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Abstract. As the identified number of Jupiter’s moons has skyrocketed to 79, some of
them have been regrouped. In this work, we continue to identify the potential distribu-
tions of the physical characteristics of Jupiter’s irregular moons. By using nonparametric
Kolmogorov-Smirnov tests, we verified more than 20 commonly used distributions and
found that surprisingly, almost all the physical characteristics (i.e., the equatorial ra-
dius, equatorial circumference, circumference, volume, mass, surface gravity and escape
velocity) of the moons in the Ananke and Carme groups follow log-logistic distributions.
Additionally, more than half of the physical characteristics of the moons in the Pasiphae
group are theoretically subject to this type of distribution. The discovery of an increas-
ing number of Jupiter’s irregular moons combined with strict analytical derivations, it
is increasingly clear and possible to anticipate that the physical characteristics of most
irregular moons follow log-logistic distributions.
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1 Introduction

As the largest planet in the solar system, Jupiter is known to have at least
79 moons (Sheppard 2019); this structure is similar to that of the solar
system. The study of Jupiter and its moons may help explain the origin
and evolution of Jupiter, its moons and even the solar system. In recent
years, many researchers have shown great interest in the distribution and
origin of Jupiter’s natural satellites (see Gao et al. 2018, Ma et al. 2009,
Colomboab & Franklin 1971, Bhatt et al. 2017, Nesvorný et al. 2007, 2014,
Ronnet et al. 2018, Teerikorpi et al. 2019 and the references therein).

Generally, Jupiter’s natural satellites can be grouped into regular moons
and irregular moons according to their orbital inclination and direction of
rotation around the planet. The regular moons have nearly circular pro-
grade orbits and low inclination, which suggests that their orbits are close
to Jupiter’s equator. In contrast, the orbits of the irregular moons have
relatively high eccentricity and inclination, and they are far from Jupiter
and often follow retrograde orbits. These irregular moons are believed to
have been at least partially formed by the collision of asteroids captured by
Jupiter’s gravitational field (Ma et al. 2009, Colomboab & Franklin 1971,
Bhatt et al. 2017) or by the complex gravitational interaction of the several
giant planets (Nesvorný et al. 2007, 2014). Ronnet et al. (2018) hypothe-
sized that there is a planetesimal reservoir at the outer edge of Jupiter’s
gap (a notch or dip in the density distribution of the gas surface), where the
captured solids are trapped and Jupiter’s moons are gradually formed. The
capture of the solids may have been caused by the energy loss of a plan-
etesimal inside Jupiter’s Hill sphere. In addition to the captured irregular
satellites, there is the possibility of irregular satellite formation/collision.
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Several compact clusters of orbits around Jupiter, supported by color sim-
ilarities, have been indicated to have a common origin (Jewitt 2010).

In 1766, Titius proposed a simple geometric rule based on the orbital
radii of the planets in the solar system, which was then summarized by Bode
of the Berlin Observatory into an empirical formula called the Titius-Bode
law. This formula correctly predicted the orbits of Uranus and Ceres in the
asteroid belt (Panov 2009, Poveda & Lara 2008, Basano & Hughes 1979,
Georgiev 2018) and was later extended by other researchers (Xu et al. 2013,
Ereš 2019, Dvorak & Pilat-Lohinger 2001). However, due to the lack of strict
theoretical explanations, many astronomers now believe that this law is just
a coincidence. It has even been rejected by some researchers, although sim-
ilar issues in other planetary systems remain unresolved (Kotliarov 2008).

