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Abstract. Some of the galaxies have regular magnetic fields which are generated by the
dynamo mechanism. It is based on joint action of differential rotation and alpha-effect.
For some objects it is possible to have the field reversal, when it has opposite directions
in different regions of galaxy. The reversals can be described by the nonlinear equations
of the galaxy dynamo theory. We have studied this process using no-z approximation for
the magnetic field. At first we took the simple one-dimensional model, which allows us
to make some asymptotic estimates. Some analytical expressions for small values of the
turbulent diffusivity coefficient are given. After that we model the field numerically, and
describe the reversal evolution for realistic values of parameters. According to all these
approaches, the reversal can be generated during the first period of the magnetic field
evolution. After that the reversal moves with some velocity of order of 1 km/s.
Key words: magnetic fields, galaxies, dynamo, reversals

Introduction

Magnetic field in spiral galaxies have been studied for several tens of years.
First estimates for the field were based on the spectrum of the synchrotron
emission (Ginzburg 1959). Different observations, mostly connected with
measuring the Faraday rotation of the polarization plane of the radiowaves,
strongly proved that several objects have magnetic fields of several micro-
gauss (Beck et al. 1996; Arshakian et al. 2009). The magnetic field consists
of two parts: regular one, which has lengthscale comparable with the size
of the whole galaxy, and random magnetic field which has the value of the
same order of magnitude, but it is associated with small domains compa-
rable with the turbulent cells.

From the theoretical point of view, the regular field evolution is de-
scribed by the mean field dynamo theory (Donner & Brandenburg 1990).
The magnetic field of most of the galaxies lies in the equatorial plane, and
it has two main components: radial and angular one. The field generation
is based on joint action of alpha-effect, characterizing the vorticity of the
turbulent motions, and the differential rotation (connected with the non-
solid rotation of the galaxy). The alpha-effect transforms the angular field
to the radial one, and the differential rotation transforms the radial com-
ponent to the angular one. Working jointly, these effects also make the field
value grow. They compete with the turbulent diffusion process which tries
to make the field decay. So the field generation is a threshold process: it
can grow only for some values of the parameters, when differential rotation
and alpha-effect are stronger than the differential rotation (Arshakian et
al. 2009).

Usually the magnetic field is mainly angular. The dynamo equations
allows the field to have each of two opposite directions (”clockwise” and
”counterclockwise”), and the structure of the field in each galaxy depends
on initial effects. Sometimes it is possible to have two different regions
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in one galaxy, where the field can have different directions. Such struc-
tures are called magnetic field reversals (Moss et al. 2012, Moss & Sokoloff
2013). There is a thin transition layer that connects the parts of the galaxy
with different magnetic fields. Nowadays there is a strong evidence that the
magnetic field in the Milky Way has such reversals: the observations of the
rotation measure show that the field in the Sagittarius arm is opposite to
the field in the Carina arm (Han et al. 2006, Van Eck et al. 2011, Beck
2011, Andreasyan et al. 2018). It is quite possible that the transition layer
is quite close to the Sun, but the observations through the disc are much
more difficult than the ones for the external objects.

Mathematically, the reversals of the magnetic field can be described
as contrast structures which are well-known in mathematical physics, espe-
cially for the nonlinear parabolic equations (Butuzov et al. 1995, Bozhevol’nov
& Nefedov 2011, Nefedov & Davydova 2013). The saturation of the mag-
netic field growth is described by nonlinear terms in the dynamo equations
(Moss & Sokoloff 2011), the equations have two stable solutions and there
can be a transition layer connecting them. According to the contrast struc-
ture theory, the transition layer can move with some small velocity con-
nected with the parameters of the interstellar turbulence (Bozhevol’nov &
Nefedov 2011).

The equations of the magnetic fields of galaxies are usually written
using the no-z approximation (Mestel & Subramanian 1993, Moss 1995). It
is based on the fact that the galaxy disc is very thin, so we can change the
z-derivatives of the magnetic field by algebraic expressions or reconstruct
them from the solenoidality condition. These assumptions allow us to reduce
compicated three-dimensional Steenbeck – Krause – Rädler equation to a
system of two equations which are much more convenient for analysis.

The reversals of the magnetic fields in galaxies have been studied nu-
merically in some previous works (Moss & Sokoloff 2013, Moss et al. 2012).
However, the numerical results usually cannot help to understand in details
the mechanism of generation. Also the possibility of the movement of the
transition layer is not completely clear basing on these works. The wave-
fronts of the field have been studied analytically (Vasil’eva et al. 1995, Moss
et al. 2000, Mikhailov 2015), but the models were very approximate. The
initial system of equations is reduced to simple problems, and the velocity
of the movement of the contrast structure strongly depends on the way
of reducing. Unfortunately, now we do not have any analytical formulae
which could describe the velocity of the transition layer for the system of
equations (even approximate).

