
Investigation of nonlinearity
and chaos in solar flare index signal

Shankhachur Mukherjee1, Swetadri Samadder2 and Koushik Ghosh3
1 Department of Physics, The University of Burdwan, Golapbag,Burdwan-713104, West

Bengal, India
ahlechaos@gmail.com

2 Department of Mathematics, Fakir Chand College, Diamond Harbour, South
24Parganas, Pin-743331, India

3 Department of Mathematics, University Instituteof Technology, The University of
Burdwan Golapbag (North), Burdwan 713104, West Bengal, India

ahlechaos@gmail.com

(Submitted on 5.11.2020; Accepted on 30.03.2021)

Abstract. In the present work daily Solar Flare Index developed at Mc-Math-Hulbert Solar
Observatory during the period 1st January, 1966 to 31st December, 2008 has been taken
into consideration. As study of nonlinearity in a signal is quite motivating to understand
its intrinsic nature and thereby provides exciting scope to explore further knowledge of
the observed phenomenon, so it is indispensable to examine the presence of nonlinearity in
the solar flare index signal. Moreover, the presence of nonlinearity is regarded as a direct
implication of chaos which serves to be an essential element of complexity, natural to the
underlying system or phenomenon. In order to understand this nonlinearity in the present
signal Delay Vector Variance (DVV) analysis has been employed here to address our goal,
which reveals the presence of some form of nonlinearity in it. Further, to judge the presence
of chaos in the said signal, Recurrence Plot (RP) analysis with Recurrence Quantification
Analysis (RQA) has also been taken into consideration. The present study possibly enables
to establish a deterministic nonlinear chaotic profile of the phenomena of rapid magnetic
energy bursts observed in the solar atmosphere.
Key words: Solar Flare Index, nonlinearity, chaos, delay vector variance, recurrence plot,
recurrence quantification analysis.

1.Introduction

A solar flare is a sudden brightening observed over the Sun’s surface or the
solar limb, which is interpreted as energy release of large amount, up to the
order of 6 × 1025 Joules, of energy (about a sixth of the total energy output
of the Sun each second). Solar flare is a sudden eruption of magnetic energy
released on or near the surface of the Sun, usually associated with sunspots,
accompanied by bursts of electromagnetic radiation and particles. Solar flares
strongly influence the local space weather in the vicinity of the Earth. They
can produce streams of highly energetic particles in the solar wind, known as
a solar proton event or “coronal mass ejection” (CME). These can impact the
Earth’s magnetosphere and present radiation hazards to spacecraft, astronauts
and cosmonauts. ‘Solar Flare Index’ is the product of the intensity scale of
importance and the duration of the flare in minutes (Kleczek, 1952).

In everyday language, ‘chaos’ means the situation or state exactly opposite
of order. It originates from the Greek word “khaox” meaning ‘empty space’,
specifying the elemental emptiness before the origin of everything else, as de-
scribed in Greek cosmology. The phenomenon of chaos exhibited by certain
dynamical systems in real world possesses infinitely complex pattern of be-
haviour lying just beyond the edge of total order. A system is said to be
chaotic if it is predictable in principle and yet is unpredictable in practice
over long periods due to its behaviour of an elevated sensitive dependence
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on initial conditions. The sensitivity mentioned above leads to an exponential
growth of errors generated in the initial condition resulting randomness in the
behaviour of the chaotic systems. In other words, if in a phenomenon (a little
perturbation) at initial level can give rise to significantly magnified changes
in its future levels, then that phenomenon is termed as chaotic. The takeaway
from this analysis is that for a chaotic system no long-term prediction should
be performed; only short-term prediction can be made after a careful study.
Chaos deals with nonlinearity and nonlinearity is a necessary condition for the
presence of chaos in a dynamical system.

The present work focuses on the possible nonlinear and chaotic behavior
of the solar flare index obtained from Mc-Math-Hulbert Solar Observatory,
which is a signal containing daily record of solar flare index (NOAA, 2019).

Here, solar flare index data between Jan 01, 1966 and Dec 31, 2008 is taken
under investigation which covers four solar cycles (solar cycles 20–23).

Five measures of solar flare importance are added to obtain this index :
(NOAA, 2019):

1. Sudden Ionospheric Disturbance importance (scale 0–3);
2. H-α flare importance (scale 0–3);
3. 10.7 cm solar radio flux magnitude (characteristic of log of flux);
4. Solar radio spectral type (Type II= 1, Continuum=2, and Type IV with

duration greater than 10 minutes= 3) and
5. Magnitude of 200 MHz flux (characteristic of log of flux).