Although we also agree that the Titius-Bode law maybe a pure assump-
tion without a strictly theoretical basis, it can be adapted to study the
distributions of some regular moons. Over the past year, with the discovery
of a large number of Jupiter’s moons, we are motivated to investigate the
distributions of the physical characteristics of Jupiter’s irregular moons. Of
course, we do not present a hypothesis but rather strictly examine whether
there are some statistical laws governing the irregular moons. Previously,
there were only 45 irregular members in the three major groups of Jupiter’s
moons (Sheppard & Jewitt 2003): 15 moons in the Carme group, 11 moons
in the Ananke group and 19 moons in the Pasiphae group. Gao et al. (2018)
proposed that the t location-scale distribution and Weibull distribution are
the main distributions of the four physical characteristics of the equatorial
radius, mass, surface gravity and escape velocity. Moreover, they believed
that if future observations allow for an increase in the number of Jupiter’s
moons, the distributions may change slightly but would not change sig-
nificantly for a long time. The total number of irregular moons has in-
creased from the previous 45 to the current 54 in Jupiter’s three major
groups, of which 14 moons have been updated: 9 have been newly discov-
ered and 5 have been regrouped. More precisely, the Carme group accepted
5 newly discovered moons (S/2003 J19, S/2011 J1, S/2017 J2, S/2017 J5
and S/2017 J8), for a total of 20 moons. In addition to the unique new
member S/2017 J16 in the Pasiphae group, 5 senior members (S/2001 J9,
S/2001 J10, S/2003 J6, S/2003 J18, and S/2016 J1) were transferred out of
this group and into the Ananke group, so the total number of satellites in
the Pasiphae group was reduced to 15 moons. In addition to the 5 newly ac-
cepted satellites in the Ananke group, 3 newly discovered members (S/2017
J3, S/2017 J7 and S/2017 J9) joined the Ananke group, vaulting the total
number of moons in this group to 19.

In this paper, based on the above three updated major groups of Jupiter’s
moons and 21 commonly used distribution functions (see Appendix A), we
investigate the distribution rules with respect to the seven physical charac-
teristics of irregular moons by using one-sample nonparametric Kolmogorov-
Smirnov (K-S) tests (Hogg & Craig 2004) and the maximum likelihood
estimation method. These seven physical characteristics are the equato-
rial radius, equatorial circumference, volume, surface area, surface gravity,
mass and escape velocity. In addition, it is noted that the seven physical
characteristics are not completely independent, which will help us verify
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the rationality of the results obtained by statistical inference through strict
analytical derivation.

2 Principle of statistical inference

A nonparametric test is a method to infer the type of population distri-
bution by using sample data when the population variance is unknown or
poorly understood. Because this method does not involve the parameters
of a population distribution in the process of inference, it is called a non-
parametric test. This method can be used to infer whether the population
from which the sample comes follows a certain theoretical distribution.

If Fn(x) = i/n (i = 1, 2, · · · , n) is a frequency distribution function of
observations from n random samples, then it represents the number of all
observations less than or equal to the value of x. F (x) denotes the theoret-
ical cumulative distribution function (CDF) of a population; i.e., the value
of F (x) represents the proportion of expected results that are less than
or equal to the value of x. The aforementioned K-S test is a nonparamet-
ric test method that compares the frequency distribution Fn(x) with the
theoretical distribution F (x) or the distribution of two observations. The
difference between Fn(x) and F (x) is defined as follows:

Dn = supx |Fn(x)− F (x)|. (1)

If Fn(x) and F (x) are close enough for each value of x, i.e., Dn → 0 when
n → +∞, then these two functions have a high degree of fitting, and it
is reasonable to believe that the sample data come from the population
following the theoretical distribution F (x). The K-S test focuses on the
largest deviation in equation (1), and an evaluation can be made with the
help of constructed statistics. To this end, two opposite hypotheses are
proposed—namely, the null hypothesis H0 and the alternative hypothesis
H1. H0 is the hypothesis that the sample comes from a specific distribution.
It is an event that is likely to occur in one test. The alternative hypothesis
H1 is usually assigned to an event that is highly unlikely to occur in one
test. The detailed procedures of the K-S test are listed as follows:

(I). Establish the hypotheses: H0 : Fn(x) = F (x), H1 : Fn(x) 6= F (x).
(II). Calculate the statistics: Dn.
(III). Determine the critical value: The critical value Dn,α can be ob-

tained according to the given significance level α (usually set to 0.05 or
0.01) and the sample size n.

(IV). Make the judgment: H0 cannot be rejected at the α level when
Dn < Dn,α. Otherwise, H0 should be rejected.

