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Abstract. In this proposed problem we study Rényi Holographic Dark Energy (RHDE)
models by considering a spatially homogenous and anisotropic Bianchi type V space-time
with bulk viscosity in Lyra’s manifold with time-dependent displacement field. The exact
solutions of the field equations have been found for a Bianchi type V space-time in Lyra’s ge-
ometry by considering a time-dependent displacement field. We have discussed two different
types of models: non-interacting and interacting ones. Remarkably, at late times the EOS
parameter for the non-interacting model corresponds to quintessence DE, whereas for the
interacting model it corresponds to phantom DE showing consistency with the recent obser-
vational data. The study of statefinder parameters shows that our RHDE model corresponds
to ΛCDM (cosmological constant cold dark matter) model at the later stage of the Universe.
The correspondence between the non-interacting model and a quintessence scalar field and
also the correspondence between the interacting model and a phantom scalar field are also
established. A detailed study of physical and geometric properties of both the non-interacting
and interacting models has been carried out.
Key words: RHDE, bulk viscosity, Lyra Geometry, EOS parameter, phantom DE,
quintessence DE

Introduction

Observations, investigated by a considerable number of researchers in refs.
(Riess et al. [1998], Perlmutter et al. [1998], Bennett et al. [2003], Spergel
et al. [2003], Tegmark et al. [2004], Page et al. [2003]), confirmed that our
Universe is undergoing an accelerated phase of expansion. All these findings
demonstrate that our Universe is dominated by an exotic form of energy named
as dark energy (DE). DE, which is responsible for cosmic acceleration, is still
unknown. DE has negative pressure, so is repulsive and causes the expansion of
the Universe. Again, the astronomical observations suggest that our Universe
comprises of 68.3% in the form of DE, 26.8% DM (dark matter, non-baryonic)
and the rest 4.9% is baryonic matter and radiation Ade, [2013]. There are nu-
merous candidates for DE such as the cosmological constant or vacuum energy,
originally introduced by Einstein, quintessence

(

−1 < ω < −1
3

)

in ref. Sami
and Padmanabhan [2003], phantom (ω < −1) in ref. Caldwell et al. [2003],
k-essence

(

ω < −1
3

)

in ref. Chiba [2002], Chaplygin gas in ref. Kamenshchik
et al. [2001], etc. The cosmological constant Λ (ω = −1) is the simplest and
the most usual candidate for DE and the ΛCDM model is a quite successful
model. But this proposition contains several difficulties as the fine-tuning and
cosmic coincidence problem in refs. Weinberg [1989], Overduin and Cooper-
stock [1998]. Carroll et al. [2003] derived a DE model in which DE is considered
as a fluid by the EOS parameter ω = p

ρ
, which is not necessarily constant and

where p is the pressure and ρ is the energy density of DE. We become interested
to investigate ω throughout the evolution of the Universe.

The holographic dark energy (HDE), based on the holographic principle,
was first put forward by Hooft [1993] and Susskind [1995]. According to this
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principle, the entropy of the system scales not with its volume, but also its
surface area

(

L2
)

and leads to the conclusion that in quantum field theory
a short distance cut-off is related to a long-distance cut-off due to the limit
set by the black hole formation (ref. Cohen et al. [1999]). By taking ρHDE as
the quantum zero-point energy density caused by a short distance cut-off in a
region of size L, the total energy density should not exceed the black hole mass
of the same size, giving L3ρHDE ≤ LM2

p . The maximal value L allowed is the

one saturating this inequality, giving the HDE density as ρHDE = 3c2M2
pL

−2,

Mp is the reduced Planck mass with M−2
p = 8πG, and 3c2 is the numerical

constant (ref. Li [2004]).

The form of the Bekenstein entropy of a system is S = A
4 , where A = 4πL2,

and L is the IR cut-off. Rényi entropy (ref. Moradpour et al. [2018]) can be
written as S = 1

δ
log
(

δA
4 + 1

)

= 1
δ
log
(

πδL2 + 1
)

. By considering ρDEdV ∝
TdS, where V and T denote the volume and temperature of the system, respec-

tively, the expression of RHDE assumes the form ρDE = 3c2

8πL2

(

πδL2 + 1
)−1

.

By considering Hubble horizon as a candidate for IR cut-off, i.e. L = H−1,

the energy density of RHDE is obtained as ρDE = 3c2H2

8π
(

πδ

H2
+1

) , where c2 is a

numerical constant.

The Hubble parameter H describes the expansion rate of the Universe, and
the deceleration parameter q signifies the accelerating and decelerating nature
of the Universe. On the basis of the time dependence of H and q, various
models of the Universe can be classified. All models can be characterized by
whether they expand or contract, and accelerate or decelerate (in ref. Bolotin
et al. [2015]). Following Tiwari et al. [2018], [2017], [2017], [2016], we have
considered q as a simple linear function of H, i.e. q = µ + νH, where µ and
ν are constants. For mathematical simplicity, we take µ = −1, which in turn
implies q = −1 + νH.