Double Exponential Smoothing (Brown, 1956) has been employed on the
present solar flare index signal to de-trend it. Delay Vector Variance (DVV)
analysis (Gautama, Mandic and Van Hulle, 2004; Ahmed, 2010) has been
carried out over this immediately obtained smoothed signal for the detection
of nonlinearity, followed by subsequent analysis of recurrence pattern evident
from the Recurrence Plot (RP) (Eckmann, Kamphorst and Ruelle, 1987), with
Recurrence Quantification Analysis (RQA) (Webber and Zbilut, 1994; Zbi-
lut and Webber, 1992; Atay and Altntas, 1999; Marwan, Wessel, Meyerfeldt,
Schirdewan and Kurths, 2002; Marwan, Carmen Romano, Thiel and Kurths,
2007; Marwan, 2011; Hossain, Ghosh, Ghosh and Bhattacharjee, 2015; Samad-
der, Ghosh and Basu, 2015) to examine the possibility of chaos occurring in
it.

2.Aims and Objectives

The present work aims to explore the behaviour of the solar flare index from
the perspective of nonlinearity and chaos. The specific objectives are:

1. to find out whether the profile of the signal of solar flare index is nonlinear
2. to explore if solar flare index is deterministic or stochastic
3. to investigate further whether chaos is present in the signal of solar flare

index if the profile is nonlinear.
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3.Research Questions

The following questions are investigated in the present work:
First, does the mechanics of reorganization of magnetic loops, resulting

from rapid conversion of a large amount of magnetic energy previously stored
in the solar corona and dissipated through magnetic reconnections, possess
nonlinear profile?

Second, if nonlinear, is this process deterministic?
Third, is the process of sudden release of magnetic energy on, or near the

surface of the Sun sensitive to the initial conditions? Alternatively, can we
make a long term prediction for this physical process?

4.Theory

4.1. Double Exponential Smoothing

The Double Exponential Smoothing, or Second Order Exponential Smoothing,
was first developed by Brown (1956), later modified by Holt (1957) and Win-
ters (1960), to effectively remove trends from a given signal which basically
distorts the relationship of one’s interest. The method of double exponential
smoothing (Brown, 1956; Holt, 1957; Winters, 1960) is governed by the fol-
lowing system of equations:

x
(p)
1 = x1 b1 = x2 − x1 (1)

x
(p)
i = αxi + (1− α)(x

(p)
i−1 + bi−1) (2)

and bi = β(x
(p)
i − x

(p)
i−1) + (1− β)bi−1 (3)

(i = 2,3,4,...,N)

where {xi}
N
i=1 is the observed discrete signal,

{

x
(p)
i

}N

i=1
is the smoothed

signal, and {bi}
N
i=1 is the trend traced in the signal, α and β are the ‘signal

smoothing parameter’ and ‘trend smoothing parameter’, respectively. We have
0 < α < 1 and 0 < β < 1. In this current work, to maintain the positional
importance, the values of α and β are taken as 0.68 and 0.74, respectively.
This pre-processing, using double exponential smoothing, has been performed
as the present signal contains some trend with possible existence of chaos,
and double exponential smoothing can effectively remove the noise, as well as
the trend as perceived from the above analysis. The original solar flare index
signal and its corresponding smoothed one are represented by the graphical
illustration shown in Figure 1 and Figure 2.

4.2. Delay Vector Variance (DVV) Analysis

A time-series manifested by a temporal signal xi can be represented in “phase
space” by the method of time delay embedding. When a time delay is em-
bedded in it, it can be expressed by a set of delay vectors (DVs) x(k) =
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Fig. 1. Original Solar Flare Index Signal

Fig. 2. Smoothed as well as de-trended Solar Flare Index Signal by Double Exponential
Smoothing

[xk−mτ , · · · , xk−τ ] (where k = 1, 2, · · · , N), the embedding dimension is given
bym and the embedded time delay lag is denoted by τ . Inside a certain Euclid-
ian distance τd to DV x(k), DVs are clustered which are denoted by λk(τd). The
mean target variance σ∗2 is calculated over all sets of λk : k = 1, 2, · · · , N to get
optimal embedding dimension m. The embedding dimension which generates
minimum σ∗2 is the optimal one. The variation of the standardized distance
facilitates the entire range of pair wise distances for the present examination
(Gautama, Mandic and Van Hulle, 2004; Ahmed, 2010; Samadder, Ghosh and
Basu, 2015; Hossain, Ghosh, Ghosh and Bhattacharjee, 2012). To standardize
the distance axis, τd is supplanted by (τd−µd)/σd, where µd and σd are mean
and standard deviation, respectively, simulated over all pair wise distances
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between DVs given by :

d(i, j) = ‖x(i) − x(j)‖; i 6= j (4)

The DVV plots are generated by plotting target variance σ∗2(τd) vs. (τd −
µd)/σd. The estimation of the noise present in the signal is given by minimum
value of target variance σ∗2

min = minτd{σ
∗2(τd)}. The presence of noise is over-

riding in case of stochastic components. Hence, stochastic components should
possess larger values of σ∗2

min. On the other hand, smaller values of σ∗2
min indi-

cate that the signal is deterministic. As all the DVs are interior to the same
Universal set, and the variance of the targets is identical to the variance of
the signal for maximum span, the DVV plots converge to unity at the extreme
right.