It is noted from step (III) that the level α must be specified first before
one can continue the procedure. However, when the value of α decreases,
the rejection domain of the test correspondingly decreases, causing the ob-
servation value that initially fell into the rejection domain to eventually
fall into the acceptance domain, so this case sometimes causes problems in
practical applications. To avoid the inconvenience caused by predetermin-
ing α, the p-value is introduced, and then one can easily draw more intuitive



116 F.B. Gao, X. Liu

conclusions about the test by comparing the p-value and α. Here, the p-
value indicates the minimum significance level at which the null hypothesis
can be rejected according to the sample values of the test statistics. The
smaller the p-value, the stronger the evidence against H0. Thus, if p ≤ α,
H0 is rejected at the α significance level. Otherwise, we fail to reject H0
if p > α. Furthermore, if the p-values corresponding to several distribu-
tions are all greater than α and the differences are large, the distribution
with the largest p-value is selected as the best-fit inferred distribution. If
all p-values are greater than α and close to each other, the the confidence
interval is also considered, and the corresponding distribution is selected as
the best-fit distribution.

3 Distribution inference based on different groups of
Jupiter’s moons

3.1 Ananke group

Based on one-sample K-S tests and maximum likelihood estimation, the
results of statistical inference on the aforementioned seven physical char-
acteristics of irregular moons can be found in Tables A1-A4 in Appendix
A. The best-fit distributions of the physical characteristics are summarized
in Table 1. All the physical characteristics follow a log-logistic distribution,
and their p-values are approximately 0.8, except that the p-value for the
surface gravity is less than 0.5 but much greater than 0.05. Therefore, it is
clear that the log-logistic distribution is the best-fit distribution to describe
the physical characteristics in the Ananke group. The probability distribu-
tion function (PDF) of the log-logistic distribution has the following form:

f(x) =
1

σx

e
ln(x)−µ

σ

�

1 + e
ln(x)−µ

σ

�2 , (2)

where µ is the mean of the logarithmic values and σ is the scale parameter
of the logarithmic values. Here, it should be noted that this function is not
unique, and physical characteristics can also be fitted by other functions.
It is believed that with the advancement of astronomical observation tech-
nology and the development of statistics, this function may be replaced in
the future.

As seen in Table 1, the p-values (only four decimal places are retained)
of the equatorial radius (R), equatorial circumference (C), volume (V ) and
surface area (S) are approximately 0.83. A reasonable explanation is that
there is a linear relationship C = 2πR between the equatorial radius and
the equatorial circumference. However, it may be a coincidence that the
p-values corresponding to the nonlinear relationships V = 4πR3/3 and
S = 4πR2 are also close to each other because their differences emerge in
the Carme and Pasiphae groups.
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Table 1. Inference of the distribution of each physical characteristic for
the moons in the Ananke group

Characteristic Best-fit Distribution Parameters Confidence Intervals p-value

Equatorial Radius (km) Loglogistic
µ=0.582917
σ=0.364002

µ∈[0.23278, 0.933054]
σ∈[0.225066, 0.588705] 0.8343

Equatorial Circumference (km) Loglogistic
µ=2.42182
σ=0.363511

µ∈[2.07218, 2.77145]
σ∈[0.224753, 0.587933] 0.8327

Volume (km3) Loglogistic
µ=3.17586
σ=1.10596

µ∈[2.11064, 4.24108]
σ∈[0.684312, 1.7874] 0.8339

Surface Area (km2) Loglogistic
µ=3.69694
σ=0.727939

µ∈[2.99674, 4.39715]
σ∈[0.45009, 1.17731] 0.8342

Surface Gravity (m/s2) Loglogistic
µ=-6.41229
σ=0.337578

µ∈[-6.74044, -6.08413]
σ∈[0.210095, 0.542414] 0.4831

Mass (kg) Loglogistic
µ=31.8851
σ=1.00964

µ∈[30.921, 32.8493]
σ∈[0.621833, 1.63929] 0.7825

Escape Velocity (km/h) Loglogistic
µ=2.10984
σ=0.329425

µ∈[1.79575, 2.42393]
σ∈[0.202763, 0.535212] 0.7718

3.2 Carme group

For the Carme group (see Table 2 and Tables A5-A8 in Appendix A for more
details), the p-values corresponding to the escape velocity in the t location-
scale distribution and the log-logistic distribution are close to each other,
approximately 0.5996 and 0.5222, respectively. However, the confidence in-
terval corresponding to a t location-scale distribution is more dispersed
than that of a log-logistic distribution; thus, the best-fit distribution of the
escape velocity may be a t location-scale distribution or log-logistic dis-
tribution. The remaining six physical characteristics all follow log-logistic
distributions. Similar to the results for the Ananke group, the p-values of
the first two physical characteristics (i.e., the equatorial radius and equa-
torial circumference) in the Carme group are approximately 0.66 because
they are not independent and have a linear relationship.

