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Abstract. The aim of the paper is to study the motion of a test particle and its property
of stability. The particle is moving under the influence of a heterogeneous primary having
N-layers with different densities. The particle is also under the influence of the secondary
body which is producing the modified Newtonian potential. The system is perturbed by the
small perturbations in Coriolis as well as centrifugal forces. We evaluate the equations of
motion of the test particle under the influence of the above said perturbations. From the
above system of equations of motion, we reveal locations of stationary points as well as their
stability, analytically and numerically.

Key words: Heterogeneous primary body, Secondary body, Modified Newtonian potential,
Stability

1 Introduction

The circular restricted three-body problem is widely studied due to its wide
applications. It is used when the two massive bodies (known as primary and
secondary bodies) are moving in circular orbits around their common center
of mass in the same plane. These two bodies impose the newtonian forces
on the third smallest body (known as infinitesimal body). The third body
is not having any affect on the other two massive bodies. (Szebehely [1967],
Henon [1969], Zagouras [1991], Murray et al. [1999], Pal [2014], Barrabes et
al. [2015], Pathak et al. [2017], Mia [2020].)

Celestial mechanics is the branch of applied mathematics and mathemati-
cal physics where researchers are investigating the motion of the minor body
under the influence of the other bigger celestial bodies. These motions form the
various types of configurations such as restricted problems (three-body, four-
body, five-body as well as N-body) either in circular or elliptical orbits with
many special configurations (Copenhagen, Robes, Hill’s etc.). These problems
with varied number of configurations are attracting many researchers where
they are considering one of these configurations with the supposition of differ-
ent perturbations. Some of the related works are: Palmore [1973, 1975, 1976],
Sharma et al. [1976], Simo [1978], Hallan et al. [2001], Beevi et al. [2012],
Ansari [2018], Abouelmagd et al. [2019], Ansari et al. [2019], Abouelmagd et
al. [2020].

The restricted problems take in account the shapes of the bigger celes-
tial bodies as irregular (triaxial rigid bodies, spherical bodies, oblate bodies,
prolate bodies, heterogeneous bodies having N - layers with different den-
sities, finite straight segments, cylindrical bodies) due to which the motion
of the smallest body is perturbed (Abouelmagd et al. [2013], Singh et al.
[2015], Ansari [2017], Ansari et al. [2019], Ansari [2020], Ansari et al. [2020]).

Bulgarian Astronomical Journal 35, 2021

76



A. A. Ansari

Some researchers and scientists have conducted their studies by suppos-
ing various types of force factors (such as Newtonian forces, modified New-
tonian forces, Manev-type potential, effect of charge, solar radiation pres-
sure, Yarkovsky effects, Yukawa effects, albedo effects, variable mass, reso-
nance, viscous force, asteroids belt, Coriolis and centrifugal forces, etc.) due
to which the motion properties of the smallest body are affected (Bhatnagar
et al. [1978], Singh et al. [1985], Kokubun [2004], Abdulraheem et al. [2008],
Lukyanov [2009], Ershkov [2012], Abouelmagd et al. [2012], Ansari et al. [2019],
Zotos et al. [2020], Ansari et al. [2020], Ferdaus [2020]).

From the literature review, it is clear that all the celestial bodies are having
irregular shapes with many layers and they are affected by many perturbing
forces. Till now no researchers have studied the restricted three-body prob-
lem with the combination of heterogeneous primary and modified newtonian
potential by secondary and this subject needs to be explored. Therefore, in
this paper we have considered the restricted three-body configuration where
the primary body has a heterogeneous shape and N-layers with different den-
sities for each layer, while the secondary is a point mass which is producing
the modified Newtonian potential. We have also considered that the system
is perturbed by the small perturbations in the Coriolis and centrifugal forces.
Further, we have investigated the effect of these perturbations on the motion
properties of the smallest body (the third infinitesimal body).

The paper is organized in 7 parts. The literature review is presented in the
introduction (section 1). The potentials between the bodies are introduced
in the Gravitational potential used in the problem (section 2). In section 3,
Equations of motion, we have evaluated the equations of motion with the
various perturbations. In section 4, Stationary points, we have determined
the locations of stationary points analytically in the two subsections 4.1 and
4.2, The collinear stationary points and Triangular stationary points, respec-
tively. In section 5, Stability, we have performed the stability of the stationary
points with the various perturbations analytically. Further in section 6, Nu-
merical studies, there are two subsections 6.1 and 6.2 illustrating numerically
the locations of stationary points and their stability respectively. Finally the
conclusion is drawn in section 7.

