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In [1] and [2] we have proposed a new multitemporal theory of relati-
vity, according to which at strong gravitational fields in natural phenomena
new timelike variables begin to play a part. These variables allow to avoid
some singularities inherent to the general theory of relativity.

We have considered in [3], [1] and [2] the static case with spherical
space symmetry in the five-dimensional Riemannian space with the signature
41, +1, +1, —1, —1. The line element of this field can be written
in the form

(1) —ds?= gpdxidx*= —e (ix?)?—ee(dxP)?
+r(df2-sin2 0de?) e+ dr?, i, k=1,...,5.

v, o and 4 are functions of » only and tend to zero when r grows to infi-
nity. Our co-ordinates are

(2) Xl=r, x2=0, xP=p, x'=cft, XS=c

{, — Einstein’s relative time; ¢y, ¢; — characteristic constants of our thenry;
t; is a new time manifesting according to [4] its action in very mighty
gravitational fields. According to (3], {1] and {2} this new {ime will tlay a
part at very stiong gravitational fields, for example in the vicinity of
Schwarzschild’s sphere. ¢; and ¢, are conrected by the equation

(3) 53 C4.

The generalized Einstein’s gravitational equations for the five-dimensional
Riemannian space have according to [1] and [2] in the case ol vacuum
the form

(4) Rix=0, i, k=1,2,...,5.
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We obtain from (1) and (4) the relation
(5) ¢ =, a=const.

From (1), (4) and (5) one gets the equations

(6) 2 (@ ar)P=0,
@ ei=1-} 5 (1 +-ap'—27],
(8) o zv'[:—-{-} (« -[—rz)v'—i’)] =0.

a is a constant expressing the influence of the fifth dimension on the gravi-
tational field. According to [3] it manifests its existence especially in the
regions where Schwarzschild’s metric becomes singular.

For a=0 equations (6), (7) and (8) have the exact solution

(9) W=t = Ay, k=const,

which is Schwarzschild’s solution if we set

(10) K=2m,

2
4

J — Newton’s gravitational constant, m — the mass of the central body with
spherical symmetry.

We assume

K=" _y,
£y
K — radius of Schwarzschild’s sphere.

At great distances from Schwarzschild’s sphere, r3-1, the solution
of the system of equations (6) — (8) must differ very little from Schwarz-
schild’s solution (9), as this solution gives the Newtonian potential as well as
the three effects of Einstein’s general theory of relativity, On account of
this we assume as boundary condition that for r>1 the solution of the
system (6) — (8) for +' is equal to +' from (9), i. e. for r>1

(11) v from system (6) — (8)=+" from (9).
From (6) and (8) we get
(12) v'=—2v |+ (20 a4 arvy)|

According to the investigations carried out in [3], @ must be negative
if the solution of the system (6) — (8) should be reqular on the Schwarz-
schild sphere. From the effect of Dicke follows (cf [4])

(13) a~—0.1.
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(The effect of Dicke refers to the influence of the oblateness of the
sun on the motion of the perihelion of Mercury.)

For a=—0.1 we (Jordan Denev and myself) integrated equation (12)
with the boundary condition (11) using the computer of the Computing
centre of the Mathematical Institute of Bulgarian Academy of Sciences [5l.
In [5] we obtained the following result: the solution for » of the equation
(12) at a=—0.1 is regular for oo>r>0. At r=0 we have a pole. ¥'(r) is
an increasing monotone function for r—0.

From the regularity of » in the interval 0<{r<{oo follows according to
equation (6) the regularity of 1’ in the same interval. But then the integrals
y and A shall also be regular in this interval. In this way we come to the
exceptionally important result that the five-dimensional field given by the
quadratic form (1) at a=—0.1 is regular for the whole region 0<lr<lce.

We accept the generalized Galilei’s principle of inertia: a free particle
moves along a geodesic in the Riemannian space. The equation of the geo-
desic in the five-dimensional Riemannian space has the form

i i &
(14) Ao,k 1=1,2,3, 4, 5.