Here we present a semi-numerical approach for studying the magnetic
field reversals in the galaxies. At first we give ideas that allow us to suppose
some principal laws for main parameters of the transition layer. It is based
on the spectrum of the linear operator describing our problem for small
values of the field, and the projections of the solutions on the eigenvectors
are studied. We also explain that the magnetic field reversal moves with
the velocity proportional to the coefficient of the turbulent diffusivity.

After that we study the magnetic field structures numerically. We dis-
cuss the initial conditions that allow us to obtain the magnetic field with
changing direction. We study the magnetic field reversal evolution for a
wide range of the parameters, and after that we give an approximate for-
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mula that describes the connection between the velocity of the transition
layer and the kinematic parameters, such as angular velocity, turbulent
diffusion coefficient and the alpha-effect.

The velocity of the wavefront is proportional to the turbulent diffusion
for weak dissipation effects. As for another parameters, the magnetic field
growth depends on the square root of product of angular velocity and the
alpha-effect coefficient. It lead us to the idea that the reversal can move
with the velocity connected with the field growth which contains the same
combination (Mikhailov & Modyaev 2015).

1. Basic equations

The magnetic field of galaxies demonstrate two different scales. Firstly,
there is a small-scale magnetic field which has the typical length of changing
of 50–100 pc. It is thought to be generated with its own specific mechanism
(Subramanian 1998) connected with the turbulent motions of the interstel-
lar medium. There is also the large-scale component of the field, which has
the characteristic lengthscale comparable with the radius of the galaxy and
it is described by mean-field dynamo mechanism (Ruzmaikin et al. 1988;
Brandenburg 2018) based on joint action of alpha-effect and the differential
rotation.

The evolution of the magnetic field is described by Steenbeck – Krause
– Rädler equation (Steenbeck et al. 1966):

∂B

∂t
= ∇× (αB) +∇× (V ×B) + η∆B, (1)

where B is the large-scale magnetic field, t is time, V is the large-scale
velocity (as for galaxies, it is usually connected with rotation), η is the tur-
bulent diffusivity coefficient, α characterizes the vorticity of the turbulent
motions (alpha-effect).

It is quite convenient to assume that the disc is quite thin (Mestel &
Subramanian 1993; Moss 1995). The field will lie in the equatorial plane, so
it will be possible to describe only radial magnetic field Br and the angular
one Bϕ. They can be described as:

Br,ϕ(r, ϕ, z, t) = Br,ϕ(r, ϕ, 0, t) cos

(

πz

2h

)

; (2)

where h is the half-thickness of the galaxy (here we take the values |z| < h).
As for the alpha-effect we take:

α = α0

z

h
, (3)

where α0 is some typical value. As for the large-scale velocity we take
V = rΩeϕ. Using the solenoidality condition for the field and assuming the
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field axisymmetric, we can obtain the following equations (Moss & Sokoloff
2011, Moss & Sokoloff 2013, Mikhailov et al. 2014):

∂Br

∂t
= −α0Bϕ

h
− η

π2Br

4h2
+ η

∂

∂r

(

∂

r∂r
(rBr)

)

; (4)

∂Bϕ

∂t
= r

dΩ

dr
Br − η

π2Bϕ

4h2
+ η

∂

∂r

(

∂

r∂r
(rBϕ)

)

(5)

The magnetic field generation is connected with transition of energy of
turbulent motion to magnetic field energy. So the field growth should be
restricted by equipartition value Bmax = 2v

√
πρ (Arshakian et al. 2009).

This can be included to the magnetic field equations as:

∂Br

∂t
= −α0Bϕ

h

(

1−
B2

r +B2
ϕ

B2
max

)

− η
π2Br

4h2
+ η

∂

∂r

(

∂

r∂r
(rBr)

)

; (6)

∂Bϕ

∂t
= r

dΩ

dr
Br − η

π2Bϕ

4h2
+ η

∂

∂r

(

∂

r∂r
(rBϕ)

)

(7)

So the generation of the field will lower if the field will become comparable
with the equipartition value. There are also some different models for the
saturation of the growth (Shukurov et al. 2006; Sur et al. 2007; Mikhailov
2013) but for our aims this parametrization is quite sufficient. Most of the
following results were obtained using Bmax = 3 µG.