2 Gravitational Potential used in this problem

Let the primary body m1 be heterogeneous with N-layers having different
densities ρi and axes (ai , bi , ci), i = 1, 2, 3,− − −−, N, while the third body
with mass m is a point mass. And also

ρi < ρi+1, ai < ai+1, bi < bi+1, ci < ci+1, i = 1, 2, 3,− −−−−−, N − 1.

Then the gravitational potential between m1 and m with gravitational con-
stant G, will be (see Ansari et al. [2020])

U1 = −Gm1 m

r1
− Gm

2 r3
1

[

h11 −
3

r2
1

(

h12 y
2 + h13 z

2
)

]

, (1)
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Fig. 1. Geometric plan for the problem with heterogeneous primary and modified Newtonian
potential of secondary

where,

h11 =
4π

3

N
∑

i=1

1

5
(ρi − ρi+1)ai bi ci(2 a

2
i − b2i − c2i ),

h12 =
4π

3

N
∑

i=1

1

5
(ρi − ρi+1)aibici(a

2
i − b2i ),

h13 =
4π

3

N
∑

i=1

1

5
(ρi − ρi+1)aibici(a

2
i − c2i ).

Further, we assumed that the secondary body of mass m2 is producing
modified Newtonian potential with perturbing parameter ǫ. Therefore the
gravitational potential between the secondary body and the third body of
mass m with separation distance r2 is (see Abouelmagd [2018,2020]):

U2 = −Gm2 mr2

r2
2
+ ǫ

, (2)

3 Equations of motion

This problem contains three masses,m1 ( primary body),m2 (secondary body)
and m (the smallest body), where m1 is a heterogeneous body with N−layers
having different densities ρN , and m2 is a point mass which is producing mod-
ified Newtonian potential. Both primary and secondary are moving in circular
orbits around their common center of mass which is taken as origin O with
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radii ℓ1 and ℓ2, respectively, and ℓ2 > ℓ1. The system is also perturbed by
the small perturbations in the Coriolis and centrifugal forces with the param-
eters α and β, respectively. The third smallest body of mass m is moving in
space and follows the synodic coordinate system which is rotating with angular
velocity n (Fig. 1).

– The total gravitational potential exerted by both bodies (primary and
secondary) on the third body will be:

V = −Gm1m

r1
− Gm

2 r3
1

[

h1 1 −
3

r2
1

h1 2 y
2

]

− Gm2 mr2

(r2
2
+ ǫ)

.

For the dimensionless variables, we have m1 + m2 = 1, G = 1 and the
separation distance R between the primaries is unity i.e R = ℓ1 + ℓ2 = 1,

and also µ =
m2

(m1 + m2)
. Hence m1 = 1 − µ and Jj are the dimensionless

quantities of h1j for j = 1, 2. Therefore the equations of motion of the third
small body in the cartesian coordinate will be as follows:

ẍ− 2nα ẏ = Ux,

ÿ + 2nα ẋ = Uy,
(3)

with

n2 = 1− 3 ǫ+
3

2

(

J1

1− µ

)

,

U =
n2 β

2
(x2 + y2) +

(1− µ)

r1
+

1

2 r3
1

[

J1 −
3

r2
1

J2 y
2

]

+
µ r2

r2
2
+ ǫ

, (4)

Ux = n2 β x − µ (x− 1 + µ) (r22 − ǫ)

r2 (r22 + ǫ)2
− (1− µ)(x+ µ)

r3
1

− 3 (x+ µ)

2 r5
1

(

J1 −
5

r2
1

J2 y
2

)

,

(5)

Uy =

(

n2 β − µ (r22 − ǫ)

r2 (r22 + ǫ)2
− (1− µ)

r3
1

− 3

2 r5
1

(

J1 + 2J2 − 5

r2
1

J2 y
2

))

y,

(6)

r21 = (x + µ)2 + y2 & r22 = (x− 1 + µ)2 + y2. (7)
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4 Stationary points

For the stationary points, we have to put zero to all the derivative with respect
to time in the system (3), hence

n2 β x − µ (x+ µ− 1) (r22 − ǫ)

r2 (r
2
2
+ ǫ)2

− (1− µ)(x+ µ)

r3
1

− 3 (x+ µ)

2 r5
1

[

J1 −
5

r2
1

J2 y
2

]

= 0,

(8)

(

n2 β − µ(r22 − ǫ)

r2 (r22 + ǫ)2
− (1− µ)

r3
1

− 3

2 r5
1

(

J1 + 2J2 − 5

r2
1

J2 y
2

))

y = 0,

(9)
After solving equations (8) and (9), we can find the locations of stationary

points in two cases.