I}, — Christoffel's symbols. For i=2 we get from (14) according to (1) and
(2) (cf. [3] and [4])

e 2 dr 4o, dg\2
(15) a4 TF ds—E—schosB(--dS] =0

If the particle moves initially in the plane 6=n/2 then the initial con-
ditions of movement are df/ds=0, cosb=0.
From (15) follows that
™ _ o
as?
Ditferentiating (15) we get
%0 @0
Eﬁf: ] _ds_l = 0, .
This shows that a particle originally moving in the plane 6=x/2 will conti-

nue to do so throughout its motion.
Equations (14) for i=1, 3, 4, 5 can then be written in the form

d2r 1 ., dry® . fdeiz, 1 . dety® 1 ; dxb\2
! - By [ e o=l [ T = po—ig | =
(16) dsz‘[2"(ds) "_"(as)""ze W(dsJ—!_Qe G(ds) 0,

dp 2 dr dp
(17) @ T as as =0
dixt ,drodxt
(18) “ds? Y a5 @ =
dexd , drodxb
(19 R

The last two equations can be immediately integrated and we obtain

(20) —{fﬁ-—: Dye,
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dib
(2]) _dxs_:Dﬂe_Q!
D,, D, — constants.
Instead of integrating equation (16) we can use equation (1) which here
plays the part of the energy integral. It gives us

, f dxd L dxdag de §2 dry?
(22) —€ (_'ds_J _ei('_ds ) Trg(ds_) l-e [ds) =—L
~ Let us consider the case of radial motion
p deg
(23) 2 =0.
From (20), (21), (22) and (23) we get
(24) —Dﬁrudgaw+@(g)ih~L

From (5) and from the condition that the metric for r—co must be
pseudo-Euclidean (with signature 41, -1, +1, —1, —1), we get

(25) o=a.
Then from (24), (20), (21) and (25) we obtain

fdr \2 . . .
(26) (EE ) — "“-n‘.?_"‘—?— Dlz e—v—/,__'_ Dg E_(”'_"',
2

27 dr 2_. _ 1 Dy —j w—i, D_z_ 2y —ay -3
(27) (Eﬂ) = D? R D2 e ,

dr ¢ 1 Zar—i D% 2ov—y—5 1 par—i
(28) (d—x%) =__-D§ &2 “+b§ e? il ‘.
From (6) and (7) we get
(29) ¢:1+grpa+@w+%m@vy

Consequently, for a=—0.1, ¢* is regular for the interval oo >r>0 as v
is regular in the same interval.
From (26) one obtains

+ gi:_ =(—e-*}| D}ﬁ e D2 gmar 1)1
r ‘}_ __!
(30) 8= fe “(—1 +DY e+ D2e—) 2dr-+ const

and from (27) and (28)
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31) +x4(r)= e’ [—-D§—+e—"+-b%e-uf] ? dr-const,
1 1

d) 1 D? =

¥ .

4= 2 pler—i e?:wv—r—.t_]_eav-—-.i 2

[ E% Ef! ’

r i o
oy 1

1
D [
(32) ixﬁ(r)=fe ? (-—1—2—{——?3—?—1—3—“') ? dr+-const.
: D Dy

The function e*2 enters as factor in the integrand of the integrals (30),
(31) and (32). The same function is real if

(33) e =0.
We find from (29) the value of 7 for which e*=0
I+-;—ri2(1+a)v'+%ar(v’)2]20
or
(34) 1+(1+a) &+ aff=0,
where we have set n/'=¢.
For a=--0.1 from (34) we obtain the quadratic equation

(35) 404+36:—g2=0.

The roots of (35) are & =37.09 and &=—1.09.

According to [5] 7v'=£>0 for co>>r>0, consequently only the first
root & will be relevant for our problem. From Table II of [5] we see that
at r=0084, »' =440.85244, r'=37.0314<¢,. For r=0079, »'=469.80171,
rv'=387.1142>F,. For all values of r>0084 r'<§ and for all values of
r<0.079 r'>&,. Consequently e:>0 for co>r>0.08.

In the same interval et? has real values.

The value r=0.08 is, of course, connected with the accuracy with which
the calculation by the computer is performed. It is quite possible that at a
finer step of the calculation this boundary value will move nearer to the
pole r=0. This is obvious from the fact that in Table I of [5], where the
calculation is carried out at a 10 times greater step, the boundary value for
which e*=0 is r=0.599.

We assume that for ordinary particles and for photons which move in
the central symmetric gravitational field dx5/ds=0, i. e. according to (21)

(36) D,=0.

I we have in the beginning of motion D,=0, then according to the
integral (21) we shall have while the motion lasts dx8/ds=0, i, e. the mo-
tion will be four-dimensional in a five-dimensional gravitational field which
ditfers essentially from Schwarzschild’s four-dimensional field.

