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Abstract. N -body simulations of the Sun, the Jovian planets, namely, Jupiter, Saturn,
Uranus and Neptune, and smaller bodies, such as moons, asteroids and comets are fre-
quently used to model the orbital evolution of the Solar System. The Sun and planets are
represented as massive bodies, whereas the smaller bodies are represented as massless bod-
ies. The Newtonian gravitational attraction between bodies depends on the mass and the
distance between the bodies. When the bodies in a simulation consist of the Sun and planets
only, no two bodies come close to one another. This is quite different from the case when
small bodies, such as asteroids, are included in the simulation, because these bodies can come
very close to a planet and even hit the planet. When a small celestial body comes close to a
planet, the event is known as a close-encounter. Therefore, an important property of numer-
ical schemes for such simulations is to detect and handle close-encounters accurately. The
primary objective of this paper is to discuss potential difficulties to detect close-encounters
while performing numerical simulations.
Key words: N -body simulation, Close-encounters, HRC problem, CPU-time

Overview

Astronomy is arguably the oldest of the natural sciences and reflects the history
of awareness of mankind in this universe. Key mathematical discoveries in
astronomy were Kepler’s laws of planetary motion and Newton’s formulation
of the universal law of gravitation. These laws describe the orbits of planets,
asteroids, comets and satellites, and their possible future motion. Sometimes,
these motions are very systematic and essentially repeating, as in the case
of a planet orbiting the Sun, or the Moon orbiting the Earth; in contrast,
sometimes there is seemingly no repetition, as when an asteroid is ejected
from the Solar System.

Large numbers of numerical integrators and associated interpolation schemes
for performing accurate N -body simulations have been developed and used;
see, for example, [Kirsh et al. (2009),Tiscareno & Malhotra (2009), Lykawka
et al. (2009),Grazier et al. (1999a),Grazier et al. (1999b),Minton & Malhotra
(2010)]. These N -body simulations are performed by first deriving a set of
ordinary differential equations (ODEs) for the acceleration, and specifying the
initial positions and velocities of the N -bodies at time t = t0. Generally, the
initial value problems (IVPs) for N -body simulations are a mixture of first-
and second-order ODEs, but the sort of problems we are interested are of the
form,

y
′′

(t) = f(t, y(t)), y(t0) = y0, y
′

(t0) = y
′

0, (1)

where y0 ∈ R
k and y

′

0 ∈ R
k denote the initial positions and velocities, respec-

tively, k is the dimension of the IVP, and f : R × R
k → R

k is a sufficiently
smooth function.

A simple detection scheme is to calculate the distance between the small
body and a planet: if the distance is less than the radius of an imaginary
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sphere (discussed in Section 1), then the small body is said to have made a
close-encounter. There are several definitions for the imaginary sphere, the
most commonly used being the Sphere of influence and Hill’s sphere. We refer
to these spheres as close-encounter spheres. The details about close-encounter
spheres are discussed in Section 1.

Fig. 1. The close-encounters of an asteroid with a planet, where the planet is at the centre
of the sphere with radius Rsoi.

Fig. 1 depicts an asteroid making close-encounters to a planet, where the
planet is placed at the centre of a sphere having radius Rsoi. Fig. 1 illustrates
three cases of close-encounters. The first, illustrated by Asteroid1, is the most
typical case, where the trajectory of the asteroid lies well inside the sphere of
influence. The second possibility is illustrated by Asteroid2, which has collided
with the planet. The third case, illustrated by Asteroid3, is potentially difficult
to detect as a close-encounter, because the trajectory of the asteroid is just
touching the sphere of influence.

