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Abstract. Magnetic braking is a significant cause of angular momentum loss in contact
binary stars. The effect of differential rotation in binary stars can be very important
in case of generation of magnetic field in companion stars. However, interestingly, the
generated magnetic field usually puts a brake in the existing rotation rate. The changing
profiles of magnetic field strength, braking in rotation rate due to the magnetic field
strength as well as effective angular velocity at different latitudes for each of the compo-
nents have been demonstrated separately for a synthetic contact binary system.
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1 Introduction

The origin of magnetic fields of binary stars on the main sequence is still
debated. Possibilities are that the fields are fossil from pre main-sequence
phases of evolution perhaps dating back to the time of star formation which
is coined as primordial magnetic field or/and the magnetic field is generated
by the dynamo process due to differential rotation. The compact degenerate
donor star can be the strongest source of magnetism. White dwarf source
fields can be in excess of 107G, while those on neutron stars are about 1012G.
The field influence is determined by the stellar magnetic moment. So white
dwarfs can have stronger effects than neutron stars due to their much larger
radius. Such degenerate star fields may be of fossil origin. The gainer star
and accretion disc fields can be 102 to 104G, and dynamo mechanisms are
necessary to generate and maintain them. It is also well known that the dy-
namo mechanism is likely cause of large-scale magnetic field production in
the stars with convective layers (Parker, 1955). The Sun is known to rotate
more rapidly at the equator than at the poles. The speed of this differen-
tial rotational and convection are important for the production of magnetic
fields in the convective zone. The differential rotation between the radiative
core and convective envelope winds up the field and causes a deformation
of the poloidal field which in turn generates an additional toroidal field
component and thus creates a Lorentz force which counteracts the shear
(deformation) due to poloidal field. Again in convective stellar bodies the
principal role of this magnetic field is the redistribution of angular velocity
and so the angular momentum. As a consequence, the generated magnetic
field later puts a brake on the existing rotation rate and this phenomenon is
termed as ’magnetic braking’. Magnetic braking is a common phenomenon
to all the contact binary stars (Bradsreet and Guinan, 1994; Huang et
al., 2007). According to Bradstreet and Guinan (1994) and Stepien (1995,
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2006) the loss of angular velocity and angular momentum plays an impor-
tant role in the formation and evolution of low -mass contact binary stars.
The effect of magnetic fields on the mass and angular momentum transfer
and ( or) loss of both the companions are quite appreciable. In a close bi-
nary where the spin and orbital angular momentum are strongly coupled
this stellar spin down forces a decrease in the orbital period of the system
even without mass transfer. However, at high rotation rates the angular
momentum loss rate grows more slowly even with the same underlying dy-
namo model (Keppens et al., 1995) The coupling constant depends on the
magnetic field strength and can be important if the field is strong enough
(on the order of few MG). Another effect of magnetic field is to alter the
spin through torqueing of the star by mass overflow. The magnetized star
allows winds move outward from the active star, but are twisted due to
rapid rotation of the star. Charged particles in the star wind get trapped
in the magnetic field of the star and are dragged along the field lines. The
result is angular momentum transfer from the star by magnetic field to the
charged particles. As the winds leave the star surface they are dragged by
the magnetic field which, in turn, slows down the rotation of the star. For
close binaries in which synchronization of rotational and orbital period is
expected, loss of rotational angular momentum occurs at the expense of
orbital angular momentum. As a result, the period decreases and the com-
ponents spin up and approach one another to form a single rapid rotating
star (Stepien, 1995; Skumanich, 1972). As stated by Stepien (1995, 2006)
contact binary stars are magnetically very active and they lose mass and
angular momentum mainly via magnetized winds. Moreover the separation
of the components is relatively low. Therefore one expects the magnetic
field interactions between the two components to be intensified and con-
sequently its effect on the angular momentum loss to be enhanced, due
to the formation of magnetic loops between the surface magnetic fields of
the components. This statement is consistent with that of Bradstreet and
Guinan (1994) that the magnetic torque produced by magnetic field in the
wind depends on the strength of magnetic field. The magnetic field lines
are bent due to rapid rotation of the star . Their curvature causes counter
force on the surrounding stellar plasma. If we assume that magnetic poles
coincide with the rotation poles, then the dissipated angular momentum is
very small and braking is almost negligible but if field is anchored at or
near the equatorial plane then the braking is the strongest and therefore
maximum angular momentum is removed. It is also observed that low-
mass x-ray binaries undergo rotational braking by a magnetically coupled
stellar wind, in a similar way as single main-sequence stars. Because the
low- mass components of close binaries are forced by tidal forces to remain
in co-rotation, this leads to a loss of orbital angular momentum from the
systems, and to an enhanced mass transfer rate. Also the rotation rate
of main-sequence stars with convective envelopes is observed to decrease
rapidly with the age (Kraft, 1967). Historically an angular momentum loss
rate was derived from average rotational velocities (vsini) of stars in popu-
lations of different ages. An angular momentum loss rate is assumed to have
some functional dependence of mass, radius, effective temperature and ro-
tational rate of a star, which is motivated by theoretical considerations and
then calibrated using rotational data. We here consider a theoretical model
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of a contact binary star where the two components possess strong magnetic
fields generated in a dynamo process for their very fast and differential ro-
tation apart from the primordial magnetic fields already in those (if any)
and an attempt is made to model the reciprocated relationship between
the differential rotations at different latitudes in the surface, the magnetic
field generated as a consequence, braking in the rotation rate due to the
magnetic field strength and finally the effective rotation rate at different
latitudes in highly rotating components of contact binary stars. We have
taken into consideration the model of differential rotation at the surface
with respect to latitude of Scheiner (1630). Here we produce a synthetic
model of a contact binary system and applied the present theory over this
system to demonstrate the changing profiles of magnetic field strength and
braking in rotation rate due to the magnetic field strength and the final
effective rotation rate at different latitudes on the surface for each of these
two components separately