The appearance of bulk viscosity in the early Universe plays a great role.
When neutrons decouple from the cosmic fluid at the time of formation of
galaxies and during particle creation in the early Universe, viscosity arises
(ref. Misner [1968]). It is essential to mention that the presence of viscosity in
the fluid explores many dynamics in the framework of homogenous cosmolog-
ical models. The coefficient of bulk viscosity yields the viscous stress magni-
tude relative to the expansion. In an attempt to study the early evolution of
the Universe, considerable number of authors have investigated cosmological
dynamics, with a fluid containing viscosity by Singh [2008], Singh and Srivas-
tava [2018], Pradhan et al. [2007]. The viscosity mechanisms in cosmology can
account for the high entropy of the present Universe (refs. Weinberg [1971]
and Weinberg [1972]). The coefficient of viscosity decreases as the Universe
expands. Padmanabhan and Chitre [1987] found that the presence of bulk vis-
cosity leads to inflationary-like solutions in general relativity (GR). Meng and
Ma [2012] studied singularity free bulk viscous cosmological models by con-
sidering the bulk viscous coefficient as a linear and quadratic functions of the
Hubble parameter H. The concept of bulk viscosity ζ introduces dissipation
by only redefining the effective pressure p̄, where p̄ = p− 3ζH.
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Several researchers were inspired by Einstein’s geometrization of gravi-
tation in his theory of general relativity to geometrize other physical fields.
Weyl [1918] proposed a unified theory to geometrize gravitation and electro-
magnetism. But this theory was not considered as it was depended on non-
integrability of length transfer. Lyra [1951] proposed a new modification of
Riemannian geometry by introducing a gauge function to remove the non-
integrability of the length of a vector under parallel transport. Sen [1957] and
Sen and Dunn [1971] suggested a new scalar-tensor theory of gravitation and
constructed an analogue of the Einstein field equations based on Lyra‘s geom-
etry, which in normal gauge may be written as
Rij − 1

2gijR+ 3
2φiφj − 3

4gijφkφ
k = −Tij ,

where φi is the displacement vector, 8πG = 1 and other symbols have their
usual meaning in the Riemannian Geometry.

Recently, various cosmological models in Lyra geometry were studied by
considerable number of researchers. Pradhan and Pandey [2003] have ob-
tained bulk viscous cosmological models in Lyra geometry. Kandalkar and
Samdurkar [2015] have studied LRS Bianchi type I metric with bulk viscosity
in the framework of Lyra geometry. Pradhan et al. [2001] have discussed FRW
spacetime in the presence of a bulk viscous fluid in Lyra manifold. Sharma and
Dubey [2020] have investigated interacting RHDE in a flat FRW Universe.
Prasanthi and Aditya [2020] have worked out anisotropic Bianchi type-V I0
RHDE models in general relativity (GR). Bhattacharjee [2020] have presented
Tsallis and RHDE with hybrid expansion law prescribed by a non-linear inter-
action in the FRW spacetime. Bianchi type Universes play a significant role in
the description of large-scale behaviour of the Universe. Bianchi models are im-
portant due to the homogeneity and anisotropic nature. Due to its simplicity,
several researchers have studied them in different frameworks. In this paper,
we have examined the RHDE model by considering Bianchi type V space-time
with bulk viscosity in Lyra’s geometry with time-dependent displacement field.

The plan of the paper is as follows. In Section 2, we present the metric and
the field equations. The solutions of the field equations are described in Sec-
tion 3. Section 4 deals with non-interacting model, followed by subsections 4.1
- energy conditions and 4.2 - correspondence between non-interacting model
and quintessence scalar field model are established. Section 5 is concerned with
interacting model, followed by subsections 5.1 - energy conditions of the inter-
acting model, and 5.2 deals with correspondence between interacting model
and phantom scalar field model. Section 6 deals with graphical representations
of various parameters. Cosmic jerk, Statefinder and Anisotropy parameters are
discussed in Sections 7, 8 and 9, respectively. The paper ends with concluding
remarks in Section 10.

2. Metric and Field Equations

Einstein field equations, based on Lyra manifold in normal gauge are written
as

Rij −
1

2
gijR+

3

2
φiφj −

3

4
gijφkφ

k = −Tij , (1)
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where φi is the displacement vector, 8πG = 1 and other symbols have their
usual meaning in the Riemannian Geometry.

Tij = T̄ij + T ′
ij , (2)

where T̄ij = ρmuiuj is the energy momentum tensor for dark matter
(pressure-less), ρm is the energy density of dark matter (DM), giju

iuj = 1,
uj = (1, 0, 0, 0) is the four-velocity vector. T ′

ij = (p̄de + ρde)uiuj − p̄degij is the
energy momentum tensor for RHDE, where p̄de = pde − 3Hζ is the effective
pressure of RHDE, ρde is the energy density and pde is the pressure of RHDE.
The displacement vector φi is defined as

φi = (β (t) , 0, 0, 0)) . (3)

We consider the Bianchi type V space-time in the form

ds2 = dt2 − E2dx2 − e2x
(

F 2dy2 +G2dz2
)

