra on a
photographic
plate. If the photographic plate is replaced by an eyepiece so that the
spectra may be viewed directly, the instrument becomes a spectroscope.
As used on large reflecting telescopes,
the spectrograph is a large and complicated apparatus. It has special
lenses
and prisms that are transparent to ultraviolet radiation. The spectral
colors are not of special importance, for it is only the positions of
the
vertical lines crossing the spectral band that are significant. On each
side of a stellar spectrum, a comparison spectrum made from a
laboratory
arc light is recorded for positive identification of the lines from the
star. The arc spectra are frequently made under special conditions,
such
as pressure, increased to provide astronomers with a clue to the
physical
condition of the star. (See also Spectra;
Spectroscopy.)
Comparators
The comparator, or blink microscope,
is used
for the examination of photographic plates taken of the same region of
the sky at different times. Two plates are exposed to the eye in rapid
succession by the movement of a lever. Changes in the configuration of
the objects on the plates, such as the movement of a suspected planet,
are detectable by their relative motion, or new objects become apparent
by their alternate appearance and disappearance. The device essentially
consists of a microscope, prisms, lenses, standards to hold the plates,
and illumination for the plates. Other instruments are the
stereocomparator,
to measure rectangular coordinates; the spectrocomparator, to measure
the
displacement of spectral lines; and the coordinate measuring machine.
Photometers
Photometers are light-measuring
instruments
with which to measure stellar magnitudes or the difference of magnitude
between two stars. The wedge photometer is the simplest type used in
visual
photometry. A wedge of dark glass is inserted at the focal plane of the
telescope and adjusted until the intensity of the star equals that of a
previously selected standard. The wedge is calibrated, and readings may
be made from it directly. In the polarizing photometer, the apparent
brightness
of a star and that of a standard are equalized by passing their light
through
a polarizing-prism system.
In photographic photometry, the brighter
the star image on a plate the greater the stellar magnitude. One method
of obtaining magnitudes is to compare the image of the star of unknown
magnitude with images of nearby stars of known magnitude. Graduated
scales
of star images are also used. The photoelectric photometer measures
objectively
and records photographically the blackening of the photographic plate.
(See also Photometry.)
Thermocouple
The thermocouple is an extremely sensitive instrument used to measure the heat radiated from a celestial body. It utilizes the junction of small pieces of unlike metals, such as platinum and bismuth, which are connected to a galvanometer. The thermocouple is placed at the focus of a large reflector, and the heat from the star or planet causes a small electric current to be produced. The latter is proportional to the intensity of heat from the celestial source. The device has to be vacuum-enclosed to prevent the escape of heat. (See also Thermoelectricity.)