Iterative Amplitude Adjusted Fourier Transform (IAAFT) (Kugiumtzis,
1999; Schreiber and Schmitz, 2000) has been used to obtain surrogate signal.
The DVV plots of these surrogated signals are obtained using optimal embed-
ding dimension of the original one. A DVV Scatter diagram can be composed
by plotting target variance σ∗2(τd) of the original signal along horizontal axis
and mean of σ∗2(τd) of surrogate signal along vertical axis. If the DVV plots of
the surrogate and the original signal are analogous, then DVV Scatter diagram
coincides with the bisector line and the signal is said to be linear. Else, if the
two DVV plots are not similar, then DVV Scatter diagram deviates from the
bisector line and the signal is said to be nonlinear. The nonlinearity can be
understood as the root mean square error (RMSE) between the σ∗2(τd) of the
original signal and mean of the σ∗2(τd) of the surrogate signal, shown below :

RMSE =

√
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2

(5)

where σ∗2
s,k(τd) is the target variance at span τd for the k-th surrogate, and

the average is considered over all span of τd valid in all the surrogate and
DVV plots (Ahmed, 2010; Samadder, Ghosh and Basu, 2015; Hossain, Ghosh,
Ghosh and Bhattacharjee, 2012).

4.3. Recurrence Plot (RP) Analysis

A Recurrence Plot (RP) (Eckmann, Kamphorst and Ruelle, 1987) is a visual
way to see the recurrence pattern of a dynamical system. A recurrence is
defined as the return of the trajectory in its earlier state. A recurrence occurs
when the system returns to the neighbourhood of an earlier point in the phase
space. If a point −→xi ∈ Rm is in a trajectory −→x1,−→x2, · · · ,−→xN , then the recurrence
matrix R is expressed as :

Ri,j(ε) = Θ (ε− ‖−→xi −−→xj‖) ; i, j = 1, 2, · · · , N (6)
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where N is the number of points in the trajectory, ε is the appropriate thresh-
old distance, Θ(·) is the Heaviside function, i.e., Θ(a) = 0 if a < 0, and
Θ(a) = 1 if a ≥ 0 and ‖ · ‖ is a suitable norm. Hence, R is a matrix with
elements either 0 or 1 only, and a Recurrence Plot is a graphical representa-
tion of R, generated by staining a black dot for every 1 and white dot for
every 0. Therefore, the RPs have very long diagonal lines for regular signals,
very short diagonal lines for signals probably with sensitive dependence to the
initial conditions and almost no diagonal line for homogeneous distribution of
stochastic signals.

4.4. Recurrence Quantification Analysis (RQA)

The recurrence quantification analysis (RQA) (Webber and Zbilut, 1994; Zbi-
lut and Webber, 1992; Atay and Altntas, 1999; Marwan, Wessel, Meyerfeldt,
Schirdewan and Kurths, 2002; Marwan, Carmen Romano, Thiel and Kurths,
2007; Marwan, 2011; Hossain, Ghosh, Ghosh and Bhattacharjee, 2015; Samad-
der, Ghosh and Basu, 2015) is an efficient quantitative approach to study
nonlinear data. It quantifies the number and duration of recurrences of a time
series data occurring in its recurrence plot.

We estimate four recurrence variables. The first one is %REC which quan-
tifies the percentage of recurrent points existing within predefined threshold.
It estimates the probability that a specific state will recur by calculating black
dots in the recurrence plot. %REC ranges between 0% to 100%. 0% indicates
no recurrent point and 100% indicates all recurrent points in RP. More the
%REC, more the chance of time series being regular. REC is expressed as

REC(εi) =
1

N2

N
∑

i,j=1

Ri,j(εi) (7)

The second recurrence variable is %DET, or predictability, which quantifies
the ratio of recurrent points forming diagonal lines to all recurrent points. The
value of %DET is between 0% to 100%. 0% presents stochastic time series and
100% indicates deterministic time series. Any value between them indicates
the possibility of chaotic time series. DET is given by

DET =

N
∑

i,j=1
Di,j

N
∑

i,j=1
Ri,j

(8)

where
Di,j =1,if (i, j), (i+ 1, j + 1) and (i− 1, j − 1) are recurrent, and 0,

otherwise.
The third recurrence variable is %LMAX, i.e., linemax, which provides

length of the longest diagonal line segment in the recurrence plot, except the
main diagonal line. It is inversely proportional with Lyapunov exponent (Eck-
mann et al., 1987), i.e., shorter LMAX implies chaotic time series and longer
LMAX implies non-chaotic time series.
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If Nl is the number of diagonal lines and li is the length of i-th diagonal
line, then