2 Theory

Reiners and Mohanty (2012) identified that the magnetic field strength (B)
on the stellar surface is related to the angular velocity (| ω |) at all instants
by the following power law:

B ∝ ωa (1)

where a is likely to vary between 1 and 2 for unsaturated fields and can
drop to 0 by definition when field strength saturates as can be expected
in α2-dynamo that may govern in case of fully convective very low- mass
stars (Chabrier and Kuker, 2006). So in the stellar bodies for which angular
velocity at the surface is supposed to vary with the latitude (Scheiner, 1630)
we can have in view of (1) the following relation at the surface at all instants

B(ϕ) = k1{ω(ϕ)}
a, (2)

where ϕ represents the latitude and k1 is a proportionality constant char-
acterizing an individual stellar body.

This generated magnetic field influences the rotation altogether creating
a drop in angular velocity or a brake on the rotation (δω). Cohen and Drake
(2014) showed that at any / time the kinetic energy density of the escaping
wind at the Alfven radius, responsible for the angular momentum loss and
in turn the loss in angular velocity, is proportional to the square of magnetic
field strength. This observation is homologous to

δω(ϕ) ∝ [B0(ϕ) +B(ϕ)]2, (3)

where B0(ϕ) is the primordial magnetic field strength distributed at the
latitude ϕ. This leads to the following conclusion:

δω(ϕ) = k2[B0(ϕ) +B(ϕ)]2, (4)
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where k2 is a proportionality constant portraying the characteristics of the
stellar body. In view of (2) and (4) we have

δω(ϕ) = k2[B0(ϕ) + k1{ω(ϕ)}
a]2. (5)

The effective rotation [ω∗(ϕ)] as a consequence of braking can be given by:

ω∗(ϕ) = ω(ϕ)− δω(ϕ). (6)

Using (5) in (6) we have

ω∗(ϕ) = ω(ϕ)− k2[B0(ϕ) + k1{ω(ϕ)}
a]2. (7)

From the above analysis it is clear that if the angular velocity ω at
any time and primordial magnetic field strength at certain latitude (ϕ) are
known then the corresponding magnetic field generated due to rotation,
consequent magnetic braking and final effective rotation can be estimated
at that time and at that latitude (ϕ) . So it is very important to understand
the distribution of angular velocity at the surface at any time as a changing
function of latitude. We follow the model prescribed by Scheiner (1630)

ω(ϕ) = ωe − (ωe − ωp) sin
2 ϕ, (8)

where ωe and ωp stand for the angular velocities at the equator and the
poles respectively anticipating that the angular velocity is maximum at the
equator and minimum at the poles: Now if we write

ωe = αωp, (9)

where α > 1. We can have from (8)

ω(ϕ) = [α− (α− 1) sin2 ϕ]ωp. (10)

Now the average angular velocity < ω > distributed over entire surface at
any time can be given by

< ω > =

∫

π

2

0
ω(ϕ)dϕ
∫

π

2

0
dϕ

(11)

=
1

2
(ωe + ωp) [using(8)]