3.3 Pasiphae group

In the Pasiphae group (see Table 3 and Tables A9-A12 in Appendix A for
more details), all the best-fit distributions of the equatorial radius, equato-
rial circumference, surface gravity and escape velocity are still log-logistic
distributions. The volume follows a generalized Pareto distribution, which
has been widely used in many fields, such as extreme value analysis, insur-
ance loss fitting and financial risk management (Krehbiel & Adkins 2008,
Brodin & Holger 2009). This distribution has three parameters: σ is the
scale parameter, k is the shape parameter, and θ is the position parameter.
The surface area and mass follow inverse Gaussian distributions with two
parameters: µ represents the mean, and λ is a shape parameter. However, V
and S in this group obviously have larger and different p-values. Although
the first two physical characteristics (R and C) in the Pasiphae group are
the same as those in the Ananke and Carme groups, both characteristics
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Table 2. Inference of the distribution of each physical characteristic for
the moons in the Carme group

Characteristic Best-fit Distribution Parameters Confidence Intervals p-value

Equatorial Radius (km) Loglogistic
µ=0.500116
σ=0.345753

µ∈[0.191027, 0.809204]
σ∈[0.21508, 0.555817] 0.6654

Equatorial Circumference (km) Loglogistic
µ=2.33795
σ=0.344919

µ∈[2.0297, 2.6462]
σ∈[0.214533, 0.55455] 0.6612

Volume (km3) Loglogistic
µ=2.9226
σ=1.04959

µ∈[1.98296, 3.86223]
σ∈[0.653374, 1.68606] 0.6817

Surface Area (km2) Loglogistic
µ=3.53128
σ=0.691438

µ∈[2.91317, 4.14939]
σ∈[0.430115, 1.11153] 0.6651

Surface Gravity (m/s2) Loglogistic
µ=-6.69388
σ=0.319434

µ∈[-6.97911, -6.40864]
σ∈[0.197127, 0.517626] 0.0584

Mass (kg) Loglogistic
µ=31.6362
σ=0.956765

µ∈[30.7891, 32.4832]
σ∈[0.59232, 1.54545] 0.5776

Escape Velocity (km/h)
t location-scale
(Loglogistic)

µ=7.08058
σ=1.51796
ν=0.993412
(µ=2.01252
σ=0.30989)

µ∈[5.84963, 8.31154]
σ∈[0.660915, 3.4864]
ν∈[0.403482, 2.44588]
(µ∈[1.73925, 2.2858]
σ∈[0.191438, 0.501634])

0.5996
(0.5222)

follow log-logistic distributions, and the p-values in the respective groups
are approximately equal due to their linear relationships.

Table 3. Inference of the distribution of each physical characteristic for
the moons in the Pasiphae group

Characteristic Best-fit Distribution Parameters Confidence Intervals p-value

Equatorial Radius (km) Loglogistic
µ=0.802683
σ= 0.59951

µ∈[0.193211, 1.41215]
σ∈[0.358041, 1.00383] 0.6575

Equatorial Circumference (km) Loglogistic
µ=2.64143
σ=0.599202

µ∈[2.03226, 3.2506]
σ∈[0.357861, 1.0033] 0.6553

Volume (km3) Generalized Pareto
k=2.99649
σ=17.5719
θ=0

k∈[0.797871, 5.19512]
σ∈[4.20131, 73.4945]
θ=0

0.8840

Surface Area (km2) Inverse Gaussian
µ=1487.72
λ=30.7839

µ∈[-4624.14, 7599.58]
λ∈[5.05682, 56.511] 0.7373

Surface Gravity (m/s2) Loglogistic
µ=-6.2884
σ=0.555284

µ∈[-6.85117, -5.72564]
σ∈[0.331098, 0.931266] 0.4431

Mass (kg) Inverse Gaussian
µ= 3.41874 ∗ 1016

λ=4.03647 ∗ 1013

µ∈[−5.53893 ∗ 1017,
6.22268 ∗ 107]
λ∈[6.63069 ∗ 1012,
7.40988 ∗ 1017]