The acceleration of the small body undergoing a close-encounter is domi-
nated by that due to the planet. Since the acceleration depends inversely on
the square of the distance, the magnitude of the acceleration varies consider-
ably during a close-encounter, necessitating a large variation in the integration
time-step h. This variation can lead to an inefficient simulation unless care is
taken. For example, in a simulation of the Sun, Jupiter and an asteroid, sup-
pose that the asteroid had a close-encounter with Jupiter and h was reduced
to h/100 for both the asteroid and for Jupiter. This wastes computer time,
because to a very good approximation, and one that is often used in accurate
N -body simulations, asteroids and other small bodies are too small to affect
the motion of the planets. Hence, computational time could potentially be
saved if the original time-step h was retained for Jupiter.

Several computational time-saving schemes have appeared in the literature;
see, for example, [Chambers & Migliorini (1997),Grazier et al. (2008),Grazier
et al. (2007),Duncan et al. (1998)]. These schemes depend strongly on whether
the integrator used to advance the position of the Sun, planets and small bodies
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is symplectic or non-symplectic. Symplectic integrators are special numerical
methods that inherit the property of symplecticness when applied to Hamil-
tonian systems; see, for example, [Calvo & Sanz-Serna (1994)]. The numerical
approximations obtained using fixed time-step symplectic integrators exhibit
special properties for an exponentially long interval O(e1/h). For example, in
the absence of round-off error, symplectic integrators have the advantage of
ensuring that the error in the energy remains bound; see, for example, [Calvo
& Sanz-Serna (1994),Candy (1991),Hairer et al. (2002)], and the error in the
dependent variable is linear, compared to a quadratic error growth for non-
symplectic integrators. Except for very large t, non-symplectic integrators have
the advantage of producing numerical solutions with a smaller error in the po-
sition and velocity than for symplectic integrators, provided h is sufficiently
small.

A general scheme for handling close-encounters is the following. Suppose
an asteroid begins a close-encounter at t = ta and finishes the close-encounter
at t = tb. Let y1 denote the position of the Sun and the planets, y2 the position
of the small body undergoing the close-encounter, and let z be the position
of the Sun and planets that is obtained by continuous approximation. The
original system (1) restricted to just the Sun, the planets, and the asteroid is
then written as

y
′′

1 = f1(t, y1),

y
′′

2 = f2(t, y2, z).
(2)

A numerical solution to the y1-system at t = ta + h is found by taking a
time-step of size h. The y2-system is then integrated from ta to ta + h using
time-steps no larger than h. This integration will require the position of the
Sun and planets for t ∈ (ta, ta + h). The position, in general, is not available
from the integration of the y1-system and is found by interpolation (continuous
approximation). This involves fitting a polynomial or piecewise polynomial to
the position, and optionally the velocity and acceleration, and evaluating the
polynomial at the required time t, with ta ≤ t ≤ ta + h.

Specific schemes of the above type have been used; see, for example, [Cham-
bers & Migliorini (1997), Grazier et al. (2008), Grazier et al. (2007), Duncan
et al. (1998)]. The order of the continuous approximation should, with one
notable exception, be compatible with the order of the integrator. For exam-
ple, for an integrator of order p, there should be an interpolation polynomial
of the same order for a sufficiently accurate approximation to the positions,
velocities, and possibly accelerations of the massive bodies and the massless
bodies; see, for example, [Rehman (2014)]. The notable exception occurs for
high order Störmer methods when used with small step-sizes. The order of
the continuous approximation can be significantly less than the order of the
Störmer method [Grazier et al. (2013)].

The main requirements of the local interpolants is that they be sufficiently
accurate, both when approximating the orbits of the massive bodies, and when
approximating the orbits of the massless bodies. In the former case, accurate
approximations of the positions and velocities of the massive bodies at any
t ∈ [tn−1, tn] is important as reduced accuracy at these points (relative to the
accuracy associated with the mesh-points) will result in larger errors than ex-
pected when evaluating the differential equations that define the trajectories
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and energies associated with the massless bodies. For an integration that is or-
der p, the local interpolant should also be order p to ensure that the calculated
accuracy of the positions and velocities of the massless bodies are consistent
with those of the massive bodies. On the other hand, the local interpolation
used when integrating the massless bodies must also be accurate, as these
interpolants are used to determine accurate approximations of the “times of
the close-encounters” as well as approximations to the position and velocity
at the time of the close-encounters.