, (4)

where E,F and G are cosmic scale factors and functions of cosmic time t only.
The field equations (1) for the metric (4), with the use of Eqs. (2) and (3)
reduce to the following

F̈

F
+

G̈

G
+

Ḟ Ġ

FG
− 1

E2
+

3

4
β2 = −pde + 3Hζ, (5)

Ë

E
+

G̈

G
+

ĖĠ

EG
− 1

E2
+

3

4
β2 = −pde + 3Hζ, (6)

Ë

E
+

F̈

F
+

ĖḞ

EF
− 1

E2
+

3

4
β2 = −pde + 3Hζ, (7)

ĖḞ

EF
+

Ḟ Ġ

FG
+

ĖĠ

EG
− 3

E2
− 3

4
β2 = ρm + ρde, (8)

2
Ė

E
− Ḟ

F
− Ġ

G
= 0, (9)

where overhead dot (.) stands for derivative with respect to time t.
The energy conservation equation is

ρ̇m +

(

Ė

E
+

Ḟ

F
+

Ġ

G

)

ρm + ρ̇de + (1 + ωde)

(

Ė

E
+

Ḟ

F
+

Ġ

G

)

ρde +

3

2
ββ̇ +

3

2
β2

(

Ė

E
+

Ḟ

F
+

Ġ

G

)

− 9H2ζ = 0. (10)
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The continuity equations for DM and DE, where the DM component is
interacting with the DE component through an interaction term Q, are termed
as

ρ̇m + 3Hρm = 9H2ζ +Q, (11)

ρ̇de + 3H (1 + ωde) ρde = −Q, (12)

where ωde =
pde
ρde

is the equation of state parameter for RHDE, Q denotes the

strength of the interaction. We have takenQ = 3bHρde, with b as dimensionless
constant (in ref. Wei and Cai [2009]). Q = 0 indicates the non-interacting
scenario.

3. Solution of field equations

The average scale factor a and spatial volume V are defined as

V = a3 = EFG. (13)

Integrating Eq. (9) and taking the integration constant to be equal to unity
we obtain

E2 = FG. (14)

The directional and the average Hubble parameter are defined as

Hx = Ė
E
, Hy = Ḟ

F
, Hz =

Ġ
G
, H = ȧ

a
= V̇

3V =
Hx+Hy+Hz

3 = 1
3

(

Ė
E
+ Ḟ

F
+ Ġ

G

)

(15)

where Hx, Hy and Hz are the directional Hubble parameters in the directions
x, y and z, respectively.

The deceleration parameter q is defined as

q =
−ä

aH2
. (16)

The expansion scalar θ and the shear scalar σ are defined as

θ = ui;i =
Ė

E
+

Ḟ

F
+

Ġ

G
, (17)

σ2 =
1

2

(

3
∑

i=1

H2
i − θ2

3

)

=
1

3

(

Ė2

E2
+

Ḟ 2

F 2
+

Ġ2

G2
− ĖḞ

EF
− Ḟ Ġ

FG
− ĠĖ

GE

)

. (18)

To solve the field equations, we follow the technique of Saha and Rikhvitsky
[2006], Singh and Chaubey [2007]. From Eqs. (5), (6) and (7), we get

E

F
= e1exp

(

f1

∫

dt

a3

)

, (19)
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F

G
= e2exp

(

f2

∫

dt

a3

)

, (20)

G

E
= e3exp

(

f3

∫

dt

a3

)

, (21)

where e1, e2, e3, f1, f2 and f3 are constants of integration satisfying e1e2e3 =
1, f1 + f2 + f3 = 0.

From Eqs. (19)-(21), the metric coefficients are obtained as

E = g1aexp

(

F1

3

∫

dt

a3

)

, (22)

F = g2aexp

(

F2

3

∫

dt

a3

)

, (23)

G = g3aexp

(

F3

3

∫

dt

a3

)

, (24)

with

g1 =
(

e1
e3

)
1

3

, F1 = f1 − f3, g2 =
(

1
e2
1
e3

)
1

3

, F2 = −2f1 − f3, g3 =
(

e1e
2
3

)
1

3 , F3 =

f1 + 2f3
Using Eqs. (22)-(24) in Eq. (14) we get:

g1 = 1, g2 = M−1, g3 = M, (25)

F1 = 0, F2 = −K,F3 = K. (26)

With Eqs. (25) and (26), Eqs. (22)-(24) becomes

E = a, (27)

F = aM−1exp

(−K

3

∫

dt

a3

)

, (28)

G = aMexp

(

K

3

∫

dt

a3

)

. (29)

Eqs. (5)-(8) and (10) can be written in terms of H,σ and q as

pde − 3Hζ = (2q − 1)H2 − σ2 +
1

a2
− 3

4
β2 (30)
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and

ρm + ρde = 3H2 − σ2 − 3

a2
+

3

4
β2 (31)

Eqs. (30) and (31) are two field equations with four unknowns: a, ρm, ρde and
β. To solve the system of field equations completely, we are in search of two
extra relations:
(i) The RHDE density is defined as by Moradpour et al. [2018]:

ρde =
3c2H2

8π
(

πδ
H2 + 1

) (32)

(ii) The deceleration parameter q is considered as a linear function of the
Hubble parameter H as by Tiwari et al. [2018], [2017], [2017], [2016]:

q = −1 + νH (33)

From Eqs. (16) and (33), we get the expression of average scale factor a as

a = exp

(

1

ν

√
2νt+ k

)

, (34)

where ν and k are constants.
Using Eq. (34) in Eqs. (27)-(29), we get the following expressions of cosmic

scale factors:

E = exp

(

1

ν

√
2νt+ k

)

, (35)

F = exp

(

1

ν

√
2νt+ k

)

M−1exp

[

−K

3

∫

dt

exp
(

3
ν

√
2νt+ k

)

]

, (36)

G = exp

(

1

ν

√
2νt+ k

)

Mexp

[

K

3

∫

dt

exp
(

3
ν

√
2νt+ k

)

]

. (37)

The Hubble parameter H is calculated as

H =
ȧ

a
=

1√
2νt+ k

. (38)

The RHDE density ρde is obtained as

ρde =
3c2

8π
[

πδ (2νt+ k)2 + (2νt+ k)
] . (39)
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The deceleration parameter q is calculated as

q = −1 +
ν√

2νt+ k
. (40)

The shear scalar σ is obtained as

σ =
K

3exp
(

3
ν

√
2νt+ k

) . (41)

The displacement field vector β is obtained from Eq. (10) as

3

2
ββ̇ +

9

2
β2H = 0. (42)

Using Eq. (38) in Eq. (42), we get the expression of β as

β =
β0

exp
(

3
ν

√
2νt+ k

) , (43)

where β0 is an integrating constant.

4. Non-interacting Model

The energy conservation equation for DM is

ρ̇m + 3Hρm = 9H2ζ. (44)

The energy conservation equation for RHDE is

ρ̇de + 3H (1 + ωde) ρde = 0. (45)

Using the expressions of H and ρde in Eq. (45), we get the expression of EOS
parameter ωde as

ωde = −1 +
2ν

3

√
2νt+ k

[

2πδ (2νt+ k) + 1

πδ (2νt+ k)2 + (2νt+ k)

]

, (46)

ωde > −1 as observed from Fig. 3. Thus, our non-interacting model behaves
like a quintessence DE.
The pressure of RHDE pde is obtained as

pde = ωdeρde =
3c2

8π
[

πδ (2νt+ k)2 + (2νt+ k)
] ×

{

−1 +
2ν

3

√
2νt+ k

[

2πδ (2νt+ k) + 1

πδ (2νt+ k)2 + (2νt+ k)

]}

. (47)
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With the use of Eqs. (34), (38), (40), (41), (43) and (47) in Eq. (30), we get
the expression of the coefficient of bulk viscosity ζ as

3Hζ =
3c2

8π
[

πδ (2νt+ k)2 + (2νt+ k)
]

{

−1 +
2ν

3

√
2νt+ k

[

2πδ (2νt+ k) + 1

πδ (2νt+ k)2 + (2νt+ k)

]}

+
3

2νt+ k
− 2ν

(2νt+ k)
3

2

+
K2

9exp
(

6
ν

√
2νt+ k

) − 1

exp
(

2
ν

√
2νt+ k

) +

3β2
0

4exp
(

6
ν

√
2νt+ k

) . (48)

The matter energy density ρm is obtained from Eq. (44), using Eqs. (38) and
(48) as

ρm × exp

(

3

ν

√
2νt+ k

)

=

∫
[

exp

(

3

ν

√
2νt+ k

)

× 9H2ζ

]

dt+ ρ0, (49)

where ρ0 is a constant of integration.
The total energy density parameter Ω is given by

Ω =
ρm + ρde

3H2
=

ρm + 3c2

8π[πδ(2νt+k)2+(2νt+k)]
(

3
2νt+k

) (50)

where ρm is given by Eq. (49).

4.1. Energy Conditions

The Energy conditions, i.e. Weak Energy Conditions (WEC), Dominant En-
ergy Conditions (DEC) and Strong Energy Conditions (SEC), are respectively
given by:
(i) ρde ≥ 0;
(ii) ρde + pde ≥ 0;
(iii) ρde + 3pde ≥ 0.
The left-hand sides of the energy conditions for non-interacting model based
on Eqs. (39) and (47) have been plotted in Fig. 7. We found that (i) ρde ≥ 0,
(ii) ρde + pde ≥ 0, and (iii) ρde + 3pde ≤ 0.

So, WEC (red line) and DEC (blue line) are satisfied, whereas SEC (green
line) is violated, as shown in Fig. 7.