=
1

2
(α+1)ωp. [using(9)] (11a)

In practical computation for an observed stellar body the average angular
velocity over the surface should be found. This will help to determine di-
rectly the angular velocity at the pole at the time of observation by means
of (11a) because

ωp =
2 < ω >

(α+ 1)
, (12)
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provided at that time we know the ratio ωe ωp between the angular velocities
at the equator and the pole given by α. This allows us to estimate the
angular velocity at the equator (ωe) as well as the angular velocities at
different latitudes at the time of observation using (9) and (10) respectively.
Again using (12) in (10) we have the following

ω(ϕ, α) =
2[α− (α− 1) sin2 ϕ] < ω >

(α+ 1)
. (13)

The left hand side of above is so written as for a detected star the angular
velocity at any latitude at any time eventually depends also on the param-
eter α in addition to the latitude ϕ. The reciprocated relationships between
angular velocity, generated magnetic field strength and braking in the an-
gular velocity and finally the model of effective angular velocity at different
latitudes at the surface for all instants for a detected star [for which the
average angular velocity at the surface and the ratio between the angular
velocities at the equator and the pole are found] can be demonstrated as
an association of (13), (2), (5) and (7). Now from (13) we can have some
interesting results which help us to visualize the nature of distribution of
angular velocity over the surface for all instants. First it can be seen from
(13) that for any α we have

ω =< ω > for ϕ =
π

4
. (14)

This means that for a specific stellar body at any instant all the curves
for ω(ϕ) for different choices of α have a common point of intersection at
ϕ = π

4
. From (13) we can also have

∂ω

∂ϕ
= −2 < ω >

α− 1

α+ 1
sin 2ϕ. (15)

This immediately confirms a decreasing profile of angular velocity within
0 < ϕ < π

2
for any α > 1. Again form the present model of angular velocity

we can get
∂2ω

∂ϕ2
= −4 < ω >

α− 1

α+ 1
cos 2ϕ, (16)

which gives
∂2ω

∂ϕ2
< 0 , 0 ≤ ϕ <

π

4
,

= 0 , ϕ =
π

4
.

and
> 0 ,

π

4
< ϕ ≤

π

2
, (17)

This in turn suggests that for a fixed α the angular velocity is convex
for 0 ≤ ϕ < π

4
and it is concave for π

4
< ϕ ≤ π

2
. The point ϕ = π

4
is the
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point of inflection. Again the stellar magnetic fields are produced within the
convective zone of the star. The convective circulation of the conducting
plasma in presence of differential rotation functions like a dynamo. This
activity destroys the primordial magnetic field of the stars like Sun or below
the mass of the Sun. Hence for this category we can write

B0 = 0. (18)

Using (18) we can have from (4), (5) and (7) respectively for this category
of stellar bodies at all instants

δω(ϕ) = k2[B(ϕ)]2, (19)

δω(ϕ) = k2k
2

1[ω(ϕ)]
2a, (20)

ω∗(ϕ) = ω(ϕ)− k2k
2

1[ω(ϕ)]
2a. (21)

However Ivanova and Taam (2003) showed, for fast rotating stars like Sun
or below the mass of the Sun the angular momentum loss rate at any time
due to magnetic braking is proportional to ω1.3 and this drives us to write

δω(ϕ) ∝ [ω(ϕ)]1.3, (22)

Comparing (20) and (22) we get

2a = 1.3 so a = 0.65. (23)

So in view of (23) we can rewrite (2), (20) and (21) respectively as follows:

B(ϕ) = k1[ω(ϕ)]
0.65, (24)

δω(ϕ) = k[ω(ϕ)]1.3, (25)

ω∗(ϕ) = ω(ϕ)− k[ω(ϕ)]1.3, (26)

where k = k2k
2
1.

Because B, δω and ω∗ are all related to ω with some power law relations
as given by (24), (25) and (26) respectively the profile observed for ω in
view of (17) is similar for B, δω and ω∗. If we write the surface magnetic
field strength at the equator and the pole as Be and Bp respectively then
from (24) we can have,

Bp = k1ω
0.65
p , (27)

Be = k1ω
0.65
e . (28)

Using (9) in (28) we have,

Be = k1α
0.65ω0.65

p . (29)
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Combining (27) and (29), we find

α =

(

Be

Bp

)
1

0.65

. (30)

In practical computation using (30) we can derive the angular velocity at
the pole | ωp | and equator | ωe | from (12) and (9) respectively.Using (27)
or (28) we have

k1 =
Bp

ω0.65
p

=
Be

ω0.65
e

. (31)

It is quite desirable that in a highly rotating contact binary system the
values of k1 and k2 and as a consequence k should be identical for both the
component stars.