The interpolation error for a polynomial of degree p can be written as

αhp+1 y
(p+1)
true (ξ)

(p+ 1)!
, (3)

where ytrue is the function being approximated, α is a constant, and ξ lies in the
interval over which the polynomial is applied. This expression, as is, cannot
be used for analysis because the true solution ytrue is unknown for general
N . Another difficulty with expression (3) is that it assumes the data used
to form the polynomial is exact. This assumption does not hold for N -body
simulations because, for example, the position of a planet at the end of several
consecutive steps, will contain errors from the integration. The integration
error grows as t3/2 for some integrators and as t2 for others [Brouwer (1937),
Grazier et al. (2005a),Grazier et al. (2005b),Hairer et al. (2008)]. In contrast,
the interpolation error does not grow with t, so that the interpolation error
will become insignificant for sufficiently large t. As soon as this happens, the
interpolation method is inefficient because it is too accurate. For planetary
orbits, the interpolation error typically decreases with increasing p. This means
that the efficiency of the interpolation can be improved by decreasing p with
t. The dependence of p on t will both complicate and simplify the analysis.
The complication comes from having to analyse different polynomials. The
simplification comes from low-degree polynomials being easier to analyse than
high-degree polynomials.

1 Background

All the interactions between the massive and the massless bodies are through
the Newtonian gravitational forces. This gravitational influence can be ap-
proximated as an imaginary sphere centred on the particular planet. We use
the most common definitions for the imaginary spheres and refer to them, as
noted previously, as close-encounter spheres. Here, we present an overview of
these close-encounter spheres.

1.1 Sphere of influence

One definition of the imaginary sphere is the sphere of influence, which is based
on a balance of perturbing forces. Consider a system of three bodies: the Sun
with mass M at the origin, a planet with mass m at position (xp, yp, zp), and
a test particle with negligible mass at position (xt, yt, zt), as shown in Fig. 2.
Here, the Sun is at the centre of this coordinate system, which is known as
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Sun
M

Planet

(xp, yp, zp)
m

Test particle

(xt, yt, zt)

Fig. 2. System of three bodies: the Sun, a planet and a test particle.

the heliocentric frame (for simplicity we have taken the heliocentric coordinate
system but this idea also applies to other origins, for example, the centre of
mass). The test particle is said to be in the heliocentric region if it is far
from the planet, so that the main gravitational force will be that due to the
Sun and the planet may be considered as a perturbing body. Otherwise, the
test particle is said to be in the planetocentric region, where the planetary
attraction will be greater than the solar attraction, so that the Sun should be
considered as the perturbing body.

Whether the test particle is in the heliocentric or planetocentric region
depends upon the ratio between the total disturbing force and the appropriate
central attraction. The boundary of the imaginary sphere is, therefore, the
surface on which the ratio of the total disturbing force with the planet’s central
attraction is equal to that of the Sun. Hence, we must have

||~F
′

1||2

||~F1||2
=

||~F
′

2||2

||~F2||2
, (4)

where ||.||2 denotes the L2-norm and ~F
′

1 and ~F
′

2 are the disturbing forces of

the heliocentric and planetocentric orbits, respectively, and ~F1 and ~F2 are
the Solar and planetary attractions, respectively. The solution of equation (4)
gives the radius Rsoi of the sphere of influence. An approximation of Rsoi can
be obtained using

Rsoi = a
(m

M

)2/5
,

where a is the semi-major axis of the planet’s orbit and m
M is the ratio of

planetary and Solar masses (for detailed calculations see [Danby (1988)]).