4.2. Correspondence between non-interacting model and
quintessence scalar field model

The pressure and energy density for quintessence scalar field (in ref. Sangwan
et al. [2018]) are given by

pφ =
φ̇2

2
− V (φ) , (51)
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ρφ =
φ̇2

2
+ V (φ) , (52)

where φ is the scalar field and V (φ) is the scalar field potential.
The EOS parameter ωφ is defined as

ωφ =
pφ

ρφ
=

φ̇2 − 2V (φ)

φ̇2 + 2V (φ)
. (53)

Eqs. (39) and (52) together imply

3c2

8π
[

πδ (2νt+ k)2 + (2νt+ k)
] =

φ̇2

2
+ V (φ) (54)

Eqs. (46) and (53) together implies

φ̇2

2
=

(

1 + ωde

1− ωde

)

V (φ) (55)

Using Eq. (55) in Eq. (54), we get the expression for the scalar field potential
V (φ) as

V (φ) =

(

1− ωde

2

)







3c2

8π
[

πδ (2νt+ k)2 + (2νt+ k)
]







. (56)

Using Eq. (56) in Eq. (55), we get the expression for the scalar field φ as

φ = φ0 +

∫

(1 + ωde)
1

2







3c2

8π
[

πδ (2νt+ k)2 + (2νt+ k)
]







1

2

dt, (57)

where φ0 is an integrating constant.

5. Interacting Model

The energy conservation equation for DM is

ρ̇m + 3Hρm = 9H2ζ + 3bHρde. (58)

The energy conservation equation for RHDE is

ρ̇de + 3H (1 + ωde) ρde = −3bHρde. (59)
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Using the expressions of H and ρde in Eq. (59), we get the expression for the
EOS parameter ωde as

ωde = −1− b+
2ν

3

√
2νt+ k

[

2πδ (2νt+ k) + 1

πδ (2νt+ k)2 + (2νt+ k)

]

. (60)

ωde < −1 as can be seen in Fig. 3. Thus, our interacting model behaves like a
phantom DE.
The pressure of RHDE pde is obtained as

pde = ωdeρde =
3c2

8π
[

πδ (2νt+ k)2 + (2νt+ k)
] ×

{

−1− b+
2ν

3

√
2νt+ k

[

2πδ (2νt+ k) + 1

πδ (2νt+ k)2 + (2νt+ k)

]}

. (61)

With the use of Eqs. (34), (38), (40), (41), (43) and (61) in Eq. (30), we get
the expression for the coefficient of bulk viscosity ζ as

3Hζ =
3c2

8π
[

πδ (2νt+ k)2 + (2νt+ k)
]

{

−1− b+
2ν

3

√
2νt+ k

[

2πδ (2νt+ k) + 1

πδ (2νt+ k)2 + (2νt+ k)

]}

+
3

2νt+ k
− 2ν

(2νt+ k)
3

2

+
K2

9exp
(

6
ν

√
2νt+ k

) − 1

exp
(

2
ν

√
2νt+ k

) +

3β2
0

4exp
(

6
ν

√
2νt+ k

) . (62)

The matter energy density ρm is obtained from Eq. (58) using Eqs. (38), (39)
and (62) as

ρm × exp

(

3

ν

√
2νt+ k

)

=

∫
[

exp

(

3

ν

√
2νt+ k

)

×
(

9H2ζ + 3bHρde
)

]

dt+ ρ́0, (63)

where ρ́0 is a constant of integration.
The total energy density parameter Ω is given by

Ω =
ρm + ρde

3H2
=

ρm + 3c2

8π[πδ(2νt+k)2+(2νt+k)]
(

3
2νt+k

) , (64)

where ρm is given by Eq. (63).
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5.1. Energy Conditions

The Energy conditions i.e. Weak Energy Conditions (WEC), Dominant Energy
Conditions (DEC) and Strong Energy Conditions (SEC) are respectively given
by:
(i) ρde ≥ 0;
(ii) ρde + pde ≥ 0;
(iii) ρde + 3pde ≥ 0.
The left-hand sides of the energy conditions for interacting model based on
Eqs. (39) and (61) have been plotted in Fig. 8 and show that (i) ρde ≥ 0, (ii)
ρde + pde ≤ 0, and (iii) ρde + 3pde ≤ 0.
So, WEC (red line) is satisfied, whereas DEC (blue line) and SEC (green line)
are violated, as shown in Fig. 8.

5.2. Correspondence between Interacting model and phantom
scalar field model

The pressure and energy density for phantom scalar field (in refs. Sangwan et
al. [2018], Wang et al. [2010]) are given by

pφ = − φ̇2

2
− V (φ) , (65)

ρφ = − φ̇2

2
+ V (φ) , (66)

where φ is the scalar field and V (φ) is the scalar field potential.
The EOS parameter ωφ is defined as

ωφ =
pφ

ρφ
=

φ̇2 + 2V (φ)

φ̇2 − 2V (φ)
. (67)

Eqs. (39) and (66) together imply

3c2

8π
[

πδ (2νt+ k)2 + (2νt+ k)
] = − φ̇2

2
+ V (φ) . (68)

Eqs. (60) and (67) together imply

φ̇2

2
= −

(

1 + ωde

1− ωde

)

V (φ) . (69)

Using Eq. (69) in Eq. (68), we get the expression for the scalar field potential
V (φ) as

V (φ) =

(

1− ωde

2

)







3c2

8π
[

πδ (2νt+ k)2 + (2νt+ k)
]







. (70)
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Using Eq. (70) in Eq. (69) and then integrating, we get the expression for the
scalar field φ as

φ = φ́0 +

∫

(−1− ωde)
1

2







3c2

8π
[

πδ (2νt+ k)2 + (2νt+ k)
]







1

2

dt, (71)

where φ́0 is an integrating constant.