41



Note. Our assumption that in the beginning of the motion of an ordi-
nary particle dx;=0 and D,=0 does, of course, not mean that the line
element is in general four-dimensional. There exist according to our theory
particles for which D,4-0. The interesting problem of the motion of a par-
ticle with D,==0 will be considered afterwards. We can, however, assume that
for ordinary particles holds true (36).

Inserting (36) in (30) and (31) we obtain

. T2 1
(37) +s(r)= f e? (—14+D? e+ ? dr--const,
Ty
T b
38 +xir)=[e? [ Lo ® dr-+const.
2

For r=1 our solution differs very little from Schwarzschild’s solution
and we can set

i1
(39) e=et=1——

for r=1.

Let us assume that the fall of the test body starts from r=r,>1. We
accept moreover that for r=r, dr/dx*=0, i. e. at the beginning of the fall
the radial velocity (and also the tangential velocity) is zero. Then from (27)
and (39) we get

1
(40) Df:l...r_c.

With this value of D? (37) and (38) get the form

rog 1
(41) iS(”)=f€E‘—1—E-(I—%O)e-’w ? dr4-const,
fy .
. 2 1 o1 }—l
7 ’ N
(42) ix*(f)=f€2 E[ 1—!—(1—5)6 | “dr+ const.
o fc

According to [5] Tables I and 1I +/(r) is for r—0 an increasing mono-
tone function which has no singularity at r=1. For r=1, however, »/(7)
differs very little from Schwarzschild’s solution (9) for K=1. For r=1 »

likewise will differ Ilittle from Schwarzschild’s solution v:ln(l—%]- For

oco>>r>] the function v=ln(1—%) is negative and its absolute value

increases at r—1. For r—1 In(l ——l)—»—c.\o. Consequently, the solution of

equation (12) for r=1 must be negative and its absolute value must increase
for r—1. But as »' is an increasing monotone function for r—0, so the solu-
tion » of (12) cannot have singularity for r=1, but its absolute value must
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increase for r—0. But then e~ will be an increasing monotone regular fun-
ction in the interval co >r>0 for r—0. The expression

(43) —14{1=1 e,

which figures in the integrals (41) and (42) for r=1, is approximately

equal to
1
1 ——
(44) —1+-_’f.
1—-—
;
The last expression is for r<r, positive. When r—0 e— grows, consequently
the expression (43) remains at r—0 positive. (At r=1 (43) has no singularity
in contrast to (44).)

Accordingly, in the interval co>r>>0.08 all factors in the integrand
expressions of (41) and (42) are bounded regular functions. The same also
holds frue for the integrals themselves. In this way we have proved that
the proper time of falling s(r) as well as the time measured by a far away
observer x¥(r) of a test body from the point r=r, to the vicinity of the
pole r=0 (more precisely to r=0.08) is finite. The point »=0.08 is connect-
ed with the accuracy of the calculation performed by the computer using
the step 0.005. If we choose a finer step this point will move nearer to the
pole r=0.

For the photons which move with the velocity of light we shall
assume likewise D,=0. For motion with the speed of light ds=0, so
that by (20)

5

(45) D, =o0.
Inserting (45) in (37) and (38) we obtain
(46) s()=0,
r }_":‘
(47) ix‘(r)=fe ? 2dr+c0nst.

We can deduce equation (47) according to the footnote on page 127
of [6] directly from the equation of the geodesic (14) substituting in it the
parameter s with some appropriate parameter p. '

For i=2 we get again d9/dp=0, 0==/2. With these values we obtain
for i=3, 4, 5 the equations

(48) T E =0,

(49) %ﬁpf%%‘:o’

(50) f:;-i-o’ %‘fg=0.

The integral of “energy” (22) obtains here the form

60 e e e ] e (5] o
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From (48), (49) and (50) we get the integrals

de K,
(52) a‘P— = _!'2 L
(53) =D,
(54) ‘f;; =D,e—e ,

Ky, D,, Dy — constants of integration.
But as light moves with the velocity of light in the four-dimensional
subspace of Ryyy, dx®*=0 holds true. Thus we get from (54)

(55) D,=0.
We consider the case of radial motion of light rays
dey
(56) 5 =0.

From (51), (53), (54), (55) and (56) we get
D (5]
or

(57) —Dlerte (L) Dze=0.

From (57) we obtain

{chodk] ¥y
i.vg(.»'):fe2 : dr-const.

But this is exactly equation (47).

From equation (47) follows that the fall time of a photon, measured
by a far away observer, in the gravitational field of a point mass starting
from r=r, to the vicinity of the gravitational centre (r=0.08) is finite.
(We assume that the gravitational radius is equal to 1.)