1.2 Hill’s sphere

A second definition of the imaginary sphere is the Hill’s sphere, which is a
region around the planet in which the planetary attraction prevents the test
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particle from moving into the heliocentric orbit. The region is calculated using
the equations of motion of the circular restricted three-body problem, a special
problem in which two of the bodies move in a circular orbit and the mass of the
third body is assumed negligible. The three-body problem is solved in rotating
Cartesian coordinates with the (x, y)-plane in the plane of motion of the two
massive bodies and the x-axis along their line of centres. The equations of
motion of the massless body in (x, y, z)-space are given as

x
′′

− 2y
′

− x = − µ1
x+ µ2

r31
− µ2

x− µ1

r32
,

y
′′

+ 2x
′

− y = − µ1
y

r31
− µ2

y

r32
,

z
′′

= − µ1
z

r31
− µ2

z

r32
,

(5)

where µ1 and µ2 are the masses of the two main bodies, scaled so that µ1+µ2 =
1, and r21 = (x+ µ2)

2 + y2 + z2, r22 = (x− µ1)
2 + y2 + z2.

By making various assumptions, the system of equations of motion of the
test particle in relation to the planet reduces to what are known as Hill’s
equations [Murray & Dermott (1999)],

x
′′

− 2y
′

= (3−
µ2

r32
)x,

y
′′

+ 2x
′

= −
µ2

r32
y.

(6)

The Hill’s sphere radius RH is the distance at which the radial forces vanishes,
i.e, at this distance, the Solar tide and mutual attraction are in equilibrium
in Hill’s equations [Murray & Dermott (1999)]. Different approximations are
used to obtain the radius of the Hill’s sphere. To have consistency with the
definition for the radius of the sphere of influence, we use

RH = a
(m

M

)1/3
.

Table 1. The radii (in A.U.) of the close-encounter spheres of the Jovian planets

Sphere Jupiter Saturn Uranus Neptune
Sphere of influence: Rsoi 0.322258 0.364620 0.346036 0.579209
Hill’s sphere: RH 0.512331 0.628208 0.675749 1.118706

Table 1 lists the radii of close-encounter spheres of the Jovian planets [Rehman
(2013)], calculated using the data obtained fromWilliams (2019) and expressed
in astronomical units (1 A.U. = 149597870 km). Table 1 shows that Rsoi < RH
for all four Jovian planets and the radius of Jupiter’s sphere of influence is the
smallest, while that of Neptune’s Hill’s sphere is the largest. We also observe
from Table 1 that RH monotonically increases with distance of the Jovian
planets to the Sun but Rsoi is non-monotonic.
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2 Close-encounter error

To illustrate the error in a single close-encounter detected during a simulation,
consider a planet at the centre of the sphere of influence with radius Rsoi,
as sketched in Figure 3, and suppose we use three different combinations of
integrators and interpolation schemes in the main algorithm. Their integration
time-steps are denoted by a small circle, a triangle, and a cross, respectively.
The three combinations will result in three slightly different orbits, but we
used a single trajectory in Fig. 3; the difference between orbits is insignificant

Fig. 3. An illustration of error in a single close-encounter detected during a simulation. The
integration time-steps of three different combinations of the main algorithm are denoted by
symbols: a small-circle, a triangle, and a cross, respectively.

compared to the radius of the sphere of influence for our purposes here.
Consider the orbit generated by the combination denoted by the small

circle. The end of two time-steps is well inside the sphere of influence. The
distances between the planet and the asteroid at the end of the time-steps
inside the sphere of influence are less than the radius of the sphere of influence
and the close-encounter is reported. Next, consider the orbit approximation
corresponding to time-steps denoted by a cross. The end of one time-step
is inside the sphere of influence, which we also report as a close-encounter.
Finally, consider the third orbit associated with the triangles. This orbit takes
a large time-step and the end of the step does not lie inside the sphere of
influence. Hence, we would miss the close-encounter for this orbit.