0.8481

Escape Velocity (km/h) Loglogistic
µ=2.32956
σ=0.570971

µ∈[1.75079, 2.90834]
σ∈[0.339631, 0.959888] 0.5832

To facilitate comparisons, in Table 4, we summarize the best-fit dis-
tributions of the seven physical characteristics for the three groups. In



Distributions of Jupiter’s irregular moons 119

the Ananke and Carme groups, almost all these characteristics follow log-
logistic distributions, and the physical characteristics R, C, and S and the
escape velocity also follow this distribution in the Pasiphae group. However,
we note that although the physical characteristics S and mass follow an in-
verse Gaussian distribution, V follows a generalized Pareto distribution in
the Pasiphae group. It can also be found from Tables A10 and A11 in Ap-
pendix A that these three physical characteristics have large corresponding
p-values of 0.6573, 0.5969 and 0.6707 for the log-logistic distribution, re-
spectively. It is believed that with the discovery of new moons in this group
in the future, the log-logistic distribution will also be one of the best-fit
distributions.

Table 4. Best-fit distribution inference summary

Characteristic Ananke group Carme group Pasiphae group

Equatorial Radius (km) Loglogistic Loglogistic Loglogistic
Equatorial Circumference (km) Loglogistic Loglogistic Loglogistic
Volume (km3) Loglogistic Loglogistic Generalized Pareto
Surface Area (km2) Loglogistic Loglogistic Inverse Gaussian
Surface Gravity (m/s2) Loglogistic Loglogistic Loglogistic
Mass (kg) Loglogistic Loglogistic Inverse Gaussian

Escape Velocity (km/h) Loglogistic
t location-scale
(Loglogistic)

Loglogistic

4 Comparison of the best-fit distributions of physical
characteristics with Gao et al. (2018)

Since five members of the three major satellite groups have been regrouped
and nine new members have joined, the best-fit distribution of the physical
characteristics obtained in this paper is compared with that in Gao et al.
(2018) in this section. Note that the data in Gao et al. (2018) use a differ-
ent notation than this paper; that is, the data corresponding to the surface
gravity and mass are multiplied by 102 and divided by 1013, respectively.
To be consistent with Gao et al. (2018), we also work with the data accord-
ingly. Due to the large difference in p-value between the two papers, we also
retain only four decimal places for the p-values in Table 5, in this case cor-
responding to 0.0000. In addition, only nine continuous distributions were
selected in Gao et al. (2018) to test the equatorial radius, surface gravity,
mass and escape velocity of the four physical characteristics, without loss
of generality. The 21 conventional distributions mentioned in Appendix A
are still used here.

As shown in Table 5, all four physical characteristics in the Ananke
group follow a log-logistic distribution in this paper, and each of their p-
values is larger than the corresponding p-value in Gao et al. (2018). In the
Carme group, in addition to the escape velocity following a t location-scale
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Table 5. Best-fit distributions of the same physical characteristics in the
present paper and Gao et al. (2018)

Present paper Reference (Gao et al. 2018)

Characteristics in Ananke Best-fit Parameters p-value Best-fit Parameters p-value

Equatorial Radius (km) Loglogistic
µ=0.582917
σ=0.364002

0.8343 t location-scale
µ= 1.8072
σ= 0.66029
ν = 1.19615

0.7231

Surface Gravity (10−2m/s2) Loglogistic
µ=-1.80711
σ=0.337578

0.4831 t location-scale
µ= 0.167044
σ= 0.063608
ν = 1.40815

0.4210

Mass (1013kg) Loglogistic
µ=1.95154
σ=1.00964

0.7825 Weibull
A = 38.3573
B = 0.368827

0.4304

Escape Velocity (km/h) Loglogistic
µ=2.10984
σ=0.329425

0.7718 t location-scale
µ= 8.24903
σ= 2.61085
ν = 1.15837

0.7262

Characteristics in Carme Best-fit Parameters p-value Best-fit Parameters p-value

Equatorial Radius (km) Loglogistic
µ=0.500116
σ=0.345753

0.6654 t location-scale
µ = 1.65708
σ = 0.440683
ν= 1.14501

0.7119

Surface Gravity (10−2m/s2) Loglogistic
µ=-2.08871
σ=0.319434

0.0584 null null null

Mass (1013kg) Loglogistic
µ=1.70257
σ=0.956765

0.5776 null null null

Escape Velocity(km/h)
t location-scale
(Loglogistic)