Consequently, a star which has collapsed under its gravitational radius,
remains observable for a far away observer, contrary to the now generally
accepted opinion.

Let us consider this question somewhat more in detail. We consider a
number of similar atoms vibrating at different points in tre region. Let the
centres of gravity of the atoms be for a given interval of time 7, at rest
in our co-ordinate system (7, b, ¢, f,, ;). The test of similarity of the atoms
is that corresponding intervals should be equal, and accordingly the interval
of vibration of all the atoms will be the same.

Since the atoms are in rest we set dr=0, d6=0, d7—0, dx5=0 in the
interval (1). The last condition dx®*=0 shows that the atoms do not move
in the direction of the new dimension x5 i.e. in this case we disregard the
influence of the new time # on the atomic processes. Then we get from (1)

(58) ds?=er(dxiR=ecldf?.
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Accordingly, the times #, of vibration (or the periods #, of the vibra-
tion) of the differently placed atoms will be inversely proportional to 2,

For r>1 we have e'-"2~]/1—;-- For r~1 and even for r—0 e&*? is

different from zero and consequently a far away observer will be able to
perceive the spectral lines belonging to the light radiated from atoms piaced
on the Schwarzschild sphere and even deeply beneath it.

APPENDIX

According to tables I and II in [5] the function »' increases boundlessly
at r—0. It is worthwhile to investigate the pole of the solution » of equa-
tion (12) at r=0. For this purpose we develop » in the series

(59) y':“_:i_:_ao_}_alr_i_aerﬂ_i__ -
From (59) follows
(60 vim = a2

Substituting (59) and (60) in (12) we obtain
(61) —'L;Tl+a1+2agr+---=-—2 (‘%+ao+a1r+aar’+--- )

X{%A—-:— {2(1 +a) (“:1 +ay-ayrf-agr? 4. - )

1 -1, , 2
+_2_ar(£}_l_'-_an‘."alr+agrs+' - ) ]}

Comparison of the coeilicients before 1/2 gives
(62) taa_2{(14a)a,+1=0.
The roots of equation (62) are

63)  (a-pa= 7w VT atar=2 (=1 Vi FaT d)

As »' increases at r—0 it is clear that a_,>0. Consequently at a=—0.1
we shall have

(64) a-y=2(—1—a— Jl+aFa)>0.
For r—0

(65) o2 (clea—\1TaFad) L,

(66) r~%(——l—a—-\/l4mi‘)lnn

In this way we have determined the character of the pole of our solu-
tion » of equation (12) for r=0.
I wish to thank prof. Ivan Nedelkov for some stimulating discussions,
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MOKA3ATEJICTBO, UE BPEMETO, H3MEPBAHO OT JAJIEYEH
HABJIIOJIATE/, 3A KOETO EJHO NPOBHO TSJIO MAA
B LIEHTPAJIHO CUMETPUYHOTO IOJIE HA JIBYBPEMEHHATA
TEOPUSI HA OTHOCUTEJIHOCTTA U UJIBA BJ/IM3KO
10 LUEHTBPA, E KPAHHO

H. Kaauguu

{Pesiome)