LMAX = max(li) where i = 1, 2, · · · , Nl (9)

The fourth recurrence variable is ENTR, i.e., Shannon information entropy
of all diagonal line lengths distributed over integer bins in a histogram. It
estimates the probability to find a diagonal line of length l in RP. ENTR is
given by

ENTR = −
Nl
∑

i=1

p(l) ln p(l) (10)

where p(l) is the probability distribution of lengths of diagonal lines. En-
tropy quantifies the complexity of the deterministic structure in the system.
High entropy indicates non-chaotic nature and low entropy indicates chaotic
nature of the data.

5. Results

In this work, our study is focused on the signal of solar flare index obtained
from McMath-Hulbert Solar Observatory (NOAA, 2019) ranging from Jan 01,
1966 to Dec 31, 2008. First, the data is smoothed using double exponential
smoothing and then DVV analysis is performed on the smoothed data to check
if the data is nonlinear and if yes, if the data is deterministic in profiles or not.
To have a proper analysis, it is essential to determine the proper embedding lag
and embedding dimension separately (Kodba et al, 2005). Here the obtained
embedding dimension (m) is 6 and embedding lag (τ) is 10. Minimum value
of target variance σ∗2

min 0.2295, indicating possibly deterministic trend of the
data, and corresponding root mean square error (RMSE) is 0.0323, clarifying
nonlinearity of the data.

Figure 3 and Figure 4 depict the DVV analysis of the present smoothed
Solar Flare Index signal.

From Figure 3, it can be observed that the DVV lines for the original and
surrogate are somehow dissimilar. Figure 4 confirms that the scatter diagram
deviates from the bisector line, and hence the present signal possesses some
form of nonlinearity.

Smoothed Solar Flare Index data are normalized before producing RP plot
to get a clear scenario of recurrence plot. Threshold value is taken as ε = 0.1,
which is around 1% of maximum distance between two data points to get the
clearer scenario of recurrence plot.

Figure 5 demonstrates the profile of RP analysis for the present signal.
RQA analysis is done to estimate complexity of time series in a quantified

way. Table 1 summarizes the RQA variables.
The RPs of Solar Flare Index signal indicates the possibility of sensitive

dependence on the initial conditions as some very short diagonal lines are
visible in Figure 4, which in turn indicates a possible profile of sensitivity to the
initial conditions. Table 1 explains the fact that the time series is chaotic. Low
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Fig. 3. DVV Plot of smoothed Solar Flare Index signal

Table 1. RQA Analysis for Solar Flare Index signal

REC 0.20
DET 0.68
LMAX 0.99
ENTR 3.86

value of %REC (20%) suggests that no reasonable amount of recurrence arises,
which indicates the possibility that the solar flare index signal considered in
our study is non-regular. The obtained value of %DET is 68%, which clearly
shows that the time series is chaotic. Again, low values of LMAX(0.99) and
ENTR(3.86) strengthen the possibility of chaotic nature of the Solar Flare
Index signal.

6. Conclusion

In the present work, DVV analysis confirms the presence of nonlinearity in
the Solar Flare Index signal, and the subsequent RP analysis with RQA con-
firms the existence of chaos in it. Hence, for this signal long term prediction
cannot yield trust-worthy results; so one has to confine within short term
predictions. Finally, the present study indicates that the mechanics of reor-
ganization of magnetic loops, resulting rapid conversion of a large amount of
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Fig. 4. DVV Scatter Plot of smoothed Solar Flare Index signal

magnetic energy previously stored in the solar corona and dissipated through
magnetic reconnections, is a nonlinear and chaotic solar phenomenon. Earlier,
by using 0–1 Test Gottwald and Melbourne, (2009); Mukherjee et al, (2017)
showed the possible presence of chaos in the present signal. The present study
re-establishes this fact with a more certainty. The study of solar flares is es-
sential to understand the space weather in a better way as it directly impacts
the ionosphere and radio communications in the vicinity of Earth. In other
words, the present study not only puts a light over solar internal dynamics
to a certain extent, but also helps us to realize the local space weather. The
present study is very interesting and important, as it covers the range from
the beginning of 1966 to the end of 2008, capturing almost four complete solar
cycles (viz. solar cycles 20, 21, 22 and 23). The limitation of this work is that
it has not take into account the current solar cycle 24 due to the unavailabil-
ity of the data for the entire cycle. A future study, focused on solar cycle 24
should be more interesting as it will enable us to comprehend whether this
cycle repeats the characteristics as prevailed in the old cycles, or it will show
some novel features.
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Fig. 5. Recurrence Plot Analysis of the present smoothed Solar Flare Index signal
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