µ=7.08058
σ=1.51796
ν=0.993412
(µ=2.01252
σ=0.30989)

0.5996
(0.5222)

t location-scale
µ = 7.32997
σ = 1.58419
ν= 1.06821

0.6619

Characteristics in Pasiphae Best-fit Parameters p-value Best-fit Parameters p-value

Equatorial Radius (km) Loglogistic
µ=0.802683
σ= 0.59951

0.6575 Weibull
A= 3.6978
B = 0.781648

0.0859

Surface Gravity (10−2m/s2) Loglogistic
µ=-1.68323
σ= 0.555284

0.4431 Weibull
A= 3.09876
B = 0.843794

0.0594

Mass (1013kg) Inverse Gaussian
µ=3418.74
λ=4.03647

0.8481 Weibull
A= 72.5121
B = 0.266585

0.1096

Escape Velocity (km/h) Loglogistic
µ=2.32956
σ=0.570971

0.5832 Weibull
A= 17.0302
B = 0.807236

0.0722
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distribution or log-logistic distribution, the other three physical charac-
teristics follow log-logistic distributions, while for the surface gravity and
mass, the null hypothesis in Gao et al. (2018) is rejected, and the remain-
ing two physical characteristics follow a t location-scale distribution. For
the Pasiphae group, in addition to the mass following the inverse Gaussian
distribution, the other three physical characteristics follow the log-logistic
distribution; the four physical characteristics all follow the Weibull distri-
bution in Gao et al. (2018). The p-value of the distribution of the combined
distribution is much larger than in Gao et al. (2018). For example, the p-
value of the equatorial radius is 0.6575, while the p-value is only 0.0859 in
Gao et al. (2018).

We know that the log-logistic distribution is often used to analyze sur-
vival data, and its shape is similar to that of the log-normal and Weibull
distributions (Bennett 1983, Johnson et al. 2004, Raqab et al. 2018). The
logarithmic log-normal distribution is also known as the normal distribution
(or Gaussian distribution) (Singh 1998), and even a log-logistic distribu-
tion can generate a Weibull distribution (Abdel-Hamid & Albasuoni 2016).
Therefore, it can be determined that although the irregular satellites have
been regrouped and the number has increased, they follow similar shape
distributions, as shown in both the present paper (Figures 1-3) and Gao et
al. (2018).

5 Verification of the rationality of the statistical inference
results

5.1 Ananke group

According to the observation data of V and R, if their statistically pre-
dicted distributions are dpre,V and dpre,R, respectively, note that there is a
nonlinear relationship V = 4πR3/3 between these two characteristics. The
analytical distribution dana,V of V can then be analytically derived from
the statistically predicted distribution dpre,R of R. The same method can
also be applied to obtain the analytical distribution dana,R of R according
to the statistically predicted distribution dpre,V of V . Therefore, if dpre,V
and dana,V (or dpre,R and dana,R) have the same mathematical expression
or have matching PDF curves, then the statistical prediction results in Sec-
tion 3 have very high reliability from the perspective of strict analytical
derivation.

Let the statistically predicted PDF of R be fpre,R. Note that the deriva-
tive of R is

R
′

=
[3/(4π)]

1
3

3
V − 2

3 . (3)

The PDF of V can then be rewritten as

fana,V (V ;µ,σ) = fpre,R

 

�

3V

4π

�
1
3

;µ,σ

!

[3/(4π)]
1
3

3
V − 2

3 . (4)

Table 1 shows that V and R follow log-logistic distributions with param-
eters (3.17586, 1.10596) and (0.582917, 0.364002), respectively. The PDF
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Fig. 1. (a), (b), (c) and (d) are the best-fit CDFs and the observed CDF of
the current distributions and the previous distributions in Gao et al. (2018)
of the physical characteristics in the Ananke group, respectively.
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Fig. 2. (a) and (b) are the best-fit CDFs and the observed CDF of the
current distributions and the previous distributions in Gao et al. (2018) of
the physical characteristics in the Carme group, respectively.

of V can be obtained analytically by the statistically predicted PDF of R
as follows:

fana,V (V ;µ,σ) =
0.916e

2.747 ln

�

0.620V
1
3

�

−1.601

V

"