4.1 Case-I: Locations of collinear stationary points:

Collinear stationary points can be obtained from equation (8) by taking x 6= 0,
y = 0.

n2 β x − µ (x+ µ− 1) ((x + µ− 1)2 − ǫ)

|x+ µ− 1| |((x + µ− 1)2 + ǫ)|2 − (1− µ)(x+ µ)

|x + µ|3

− 3 (x+ µ)J1
2 |x + µ|5 = 0,

(10)

After putting x + µ = ξ and more simplification of Eq. (10), we get the
new equation in ξ of ninth degree as:

(91 ǫ − 6 ) ξ9 + (55 ǫ − 5 ) ξ8 + (30 ǫ − 4 ) ξ7

+(14 ǫ − 3 ) ξ6 +

(

−2 + 5 ǫ +
β

µ

(

1− 3 ǫ+
3J1

2 (1− µ)

))

ξ5

+

(

− 1− β + ǫ + 3β ǫ − 3J1 β

2 (1− µ)

)

ξ4 + (1 − 1

µ
) ξ2 − 3J1

2µ
= 0

(11)

Eq. (11) is a ninth degree equation, therefore it will give nine values of ξ. To
determine the locations of collinear stationary points, we divide x-axis in three
different subintervals as x ∈ (−∞,−µ), x ∈ (−µ, (1− µ)) and x ∈ (1− µ, ∞).
From further investigations, we got one real value of x within each interval.
Hence out of nine roots of Eq. (11), six will be complex and three will be real
values. These three values will be the location of collinear stationary points,
in general these are denoted as L1, L2 and L3.
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4.2 Case-II: Locations of triangular stationary points:

Non-collinear stationary points can be obtained from equations (8) and (9)
when x 6= 0 and y 6= 0. If both the massive bodies are point masses, then
r1 = 1, r2 = 1 will be the solution. But in our case the primary is having
heterogeneous shape, hence let us assume the solution to be

r1 = 1 + δ1, r2 = 1 + δ2, δ1 << 1, δ2 << 1,

Then, from Eqs. (7), we get



















x =
1

2
− µ+ δ1 − δ2,

y = ±
√
3

2

(

1 +
2

3
(δ1 + δ2)

)

.

(12)

Putting the values of r1, r2, x and y in Eqs. (8) and (9), as well as neglecting
the higher powers of δi (i = 1, 2), we obtain

δ1 =















































































−µ+ β µ+ µ2 − β µ2 +

(

1− 2β + β2

3

)

+ǫ

(

2β − 2β2 − 4µ+ 5β µ+ 2µ2 − 11β µ2

3

)

+ J1

(

1− β − β

1− µ
+

β2

1− µ
− 3µ

2
+

3β µ

2 (1− µ)

− 3β µ2

2(1− µ)

)

+ J2

(

−11

4
+

11β

4
+

53µ

8
− 5β µ

2

)

− 1 + β + 3µ− 3µ2 + ǫ

(

−3β + 2µ2 +
5µ− 2β µ

3

)

+ J1

(

−4 +
5β

2
+

3β

2(1 − µ)
+

15µ

2

)

+ J2

(

35

4
− 25β

8
− 195µ

8

)















































































(13)

&
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δ2 =





















































































1− 2β + β2 − 3µ+ 3β µ+ 3µ2 − 3β µ2

− ǫ
(

− 6β + 6β2 − 3µ + 3β µ+ 9µ2 − 9β µ2
)

− J1

(

−3 + 3β +
3β

(1− µ)
− 3β2

(1− µ)
+

15µ

2

−15β µ

2
− 9β µ

2 (1− µ)
+

9β µ2

2 (1− µ)

)

− J2

(

21

4
− 3β

4
− 171µ

8
+

135β µ

8

)

1− β − 3µ+ 3µ2

+ ǫ

(

3β − 5µ

3
+

2β µ

3
− 2µ2

)

+ J1

(

4− 5β

2
− 3β

2(1− µ)
− (15µ)

2

)

+ J2

(

−35

4
+

25β

8
+

195µ

8

)





















































































. (14)

Eq. (12) is representing the locations of triangular stationary points, where
the positive sign of y represents L4 and the negative sign of y represents L5.

5 Stability of stationary points

We can write the variational equation of system (3) by putting x = Lx +
ξ, ξ << 1 and y = Ly + η, η << 1. We obtained

ξ̈ − 2nα η̇ = U0
xx ξ + U0

xy η,

η̈ + 2nα ξ̇ = U0
yx ξ + U0

yy η.

(15)

The superscript 0 indicates that the derivatives are to be calculated at the
corresponding stationary point.