6. Graphical Representations
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Fig. 1. Time variation of RHDE density ρde. It decreases with increasing time for c = 1, δ =
2, ν = 1.5 and k = 0.1. ρde approaches zero at late times, as seen in the figure.
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Fig. 2. Graph of β versus t, with β0 = 0.2, ν = 1.5 and k = 0.1. The graph shows that
β → ∞ when t → 0, and β → 0 when t → ∞. Thus, in due course of time, the displacement
field vector β loses its impact.
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Dashed black line � �de

(Non- interacting Model)
Yellow line � �de(Interacting Model)
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Fig. 3. The time-variation of ωde for ν = 1.5, δ = 2, b = 0.4 and k = 0.1. From the figure, we
can arrive at the conclusion that ωde > −1 for the non-interacting model, whereas ωde < −1
for the interacting model. This indicates that our non-interacting model corresponds to
quintessence DE model and the interacting model corresponds to phantom DE model.
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Fig. 4. The graph of pde versus cosmic time t for c = 1, δ = 2, ν = 1.5, b = 0.4 and k = 0.1.
The pressures for both non-interacting and interacting RHDE models are negative through-
out the evolution of the Universe.
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Dashed black line � � (Non-interacting
 Model)
 Yellow line � � (Interacting Model)
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Fig. 5. The bulk viscosity ζ as a function of t with c = 1, δ = 2, ν = 1.5,K = 3, β0 = 0.2, b =
0.4 and k = 0.1. From this figure, we can see that ζ for both non-interacting and interacting
models are decreasing functions of cosmic time t and tend to have a small value as cosmic
time evolves.

Dashed black line � � (Non-interacting 
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Yellow line � � (Interacting Model)
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Fig. 6. The evolution of Ω w.r.to t with c = 1, δ = 2, ν = 1.5,K = 3, β0 = 0.2, ρ0 = ρ́0 =
0.1, b = 0.4 and k = 0.1. Ω → 1 at late times for both non-interacting and interacting
models.
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Red line � WEC
Blue line � DEC
Green line � SEC
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Fig. 7. The variation of Energy Conditions (non-interacting model) versus cosmic time with
c = 1, δ = 2, ν = 1.5 and k = 0.1. The red, blue and green lines represent WEC, DEC and
SEC, respectively. With the increase of cosmic time, it is found that WEC and DEC are
satisfied, whereas SEC is violated.
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Fig. 8. The variation of Energy Conditions (interacting model) versus cosmic time with
c = 1, δ = 2, ν = 1.5, b = 0.4 and k = 0.1. The red, blue and green lines represent WEC,
DEC and SEC, respectively. With the increase of cosmic time, it is found that WEC is
satisfied, whereas DEC and SEC are violated.
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Dashed black line � V(�✮ (Non-
interacting Model)
Yellow line � V(�) (Interacting Model)
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Fig. 9. The time-dependent variation of V (φ) for c = 1, δ = 2, ν = 1.5, b = 0.4 and k =
0.1. The scalar field potential V (φ) negatively increases from a finite value and ultimately
vanishes with the evolution of the Universe for both non-interacting and interacting models.
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Fig. 10. The time-dependent evolution of φ for c = 1, δ = 2, b = 0.4, ν = 1.5, φ0 = φ́0 = 0.05
and k = 0.1. φ is a decreasing function as cosmic time t evolves and ultimately tends to a
small value for both non-interacting and interacting models.

7. Cosmic Jerk Parameter

It is believed that in the early Universe, the dark energy would have been
too low to counteract the gravity of the matter in the Universe and, thus, the
expansion was initially slow. But the dark energy dominated the matter as
the Universe began to expand and grew bigger in course of time. About five to
six billion years ago, DE was driving the Universe (in ref. Capozzielloo et al.
[2006]). Researchers (in refs. Visser [2004], Visser [2005], Chiba and Nakamura
[1998], Sahni [2002]) have suggested that the cosmic jerk is responsible for
the deceleration to acceleration transition. This transition occurs for different
models with a positive value of jerk parameter (j) and a negative value of
deceleration parameter (q). Cosmic jerk parameter is responsible for transition
from the decelerating to the accelerating phase of the Universe. The ΛCDM
model has a constant jerk j = 1.
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The mathematical expression of cosmic jerk parameter j is obtained as

j (t) =

...
a

aH3
=

3ν2

2νt+ k
− 3ν√

2νt+ k
+ 1. (72)

From Eq. (72), we can conclude that for late times, j → 1. It is also seen
that the value of the cosmic jerk parameter is positive throughout the entire
history of this model.