1 + e
2.747 ln

�

0.620V
1
3

�

−1.601
#2 . (5)
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Fig. 3. (a), (b), (c) and (d) are the best-fit CDFs and the observed CDF
of the current distributions and previous distributions in Gao et al. (2018)
of the physical characteristics in the Pasiphae group, respectively.
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From equation (2), the statistically predicted PDF of V can be written as

fpre,V (V ;µ,σ) =
1

σV

e
lnV −µ

σ

h

1 + e
lnV −µ

σ

i2 =
0.904e0.904 lnV−2.872

V (1 + e0.904 lnV−2.872)
2 . (6)

As shown in Figure 4, the analytically derived fana,V is in good agree-
ment with the statistically predicted fpre,V .

Fig. 4. Comparison of the PDF curves between the statistically predicted
distribution and the analytically derived distribution based on R in the
Ananke group

In the same way, based on R = (3V/4π)
1
3 , we can also analytically

derive the distribution of R from the statistically predicted distribution of
V as follows:

fana,R(R;µ,σ) = 4πR2fpre,V

�

4

3
πR3;µ,σ

�

. (7)

Thus, the PDF of R is analytically obtained as follows:

fana,R(R;µ,σ) =
2.713e0.904 ln(4πR3/3)−2.872

R
�

1 + e0.904 ln(4πR3/3)−2.872
�2 . (8)
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Correspondingly, the statistically predicted PDF of R can be written as

fpre,R (R;µ,σ) =
1

σR

e
lnR−µ

σ

(1 + e
lnR−µ

σ )2
=

2.747e2.747 lnR−1.601

R (1 + e2.747 lnR−1.601)
2 . (9)

The statistically predicted and analytically derived PDFs ofR are shown
in Figure 5. These PDFs match well with each other.

Fig. 5. Comparison of the PDF curves between the statistically predicted
distribution and the analytically derived distribution based on V in the
Ananke group

In addition, due to the linear relationship between C and R, the PDF of
R derived from the distribution of C by the aforementioned method must
be consistent with the result of the statistically predicted PDF of R (see
Figure 6).

Note that there is a mathematical relationship R =
p

S/4π between R
and the surface area. Let the statistically predicted PDF of S be fpre,S and
the analytically derived distribution of R be fana,R. We then have

fana,R (R;µ,σ) = 8πRfpre,S
�

4πR2;µ,σ
�

. (10)

As shown in Table 1, both R and S follow log-logistic distributions with
parameters (0.582917, 0.364002) and (3.69694, 0.727939), respectively. The
analytically derived PDF of R then becomes

fana,R(R;µ,σ) =
2.747e1.374 ln(12.566R2)−5.079

R
�

1 + e1.374 ln(12.566R2)−5.079
�2 . (11)
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Fig. 6. Comparison of the PDF curves between the statistically predicted
distribution and the analytically derived distribution based on C in the
Ananke group

Combining equations (9) and (11), Figure 7 shows the statistically pre-
dicted and analytically derived PDFs of R. They are in good agreement
with each other.

Figures 5-7 show the PDF curves of R obtained from the distributions
of V , C and S, respectively, and their shapes look extremely similar or even
the same. The rationality of the results is verified to some extent from the
perspective of the connection between different physical characteristics.

Similarly, the PDFs of S can be analytically derived from the distribu-
tion of R. We then have

fana,S(S;µ,σ) =
1

4
√
πS

fpre,R





s

S

4π
;µ,σ





=
1.374e2.747 ln(0.282

√
S)−1.601

S
h

1 + e2.747 ln(0.282
√
S)−1.601

i2 .

(12)

Note that the statistically predicted PDF of S can be written as

fpre,S(S;µ,σ) =
1

σS

e
lnS−µ

σ

�

1 + e
lnS−µ

σ

�2 =
1.374e1.374 lnS−5.079

S (1 + e1.374 lnS−5.079)
2 . (13)

These two PDFs are illustrated in Figure 8 and obviously match very
well.
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Fig. 7. Comparison of the PDF curves between the statistically predicted
distribution and the analytically derived distribution based on S in the
Ananke group

5.2 Carme group

By using the same method, the comparison of the PDF curves from the
perspective of statistical prediction and analytical derivation is shown in
Figures 9 and 10. These two types of curves also agree well with each
other.