We used the zero boundary conditions (Moss 1995; Phillips 2001):

Br|r=0 = Bϕ|r=0 = Bϕ|r=R = Bϕ|r=R = 0; (8)

where R is the radius of the galaxy. We usually took the value R = 10 kpc.
The initial conditions were the following:

Br|t=0 = 0; Bϕ|t=0 = ±B0 sin

(

2πr

R

)

. (9)

For the kinematic parameters we used the models:

α0 = A
r0
r
; (10)

Ω =
Ω0

√

1 + (r/r0)
2

. (11)

where A and Ω0 varied. The values of the turbulent diffusivity η varied,
too.
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2. Qualitative analytical model of the reversal

Here we will describe qualitative model of the magnetic field reversal for
the cases when the turbulent diffusion can be used as a small parameter.
It is based on some approximate assumptions that allow us reduce system
(6)–(7) to one equation and use the methods of the contrast structures
theory (Bozhevol’nov & Nefedov 2011). In this section all results assume
the turbulent diffusivity η as a small parameter. For larger values it is
necessary to use numerical methods.

Firstly, the linear analysis of the system (6)–(7) shows that for small
values of the magnetic fields and weak diffusivity (η → 0) the magnetic
field will grow exponentially

B ∼ exp(γt) (12)

where γ =
√

α0hrdΩ/dr and the ratio between field components is the
following:

Br/Bϕ = −
(

α0

hrdΩ/dr

)1/2

. (13)

If we assume that for a quite wide range of the magnetic field values
(even for modestly nonlinear case) the ratio between the field components
is the same, and taking into account that Br ≪ Bvarphi, we will obtain the
following approximate equation for Bϕ :

∂Bϕ

∂t
= γBϕ

(

1−
B2

ϕ

B2
max

)

+ η

(

∂2Bϕ

∂r2
− ∂Bϕ

r∂r
+

Bϕ

r2

)

. (14)

If we take η = 0, the equation will have three stationary solutions:

Bϕ = 0; Bϕ = ±Bmax. (15)

If there is a magnetic field reversal, there should be a region where Bϕ =
Bmax and a region where Bϕ = −Bmax. They will be connected with a
transition layer located near some point r0. For the stationary case, the
solution in small vicinity of the r0 will be approximately the following:

Bϕ = u(r) = Bmax tanh

(
√

γ

2η
(r − r0)

)

. (16)

So, we will have the transition layer with typical width:

∆ =

√

2η

γ
=

(2η)1/2

(α0hrdΩ/dr)1/4
. (17)

According to the contrast structure theory (Bozhevol’nov & Nefedov 2011,
Mikhailov 2015) the transition layers can move with some velocity. So we
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can try to find the non-stationary solution, assuming u = u(r − ct) and
taking into account the fact that η is a small parameter (some of the terms
are omitted):

−cu′ = γ(r0)u(1−u2/B2

max)+γ′(r0)(r−r0)u(1−u2/B2

max)+ηu′′−η
u′

r
. (18)

If we multiply both of the parts of the equations on u′:

−c(u′)2 = γ(r0)u
′u(1− u2/B2

max)+

γ′(r0)(r − r0)u
′u(1− u2/B2

max) + ηu′u′′ − η
(u′)2

r0
. (19)

and integrate for a wide range (much larger than ∆) of r, we will have the
following formulae for the velocity (”-” is connected with the solution −u:

c = ±ηγ′

2γ
− η

r0
. (20)

3. Numerical modelling for qualitative equation

Here we use our approximate equation for Bϕ (14), where we consider

γ =
√

α0hrdΩ/dr. This model is one-dimensional, therefore it is more
suitable for analytic solution than any two-dimensional model. Thus we
need it to verify the accuracy of our analytical vision of the magnetic field
evolution. The numerical solution with respect to r is provided on Fig. 1.

A reversal point (the point where magnetic field equals zero) emerges
over time and starts to shift. The reversal point changes location according
to the dependence presented on Fig. 2. We show large values of t because
at the beginning of the evolution the reversal is not completely formed.

The derivative of this function equals to the instantaneous velocity of
the reversal point. The function is partly linear, so to find the average
velocity we need to know the inclination angle of the linear part of the
function. The dependence of the average velocity from η is provided on
Fig. 3.

According to asymptotic model (see previous section) the transitional
layer should move with velocity c = −0.226η and the velocity obtained
numerically is c = −0.230η. Thus we can conclude that the expression
(20) gives proper results at least for small values of turbulent diffusivity
coefficient. For larger diffusivity it is necesary to use full system (6) – (7),
which can be solved only numerically.