Even though two of the three orbit approximations would report a close-
encounter, there is likely to be a difference in the time of the close-encounter.
There should be a unique time of close-encounter to quantify which of these
solutions has to be chosen for the time of close-encounter. In order to ensure
fair comparisons between different combinations of the main algorithm, we
need to define a unique time of close-encounter.

One possibility is to take the distance between the planet and the as-
teroid exactly equal to the radius of the sphere of influence and record the
corresponding time this equality first occurs as the time of close-encounter.
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Physically, there is also a unique global minimum distance between the planet
and the asteroid for a single close-encounter. So, another possibility is to take
this global minimum distance. For both possibilities, we use a non-linear equa-
tion solver (NLES) and an interpolation scheme to find an approximation of
the time of close-encounter. As far as the second possibility is concerned, it has
the disadvantage that the close-encounter is recorded as soon as the time-step
lies inside the sphere of influence, which may be before the point of minimal
distance. Hence, the second definition may require extrapolation, or the need
to integrate the asteroid further for one or more time-steps, in a post-process
routine that stores all this information. This particular situation is illustrated
in Fig. 3, for the combination denoted by a small circle: two time-steps lie in-
side the sphere of influence, one before and the other after the point of minimal
distance.

3 Test problem

As is the case for the system of ODEs (1), many problems are independent of
the first derivative of their solution and are also independent of time. These
types of IVPs are known as autonomous second-order systems of ODEs. We
now consider a test problem of this type, namely, the Helin-Roman-Crockett
(HRC) problem consisting of the Sun, the Jovian planets and a comet.

3.1 Helin-Roman-Crockett problem

The Helin-Roman-Crockett (HRC) problem models the HRC comet having
multiple close-encounters with Jupiter, during which the comet actually orbits
Jupiter. The last such close-encounter was observed in 1976 and the comet is
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Fig. 4. The distance of the comet from Jupiter in the HRC problem.

expected to make another close-encounter in the year 2075, during which it
will be temporarily captured by Jupiter. This temporary capture has been
modeled by researchers; see for example, Levison and Duncan (1994). The
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equations of motion for the HRC problem are the same as those for the Jovian
problem [Rehman (2013)] with the addition of the following equations for the
comet at position r̄6:

r̄
′′

6 (t) =

5
∑

i=1

µi(ri(t)− r̄6(t))

||ri(t)− r̄6(t)||32
. (7)

Here, the symbol r̄ is used instead of r to indicate that the comet is treated as
a massless body. The initial conditions of the comet are given in the Appendix.
Figure 4 shows the distance of the comet to Jupiter over a time interval from
t = 0 to t = 10, 000 days. The experiment is performed to examine the possible
number of close-encounters when the comet comes to a certain distance from
Jupiter. The graph clearly shows five close-encounters where the comet comes
to within 10−2 distance from Jupiter. The figure indicates a possible sixth
close-encounter at t ≈ 7000 days, but the minimum distance to Jupiter is
significantly larger than the other five local minima. Hence, this sixth local
minimum is often not regarded as a close-encounter.

Figure 5 shows the two-dimensional phase portrait for the components of
the position of the comet from t = 2000 to t = 6000 days. Here, Jupiter lies
at the origin. The plotted trajectory is reminiscent of the petals of a flower;
due to this similarity, such plots are often referred to as petal plots or tulip
diagrams.