5.3 Pasiphae group

In this group, the previous methods are also used to compare the PDF
curves from the perspective of statistical prediction and analytical deriva-
tion, as shown in Figures 11 and 12. However, although the two types of
curves in this group have a certain degree of agreement, the effect of coin-
cidence is not as good as in the Ananke group and the Carme group.

Because 5 irregular moons in the Pasiphae group were regrouped into
the Ananke group, the distribution of the physical characteristics of this
group underwent relatively large changes. As described in Section 3.3, the
p-values corresponding to the physical characteristics of the log-logistic dis-
tribution are also very large, and the range of the confidence interval corre-
sponding to the parameter values of the log-logistic distribution is relatively
compact, so we believe that with the discovery of more moons belonging to
this group, this distribution will be a potential distribution with a very high
probability, not only because the current physical characteristics almost fol-
low this distribution in the Ananke group and Carme group. Therefore, we
now test the consistency of the physical characteristics of the Pasiphae
group when they follow log-logistic distributions from the perspective of
analytical derivation and statistical prediction.
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Fig. 8. Comparison of the PDF curves between the statistically predicted
and analytically derived distributions based on R in the Ananke group

According to Figures 13-16, it is found that the degree of agreement
in the PDF curves between the statistically predicted and analytically de-
rived distributions is much better than those shown in Figures 11 and 12,
respectively.

Conclusions

Based on 21 commonly used continuous distributions, we apply K-S tests
and maximum likelihood estimation to analyze the best-fit distributions
of seven physical characteristics of the irregular moons in Jupiter’s three
major groups. These seven physical characteristics of the moons are the
equatorial radius, equatorial circumference, volume, surface area, surface
gravity, mass and escape velocity. The results of the statistical inference
show that all seven physical characteristics of the moons in the Ananke
group follow log-logistic distributions, and six physical characteristics of
the moons in the Carme group also follow this distribution except the es-
cape velocity, which follows a t location-scale distribution or log-logistic
distribution. In addition, more than half of the physical characteristics of
the moons in the Pasiphae group follow log-logistic distributions. This phe-
nomenon may be due to the clear decrease in the number of moons in the
Pasiphae group after regrouping. We believe that this phenomenon will be-
come more apparent as more Jupiter’s moons belonging to the Pasiphae
group are discovered. Compared with the results in (Gao et al., 2018), it is
found that the distributions in this paper are much better and more consis-
tent in describing the physical characteristics of Jupiter’s moons, and the
p-value is much larger in the current Pasiphae group.
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(a)

(b)

(c)

Fig. 9. (a) shows the statistically predicted and analytically derived PDF
curves of V based on R. (b) shows the statistically predicted and ana-
lytically derived PDF curves of R based on V . (c) shows the statistically
predicted and analytically derived PDF curves of R based on S.
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Fig. 10. Comparison of the PDF curves between the statistically predicted
and analytically derived distributions in the Carme group

Fig. 11. Comparison of the PDF curves between the statistically predicted
and analytically derived distributions in the Pasiphae group
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(a)

(b)

(c)

Fig. 12. (a) shows the statistically predicted and analytically derived PDF
curves of R based on V . (b) shows the statistically predicted and ana-
lytically derived PDF curves of R based on S. (c) shows the statistically
predicted and analytically derived PDF curves of S based on R



Distributions of Jupiter’s irregular moons 133

Fig. 13. Comparison of the PDF curves of V between the statistically pre-
dicted and analytically derived distributions based on R.

Fig. 14. Comparison of the PDF curves of R between the statistically pre-
dicted and analytically derived distributions based on V .
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Fig. 15. Comparison of the PDF curves of R between the statistically pre-
dicted and analytically derived distributions based on S.

Considering that all the physical features are not necessarily indepen-
dent, the PDFs of relevant physical characteristics can also be obtained
through strict analytical derivation and compared with the statistical pre-
diction results. Therefore, the rationality of these distributions is further
proved to some extent, especially the log-logistic distribution in this paper,
which can describe the physical characteristics of most of Jupiter’s irregular
moons well, and we expect that this distribution will be helpful for future
research on Jupiter’s moons that are poorly understood or have not been
discovered.

Results of statistical inference

See Tables A1-A12. They are available only in the electronic version of Bul-
garian Astronomical Journal.

Data Availability
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corresponding author upon request.
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