4. Full model of the reversal

Now, let us go back to the the equations (6) – (7), which were described in
section 1. In this case we use so called no-z approximation, as we consider
the galaxy as a flat disk, with radius much bigger than its thickness. As we
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Fig. 1. Structure of the magnetic field in the qualitative model for t = 10 Gyr.
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Fig. 2. The movement of the reversal point in the qualitative model

have mentioned, these equations can be solved only numerically, and the
solution is provided on Fig. 4.

Here, for small values of η the reversal point changes location in time
according to a similar function, which is also partly linear and c = −0.230η.
We provide it on the Fig. 5.



46 E.Mikhailov, T.Khasaeva

 

c 
(1

0
-3

 k
m

/s
)

−1.6

−1.4

−1.2

−1.0

−0.8

−0.6

 

−1.6

−1.4

−1.2

−1

−0.8

−0.6

η (10-3 kpc km s-1)
3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5

 

3 3.5 4 4.5 5 5.5 6 6.5

Fig. 3. Dependence of the velocity of transition layer from η in the qualitative model.

However for bigger values of η (over 0.07 kpc km s−1) the situation
is significantly different. The reversal point moves towards the edge of the
galaxy according to the dependence given on Fig. 6, while in case of smaller
η it merges towards its center. As in this case reversals form rapidly, we con-
sider the reversal point movement from the very beginning of the magnetic
field evolution (from t = 0).

In this case we expect the average velocity to depend from the input
parameters namely α and Ω. After conducting a numerical experiment it
turned out that the average velocity is proportional to the square root of
the composition of these values.

Table 1. Dependence of the velocity from η

η, 10−3 kpc km s−1 v, 10−4km s−1

3.0 -6,97
3.5 -8,02
4.0 -9,19
4.5 -10,45
5.0 -11,52
5.5 -12,70
6.0 -13,90
6.5 -15,00
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Fig. 4. Structure of the magnetic field for t = 10 Gyr in full model. Solid line shows
angular component of the field, and dashed line shows radial one.
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Fig. 5. The movement of the reversal point in full model

Finally we obtain the approximate expression for the average velocity:

c = A1

√
αΩ +A2 (21)
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Fig. 7. Dependence of the velocity of the transition layer from αΩ in full model.

Here for η = 0.45 kpc km/s, which is close to the real values of turbulent

diffusivity, A1 = 0.108 kpc1/2 and A2 = 0.699 km/s.
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Conclusion

We have studied the magnetic field reversals using different modifications
of no-z approximation for the magnetic field. Firstly, we have described the
magnetic field evolution using one-dimensional model, which is simple, but
allows us to give some analytical expressions for the typical structure of
the field and its evolution. The results were obtained using the asymptotic
contrast structure theory. They are nearly the same as the ones given by nu-
merical simulations. However, we can be sure that this model gives proper
results only for asymptotically small values of the turbulent diffusivity co-
efficient, so we also used the full system of equations of no-z approximation.
For smaller values of the turbulent diffusivity coefficient the results were
very close to the simple model, so we can conclude that it is quite possible
to use it for low intensive turbulence. As for larger values of the turbu-
lent diffusivity coefficient, we have constructed an approximate expression
for the realistic values of the parameters, which includes the alpha-effect
coefficient and the rotation angular velocity.

Using all these models, it was shown that the reversal can be gener-
ated during several Gyr. To generate such structure we should have specific
initial conditions. Maybe they can be caused by some random factors, for
example connected with supernovae explosions, active star formation and
another effects during first period of the galaxy formation (Moss 2014,
Mikhailov & Modyaev 2015, Mikhailov & Pushkarev 2018). So the mag-
netic field reversal can be rare, but quite possible configuration of the field.
Another important feature is that the magnetic field reversal is not a static
structure, and it moves with some small velocity (several km/s) to the
galaxy center for small turbulent diffusion and from the galaxy center for
large turbulent diffusion.

From the observational point of view, nowadays it is possible to say
that in the Milky Way the magnetic field has the reversal (Van Eck et al.
2011). As for another galaxies, the magnetic fields seem to have the same
direction in all of the galaxy. This can be connected with random factors,
which influence the process of the field generation and the probability to
have the reversal is quite low. So we should study a larger list of galaxies
to observe the magnetic field reversals.

This work is supported by the Russian Science Foundation under grant
18-11-00042.
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