The time-step plays a vital role in close-encounters. For example, the close-
encounter of Asteroid3 in Fig. 1 could easily be missed if the time-steps were
too large and the distance between planet and test particle was calculated only
at the end of the time-steps. The time-step must also be reduced because the
magnitude of acceleration increases as the asteroid approaches the planet. Fig-
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Fig. 5. The two-dimensional phase portrait for the x- and y-components of the position of
the comet relative to Jupiter (blue dot) in the HRC problem. Plotted is the orbit segment
from t = 2000 (A) to t = 6000 days (B).

ure 6 shows the step-size sequence for t ∈ [0, 10000] for different variable-step-
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size integrators, ERKN689 (Explicit Runge-Kutta-Nyström, nine stage, 6-8
pair [Dormand et al. (1987)]), ERKN81013 (Explicit Runge-Kutta-Nyström,
thirteen stage, 8-10 pair [Sharp & Qureshi (2013)]), ERKN101217 (Explicit
Runge-Kutta-Nyström, seventeen stage, 10-12 pair [Dormand et al. (1987)]),
and the ODEX2 integrator [Hairer et al. (1993)]. The maximum step-sizes
taken by ERKN689, ERKN81013, ERKN101217, and ODEX2 are approxi-
mately 19.98, 70.82, 157.99, and 408.02 days, respectively. The integrations are
performed in double precision using FORTRAN with a local error tolerance of
10−14. We have taken a time interval of 10,000 days to illustrate that the step-
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Fig. 6. The step-size sequence versus time using the integrators ERKN689, ERKN101217
and ODEX2 on the HRC problem.

size decreases significantly as the comet makes close-encounters with Jupiter.
The biggest step-size variation has been observed with ODEX2, where it re-
duces from approximately 408.02 days to 7.6 days during one close-encounter.
These experiments were performed to illustrate the effect of close-encounters
on the step-size.

Conclusion

The main objective of this paper was to discuss potential difficulties to detect
close-encounters while performing N -body simulations of the Solar System.
An important property of numerical schemes for such simulations is to detect
and handle close-encounters accurately. In this paper, we discussed a general
scheme for handling close-encounters. The interpolation schemes play a vital
role for these kind of simulations. The accurate approximation of the orbits
of the massive bodies at any time t is important, because the accuracy influ-
ences the accuracy of the orbits of the massless bodies. Similarly, it is equally
important to use an appropriate interpolation scheme to obtain accurate ap-
proximations of the times of the close-encounters, as well as to the positions
and velocities of both the massive and massless bodies at the times of close-
encounters. We also presented an overview of close-encounter spheres. We an-
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alyzed and compared the radii of the close-encounter spheres of the Jovian
planets. In order to ensure fair comparisons between different combinations of
integrators and interpolation schemes, there should be a unique time of close-
encounter. Therefore, we illustrated different possibilities of close-encounter
error in a single close-encounter detected during a simulation. Our numerical
testing involved different numerical schemes on a more realistic HRC problem
consisting of the Sun, the Jovian planets and a comet.
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Appendix

Table 2. Rows 1 to 6 are the initial positions and Rows 7 to 12 are the initial velocities for
the HRC problem

x y z

Sun 0.666919856444077×10−2
−0.723511466440839×10−3

−0.113065442378779×10−3

Jupiter −0.4929481880506559×101 −0.2310910532399841×101 0.1197889941614212×100

Saturn −0.5559462159881659×101 0.7217090743352659×101 0.1008764843911512×100

Uranus −0.1051479684851656×102 −0.1555904864202644×102 0.774039048494362×10−1

Neptune 0.1636130229890141×101 0.2982856616501356×102 −0.6473579962266688×100

Comet −0.3965267044277659×101 0.3060320798461592×100 0.2949122108880113×100

Sun −0.1597551822288177×10−5 0.7254098157790906×10−5
−0.3038348598973975×10−7

Jupiter 0.3109433296611612×10−2
−0.6477134819096109×10−2

−0.4357172559451174×10−4

Saturn −0.4717678753258388×10−2
−0.3413503592855709×10−2 0.2469252827795303×10−3

Uranus 0.3227888778570112×10−2
−0.2386568620156909×10−2

−0.5061978789868374×10−4

Neptune −0.3152327294479188×10−2 0.1931132154044109×10−3 0.6952342277721326×10−4

Comet −0.1800219023380088×10−2
−0.8521337694196810×10−2 0.1052106206437703×10−3
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