Durney (1972) and Skumanich (1972) proposed that the rotational ve-
locity at the stellar surface decays as the inverse square root of time for the
stars with polytropic index n=2 after the age 106 years. Mestel (1984) pro-
posed a general model of the decay of the rotational velocity at the stellar
surface at given latitude with respect to time for the stars where magnetic
field is generated by dynamo action depending on the angular velocity as
follows:

ω ∝ t−b. (32)

where b can take the values 0.25, 0.5, 0.75, 1.33, 1.5 and 4 depending
whether mass loss rate is independent of magnetic strength or decays with
it as well as whether the wind is thermal, thermo-centrifugal or magneto-
centrifugal. This leads to the following time dependent decaying profiles of
generated magnetic strength and magnetic braking as well for given latitude
for both the component stars in a binary system where magnetic field is
generated due to the dynamo action depending on the angular rotation:

B ∝ t−0.65b. [using(24)] (33)

δω ∝ t−1.3b. [using(25)] (34)

3 Results

For practical computation we generate a synthetic contact binary system
where both the components are possessing strong magnetic fields. It is also
presumed that here the dynamo process destroys the primordial magnetic
field and therefore the existing magnetic fields in these two companion ob-
jects are only due to the dynamo process. We consider the average rotational
velocities of the donor star and the gainer star as < ω >= 2.5×10−5rads−1

and 3.9× 10−5rads−1 [ <> stands for average]. The average magnetic field
strength of both the components are assumed as < B >= 2.5× 103G. Here
we take α = 1.1 k1 = 4×106 and k2 = 1.6×10−14 for both the components
of the present contact binary system. We consider the magnetic braking δω
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in the order of 10−7 in view of (19) [since B is in the order of 103 ] and
this gives k = k2k

2
1 = 0.26. From (11a) we can obtain the angular velocity

at the pole (ωp ) and next using (9) we can have the angular velocity at
the equator ( ωe ) for the component stars. The angular velocity, generated
magnetic strength, magnetic braking and effective angular velocity at dif-
ferent latitudes for both the components can be estimated from (8), (24),
(25) and (26) respectively. Figures 1, 2, 3 and 4 give the profile of angular
velocity, generated magnetic strength, magnetic braking and effective an-
gular velocity respectively with respect to latitude for the donor star and
Figures 5, 6, 7 and 8 give the similar profiles for the gainer star.

Following the simulation strategy as incorporated for the present syn-
thetic system the present model can be efficiently exercised over practically
observed contact binary systems for which the angular velocities at the pole
and the equator and average magnetic field over the surface for both the
component stars are already identified.

4 Discussion

We have here framed a theoretical model of a contact binary star where
the two components possess strong magnetic fields generated due to the
dynamo process for their very fast and differential rotation apart from the
primordial magnetic fields already in those (if any) and an attempt is made
to model the mutual relationship between the differential rotations at differ-
ent latitudes in the surface, the magnetic field generated as a consequence,
braking in rotation rate due to the magnetic field strength and finally the
effective rotation rate at different latitudes in highly rotating components of
the contact binary star. We have followed the model of differential rotation
at the surface with respect to latitude proposed by Scheiner (1630). For
practical computation a synthetic model of contact binary system has been
considered in which both the components are assumed to have convective
envelopes owning strong magnetic fields as a result of strong rotation only
(no primordial magnetic field has been considered in the system). We have
exhibited the varying profiles of magnetic field strength and braking in ro-
tation rate due to the magnetic field strength and the final effective rotation
rate at different latitudes on the surface for each of these two components
in the present synthetic system separately. In future studies we can also
incorporate the differentiability in the internal rotation with respect to the
radial distance in the study of magnetic braking in contact binaries.
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Fig. 1. Angular velocity vs. Latitude for the donor star.
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Fig. 2. Magnetic Field strength vs. Latitude for the donor star.

Fig. 3. Magnetic Braking in Angular velocity vs. Latitude for the donor star.
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Fig. 4. Effective Angular velocity vs. Latitude for the donor star.

Fig. 5. Angular velocity vs. Latitude for the gainer star.
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Fig. 6. Magnetic Field strength vs. Latitude for the gainer star.

Fig. 7. Magnetic Braking in Angular velocity vs. Latitude for the gainer star.
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Fig. 8. Effective Angular velocity vs. Latitude for the gainer star.