8. Statefinder Parameters

To explain the accelerating expansion of the Universe, various candidates for
DE have been developed. In order to discriminate among these DE models,
important parameters called Statefinder parameters, are developed by Sahni
et al. [2003]. The statefinder parameters are related to the third order deriva-
tive of the average scale factor a (t), and hence the depend on the metric
of the space-time. The important property of the statefinder pair is that
{r, s} = {1, 0} is a fixed-point in the s− r plane for the spatially flat ΛCDM
model. Hence, we have analyzed the evolutionary behavior of both the param-
eters r and s for the DE Universe along with ΛCDM Universe. Statefinder pa-
rameters for different DE models were studied by several researchers (Sharma
and Dubey [2020], Dubey et al. [2020], Srivastava and Sharma [2020]).
The statefinder parameters are given by

r =

...
a

aH3
=

3ν2

2νt+ k
− 3ν√

2νt+ k
+ 1, (73)

s =
r − 1

3
(

q − 1
2

) =

3ν2

2νt+k
− 3ν√

2νt+k

3
(

−3
2 + ν√

2νt+k

) (74)

When t → ∞, r → 1 and s → 0.
So, our RHDE model corresponds to ΛCDM model at late times.

9. Anisotropy Parameter

The Anisotropy parameter Ap is defined as

Ap =
1

3H2

3
∑

i=1

(Hi −H)2 =

(

2νt+ k

3

)[

2K2

9
exp

(−6

ν

√
2νt+ k

)]

. (75)

From Eq. (75), we can arrive at a conclusion that Ap → 0 as t → ∞. Thus,
our Universe shows isotropic behavior at the later stages.
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10. Discussions and Conclusions

In this paper we have investigated the Rényi Holographic Dark Energy (RHDE)
models by considering a spatially homogenous and anisotropic Bianchi type V
space-time, with bulk viscosity in Lyra’s manifold and with time-dependent
displacement field. By considering q, the deceleration parameter as a linear
function of the Hubble parameter H, the exact solutions of the field equations
are obtained. In Fig. 1, we have seen that ρde is a decreasing function of t
and ultimately approaches zero as t → ∞. The displacement field vector β
tends to zero at later ages of the Universe, which is shown in Fig. 2. The
displacement field vector β plays an important role in the dynamics of the
Universe. The constant displacement vector field β in Lyra geometry plays
the role of the cosmological constant Λ in normal relativistic treatment (in
ref. Halford [1970]). Therefore, the displacement field behaves as a candidate
for dark energy. Fig. 3 shows that ωde > −1 with the increase of cosmic time
for the non-interacting model. This depicts that our non-interacting model
corresponds to quintessence DE model. For the interacting model, ωde < −1,
as observed from Fig. 3. Thus, our interacting model behaves like a phan-
tom DE model. The pressure pde for both the non-interacting and interacting
RHDE models are negative throughout the expansion of the Universe, as seen
from Fig. 4. From Fig. 5, it is observed that ζ decreases as the cosmic time
t evolves and ultimately tends toward a small value, which speeds up the ac-
celerated expansion of the Universe for both non-interacting and interacting
models. The total energy density parameter Ω → 1 as time increases for both
non-interacting and interacting models, as seen from Fig. 6. So, our Universe
becomes spatially homogeneous, isotropic and flat at later times. For the non-
interacting model, WEC and DEC are satisfied, whereas SEC is violated. For
the interacting model, WEC is satisfied, but DEC and SEC are violated. The
violation of DEC and SEC supports the fact that the Universe is expanding
at an accelerated rate, being filled with a phantom fluid (in ref. Sahoo et
al. [2018]). The scalar field potential V (φ) negatively increases from a finite
value and ultimately vanishes with the evolution of the Universe for both the
non-interacting and interacting models. The scalar field φ is diminishing and
ultimately tends toward a small value as cosmic time evolves for both the
non-interacting and interacting models. Cosmic jerk parameter j → 1 with
the passage of time, and it is positive throughout the entire age of the Uni-
verse. The statefinder parameters {r, s} correspond to ΛCDM model at late
times. The anisotropy parameter Ap → 0, as t → ∞, which indicates that our
RHDE model shows isotropic behavior throughout the evolution of the Uni-
verse. The aforesaid results indicate that our models are in good agreement
with the present-day observations and establish the fact that the Universe is
accelerating.

Acknowledgements

We would like to appreciate the Department of Mathematics, Gauhati Uni-
versity for the research supportive environment which allowed us to conduct
and complete this research work. One of the authors (JB) acknowledges the
financial support from UGC (NFOBC), India for doing this research work.