Let us suppose the trial solution as

ξ = C1 e
λ t, η = C2 e

λ t.

Using the values of the trial solution in Eq. (15), we have
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C1

(

λ2 − U0
xx

)

+ C2

(

− 2nαλ− U0
xy

)

= 0,

C1

(

2nαλ− U0
yx

)

+ C2

(

λ2 − U0
yy

)

= 0.
(16)

We will have a non-trivial solution if

∣

∣

∣

∣

∣

∣

λ2 − U0
xx − 2nαλ− U0

xy

2nαλ− U0
yx λ2 − U0

yy

∣

∣

∣

∣

∣

∣

= 0.

From the above determinant, we have

f(λ) = λ4 +A2 λ
2 +A1 λ+A0, (17)

with

A2 = 4n2 α2 − U0
xx − U0

yy,

A1 = 2nα
(

U0
xy − U0

y x

)

,

A0 = U0
xxU

0
yy − U0

xy U
0
yx.

(18)

The classical circular restricted three-body problem has five stationary
points out of which three are collinear and two are triangular stationary points.
The three-collinear stationary points are always unstable while triangular sta-
tionary points are stable for some values of mass ratio µ (for more detail see
Szebehely [1967]). Now, if λ → ∞, then f(λ) → ∞, and f(0) = A0. Here the
stability of the stationary points will depend on the value of A0, i.e. if A0 < 0,
then there will be at least one positive root, so the stationary points will be
unstable.

6 Numerical Studies

6.1 Location of stationary points

To confirm and compare our analytical work for the locations of stationary
points, we have illustrated the numerical work in two cases: the classical case
(µ = 0.0019; α = 1; β = 1; J1 = 0; J2 = 0; ǫ = 0) and the perturbed case (µ
= 0.0019; α = 1.2; β = 1.2; J1 = 0.001; J2 = 0.00012; ǫ = 0.002). In both the
cases we got five stationary points out of which three are collinear (L1, L2 and
L3), while two are triangular stationary points (L4 and L5). From figure 2(a),
we observed that in the perturbed case all the stationary points are moving
towards the origin. This movement near L2 and L3 can be clearly seen in figure
2(b) which is zoomed part of figure 2(a).
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(a) Locations for the classical case (blue)
and the perturbed case (orange).
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(b) Zoomed part of figure 2(a) near L2 and
L3.

Fig. 2. Locations of stationary points in x− y–plane.

6.2 Stability Analysis

Using Eq. (17), we illustrated the nature of stationary points. We solved
Eq. (17) numerically for all mentioned parameters to evaluate the charac-
teristic roots corresponding to each stationary point, which we give and rep-
resented in Table 1. From this table we observed that corresponding to the
collinear stationary points, for both cases (classical case and perturbed case),
we get at least one positive real root or positive real part of the complex roots.
Therefore, all the collinear stationary points are unstable. On the other-hand,
corresponding to triangular stationary points, for both cases, we obtained all
the characteristic roots as purely imaginary. Hence both the triangular sta-
tionary points in both cases are stable.

7 Conclusion

This study concerns the stability properties of the motion of a test parti-
cle which is moving under the influence of the heterogeneous primary having
N -layers with different densities ρi of each layers, and a point mass of the
secondary body producing the modified Newtonian potential with modified
parameter ǫ. The obtained equations of motion are different from the classical
case by the perturbation parameters α, β, J1, J2 and ǫ. The effect of these
parameters can be easily seen in the analytical and numerical studies of the
locations and stability of the stationary points. We got five stationary points,
out of which three are collinear and two are triangular stationary points as
in the classical case. We also observed that all the stationary points are mov-
ing towards the origin under the perturbation effects. We further observed in
the study of stability that the collinear stationary points are always unstable,
while triangular stationary points are stable as in the classical case.
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Table 1. The characteristic roots corresponding to stationary points in x−y-plane and their
nature in two cases

Stationary Point Roots Nature

Cases x− Co. y − Co.

Classical Case
− 1.00047 0.00000 ± 1.00260 i Unstable

± 0.08845

0.91471 0.00000 ±2.20686 i Unstable
± 2.72821

1.08639 0.00000 ± 1.95430 i Unstable
± 2.31375

0.49810 ± 0.86602 ± 0.11388 i Stable
± 0.99349 i

Perturbed Case − 0.94379 0.00000 ± 1.46564 i Unstable
± 0.06197

0.91010 0.00000 ±2.05276 i Unstable
± 1.23108

0.95820 0.00000 ± 4.02490 i Unstable
± 1.03172

0.48991 ± 0.80450 ± 0.09490 i Stable
±1.46205 i
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