B peauna or paGoTH, UMTHpaHH B Hacrosmara paGoTa, aBTOpPBT pas-
raeXcia eiHO NeTMepHO 060OUleRHe HAa ARHINAfiHOBUTE rPaBHTANHOHHH ypaB-
HeHnsi, KaTo PUMaHOBOTO NeTMepHO NMPOCTPAHCTBO MMa curamatypa 3,2. B coe-
PUYHOCHMETPHYHMS CAyyalf Te3M YPaBHEHHS MOraT CPaBHUTEJHO JECHO Aa
Ce MHTErpHpaT BHB BHJ Ha eJeMeHTapHM (YHKUMH MIH € TIOMOWITA HA
eNeKTPOHHH CMeTauHn MawueW. Ha roasmo pascrossme oOT cdepara Ha
Illsapumnny HOBHTe pellleHHs NPEMHHABAaT B pellleHHATa Ha LIpapmmuan.
HoBuTe pellieHHs 3aBHCSIT OT €lHA KOHCTAHTA, KOSITO ce onpejc’s OT edexra
Ha Jluke, cBbp3aH ¢bc chiecHarocTra Ha CABHIETO ¥ MNPEMECTBAHETO Ha
nepuxenns Ha Mepkypu#i. Maxoxnaiku OT NPHHLHNA, Y€ cBOGOJHOTO JBHXKE-
HHEe Ha eJiHAa MaTepHaJHa TOYKA ce H3BBPILIBA MO reofesHyHa JHHHA B NeT-
MEPHOTO NPOCTPaHCTBO, aBTOPBLT MONYYaBa MbPBHTE HHTErpanH Ha ABHXMKE-
HHETO OT ypaBHEHHeTO Ha reojesnusata auaus. Karo ce orpannyasa ChC
cnemuanHusa caydail Ha pPajua’HO JBHXXEHHE, AaBTOP'BT N0KA3Bd, Y€ BPEMETO HA
najadeTo Ha eHO Npo6HO TAM0 B CPepUYHOCHMETPHYHOTO NOJE A0 OKOJIHO-
CTTa HA leHTbPa € KPailHO 3a pasiMKa OT TeOpHsATa Ha AWHIUIAiH, KBLETO
ToBa Bpeme e Ge3kpaino roasMo. B caydas craBa ayma 3a BPEMETO, MEPEHO
oT naneven HaGaioaaren. Tosn pesyiaTaT e MHOrO BaXeH, ThA Karo TOH
noKa3ssa, ye €JHO TAAO0, KOJANCHPAIO NOJ CBOS rPaBUTAIHOHEH pajHyC, OCTaBa
HaG/iofiaemMo 3a aaneyer HaGawojaren,
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IOKA3ATEJILCTBO, UTO M3MEPEHHOE JAJIEKUM
HABJIFOJTATEJIEM BPEMSY, 3A KOTOPOE ITPOBHOE TEJIO HAﬂﬁET
B LIEHTPAJIBHOE CUMMETPUYHOE I1OJIE JBYXBPEMEHHOK
TEOPUHU OTHOCHTEJBHOCTHU U IMPUXOJUT BJIM3KO
K LUEHTPY, $IB/ISETCH KOHEYHbBIM

H. Kaauyun

(Peaioue)

B paze pafot, UMTHPyeMBIX B HAcTOsW(eH cTaTbe, aBTOP PacCMaTPHBAET
naTUMepHoe 06001(eHue TPAaBUTAIMOHHBIX YPaBHeHWH OJHHIITeAHA, NpHUEM
PMMaHOBO NATHMEPHOE MPOCTPAHCTBO MMeeT cHrHaTypy 3,2. B cdepuyno cum-
METPHUHOM CJy4ae 5TH YDaBHEHHS MOXKHO CPABHHTENBHO JIETKO HHTErpHpO-
BATH B BH/AE BSJEMEHTADHBIX (YHKIOHUH UMM C MOMOIUBIO 3MEKTPOHHO-CYLTHBIX
mawud. Ha Goawiom paccroanud OT cdeps [lIpapnuiuibjia HOBBIE pellleHHH
nepexoxdr B pewends [llBapumuabjga. HoBble peilieHHs 3aBUCAT OT KOHCTAHTHI,
KoTopas onpenensercs spdexrom Juke, cBA3AHHBIM CO CXATHEM ¥ IIOJIOCOB
Connya u cmeineduem nepurenus Mepkypus. OcHOBHBAACH HA MPHHIMIE, YTO
cB00OJHOE JBHXEHUE MATEPHANHLHOH TOUKH B MATHMEPHOM NPOCTPAHCTBE Npo-
HCXOJHUT [0 reo/le3HYeCKON JMHHH, U3 ypaBHEHHA re0/1e3UYecKOH JMHHH aBTOP
[OJYYAET NePBble WHTerpanbl ABH:KerHd. OrpaHUYHBAsACH CNELHANBHBIM CJaYyYaeM
panManbHOrO [BHXKEHHS, ABTOD INOKA3blBAaeT, YTO BPeMA NafieHMA NPOGHOro
Tena B cdepUYHO-CHMMETPUUHOM TOJe N0 0OMACTH LEHTPA KOHEYHO, B OTJHYHH
OT TeOPHH IfuHINTeHHa, re 3T0 BpeMs GecKOHeYHO BeNHKO. B JaHHOM cnyudae,
peub MIET O BpPeMEHH, H3MEPeHHOM JaJeKuM HaOmogateneM. JTOT pe3yibTar
OueHh BaXKEeH, TAK KAK MOKA3LIBAET, UTO TeN0, KOJANCHPOBAHHOE MOJ CBOHUM
FPABHTALMOHHBIM PafHycoM, OCTaercd HaG/ofaeMbiM AAA Jalexoro Habawo-
jparess.
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