112



J. Bharali, K. Das

References

Ade P. A. R., Aghanim N., Armitage-Caplan C., Arnaud M., Ashdown M., Atrio-F., Aumont
J., et al., 2013, arXiv: 1303.5076

Bennett C. L., Halpern M., Hinshaw G., Jarosik N., Kogut A., Limon M., Meyer S. S., et
al., 2003, Astrophys. J. Suppl. Ser. 148, 1

Bhattacharjee S., 2020, arXiv: 2006.04339v1 [gr-qc]
Bolotin Y. L., Cherkaskiy V. A., Lemets O. A., Yerokhin D. A., and Zazunov L. G., 2015,

arXiv: 1502.00811 [gr-qc]
Caldwell R. R., Kamionkowski M., and Weinberg N. N., 2003, Phys. Rev. Lett. 91, 071301
Capozziello S., Nojiri S., and Odintsov S. D., 2006, Phys. Lett. B. 632, 597-604
Carroll S. M., Hoffman M., and Trodden M., 2003, arXiv: astro-ph/0301273v2
Chiba T., 2002, arXiv: astro-ph/0206298v2
Chiba T., and Nakamura T., 1998, Prog. Theor. Phys. 100, 1077
Cohen A. G., Kaplan D. B., and Nelson A. E., 1999, Phys. Rev. Lett. 82 (25), 4971
Divya Prasanthi U. Y., and Aditya Y., 2020, Results in Phys. 17, 103101
Dubey V. C., Mishra A. K., and Sharma U. K., 2020, arXiv:2003.07883v1 [gr-qc]
Gilliland R. L., et al., 1998, Astron. J. 116, 1009-1038
Halford W. D., 1970, Australian. J. Phys. 23, 863
Hooft G. ‘t, 1993, arXiv: gr-qc/9310026
Kamenshchik A. Y., Moschella U., and Pasquier V., 2001, Phys. Lett. B 511, 265-268
Kandalkar S. P., and Samdurkar S., 2015, Bulg. J. Phys. 42, 42-52
Li M., 2004, Phys. Lett. B 603, 1
Lyra G., 1951, Math Z 54, 52
Meng X., and Ma Z., 2012, Eur. Phys. J. C 72, 2053
Misner C. W., 1968, Astrophys. J. 151, 431–457
Moradpour H., Moosavi S. A., Lobo I. P., Morais Graça J. P., Jawad A., and Salako I. G.,

2018, Eur. Phys. J. C 78, 829
Overduin J. M., and Cooperstock F. I., 1998, Phys. Rev. D 58, 043506
Padmanabhan T., and Chitre S. M., 1987, Phys. Lett. A. 120, 433–436
Page L., Nolta M. R., Barnes C., Bennett C. L., Halpern M., Hinshaw G., Jarosik N., et al.,

2003, Astrophys. J. Suppl. Ser. 148, 233-241
Perlmutter S., Aldering G., Della Valle M., Deustua S., Ellis R. S., Fabbro S., Fruchter A.,

et al., 1998, Nature 391, 51-54
Pradhan A., and Pandey H. R., 2003, arXiv: gr-qc/0307038v1
Pradhan A., Pandey P., Jotania K., and Yadav M. K., 2007, Int. J. Theor. Phys. 46, 2774-

2787
Pradhan A., Yadav V. K., and Chakrabarty I., 2001, Int. J. Mod. Phys. D 10 (3), 339-349
Riess A. G., Filippenko A. V., Challis P., Clocchiatti A., Diercks A., Garnavich P. M.,

Gilliland R. L., et al., 1998, Astron. J. 116, 1009-1038
Saha B., and Rikhvitsky V., 2006, Physica D 219, 168-176
Sahni V., 2002, arXiv: astro-ph/0211084
Sahni V., Saini T. D., Starobinsky A. A., and Alam U., 2003, JETP Lett. 77 (5), 201-206
Sami M., and Padmanabhan T., 2003, Phys. Rev. D 67, 083509
Sangwan A., Mukherjee A., and Jassal H. K., 2018, JCAP 01, 018
Sahoo P. K., Moraes P. H. R. S., Sahoo P., and Ribeiro G., 2018, Int. J. Mod. Phys. D 27,

1950004
Sen D. K., 1957, Z. Physik 149, 311
Sen D. K., and Dunn K. A., 1971, J. Math. Phys. 12, 578
Sharma U. K., and Dubey V. C., 2020, arXiv: 2001.02368v1 [gr-qc]
Sharma U. K., and Dubey V. C., 2020, New Astronomy 80, 101419
Singh C. P., 2008, Pramana J. Phys. 71, 33-48
Singh C. P., and Srivastava M., 2018, Eur. Phys. J. C 78, 190
Singh T., and Chaubey R., 2007, Pramana J. Phys. 68, 721-734
Spergel D. N., Verde L., Peiris H. V., Komatsu E., Nolta M. R., Bennett C. L., Halpern M.,

et al., 2003, Astrophys. J. Suppl. Ser. 148, 175-194
Srivastava V., and Sharma U. K., 2020, New Astronomy 78, 101380
Susskind L., 1995, J. Math. Phys. 36, 6377
Tegmark M., et al., 2004, Phys. Rev. D 69, 103501
Tiwari R. K., Beesham A., and Shukla B., 2018, Int. J. Geom. Meth. Mod. Phys. 15, 1850115
Tiwari R. K., Beesham A., and Shukla B. K., 2017, Eur. Phys. J. Plus 132, 126
Tiwari R. K., Beesham A., and Shukla B. K., 2017, Eur. Phys. J. Plus 132, 20

113
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