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Abstract. The asymmetric distributions of astronomical values pose complicate shapes.
Sometimes they have heavy tails, other times they do not posses event light tails. Then
the ordinary statistical parameters (mean, standard deviation, skewness, kurtosis) may not
be informative enough and visualization of the distribution by a histogram is necessary.
However, in contrast with the empiric cumulative function, which is unique for the available
data, the histogram is not unique. Its appearance depends on the user supplied scanning
step and binning interval. A better representation is necessary. This work is devoted to the
characterization of unimodal asymmetric data distributions by a special figure, intergram
and its parameters, introduced here.

The intergram approach is based on the shortest interval among the ordered data (SID ),
containing specified part p, 0 < p < 1, of the data, (p-SID). Numerous p-SIDs produce an
intergram – a tripod figure containing the bounds of the SIDs plus their middle points as
dependences on p of the p-SID (Fig. 2). The intergram is unique for the available data and
it may be the alternative of the histogram. The intergram gives specific gradients (Fig. 3)
parameters of the morphology of the data distribution. It may prognosticate typical high
value for 1% of the studied population (Figs. 3).

This intergram approach is applied on 21 distributions – time series of the Wolf numbers,
light variations of irregular stars etc., as well as masses, sizes, luminosities, etc., of astro-
nomical objects. The data distributions collected here have various origin and observing
score, but their ordinary and intergram parameters follow common statistical dependences,
i.e. these distributions are in principle mutually similar (Figs. 5–7). In particular, an well
pronounced quadratic dependence between the skewness and the kurtosis is found (Fig. 6a).
Some interesting particularities of the regarded data distributions are briefly commented.
The distributions are represented on-line as pdf material.
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Introduction

Many astronomical values show asymmetric distributions (ADs), sometimes
even with triangular shape (Fig. 1). Such are the time series of the variations
of the Wolf number of the solar spots, the variations of the light flux from
an irregular variable star, etc. Such are also the values of physical parameters
like the masses of planetary bodies, the luminosities of stars, the diameters of
galaxies, etc. These ADs seem to be so fundamental in the nature as the trian-
gles in the geometry. This work is devoted to characterization and comparison
of data distributions (DDs) through a special tool – the intergram.

Recently we found quasi-periods in the flickering of the symbiotic star
RS Oph (Georgiev, Zamanov, Boeva et al., 2020). The DD of the light fluctu-
ations were compared with the well known DDs of the monthly Wolf number
and with the (presumed known) weekly visiting number of the Smolyan Plan-
etarium. (The visiting number does not correlate with the Wolf number.)

These DDs occurrence is very similar. Figure 1 illustrates this by 6 kinds
of histograms: along the linear ordinate (a, c, e) and along the logarithmic
ordinate (b, d, f), as well as over the linear abscissa (a, b), over the root-
squared abscissa (c, d) and over the logarithmic abscissa (e, f). The relevant
time series are shown in diagrams (g).
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Fig. 1. A curious similarity between the histograms of the Wolf monthly number NW (top
panels, 886 data) and the Planetarium weekly visiting number NV (bottom panels, 313 data,
where n = NV /100) in various coordinates. (See the text.) The lines are: (1) – histograms
h(.), in percents ×2 and vertical markers of the mode, the median and the average value; (2)
– cumulative functions scaled between 0 and 10, (3) – fits of the reverse cumulative function
in (b) and quasi-normal DD in (d). These fits prognosticate the values of NW or NV for 1%
of the relevant populations. The numbers in (c, d) are the numbers of the few histogram
columns (points) in the DD range.
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Figure 1 shows that: over linear target parameters both DDs have positive
skewness (a, b); over logarithmic parameters the skewness becomes negative
(e, f); and over square root of the parameter both DDs show quasi-normal
shapes (c, d). These unusual complexities and similarities of these ADs moti-
vated this wok. (See the comments about these DDs in Section 3.)

In comparison with the normal distribution (ND), the AD has a compli-
cated shape. Sometimes it has heavy tail(s) (non-typical large deviations from
the mean value) other times it does not event light tail(s). Usually the AD
needs of visualization by a histogram. However, the appearance of the his-
togram depends on the user supplied scanning step and binning interval. So,
by contrast with the empiric cumulative function, the empiric histogram is not
unique. Better representation is necessary.

The goals of this paper are to describe the specific characterization of the
DD through the intergram with its skeleton, functions and gradients (Sections
1 and 2), to represent intergrams and their parameters for 21 DDs (Section 3
plus on-line pdf Appendix), and to compare ordinary and intergram parame-
ters of the selected DDs (Section 4).

Some abbreviations are used in the text, as follows: AD – asymmetric
distribution, AV – average value, DD – data distribution; ND – normal dis-
tribution, SD – standard deviation, SP – studied population, p%-SID - the
shortest interval in the ordered data, containing p% of the data, 1%-PHV –
prognostic high value for 1% of the SP.

1. The intergram and its building

Figure 2 contains the intergrams of the distribution of 76 Solar System bodies
by their log-diameters. The bodies (planets, satellites and asteroids) are larger
than 130 km. The Sun and the giant planets are excluded. Full representation
of this case is given in examples #19, #17L and #18L in the on-line Appendix.

In practice, the scientist does not know the density function of the studied
population (SP). They have only n sorted data x1, x2, ..., xn, considered as a
”good sample” from the SP. Such data are shown by dots along the ordinate in
Fig. 2a and along the abscissa in Fig. 2b. A relevant histogram that represents
approximately the density function of these SP is shown by dashed curve in
Fig. 2b.

Another visualization of the DD is possible through the method of the
minimal interval, containing p% of the sorted data (p%-SID). This method is
mentioned by Rousseeuw & Leroy (1987) in a connection with their ”method
of the least trimmed squares”. The content of every SID may be characterized
by all statistical parameters, like the whole DD. But here the goal is the use
of all available SIDs for drawing the shape of the DD through the bounds of
the p%-SIDs.

Figure 2a contains two vertical segments showing the SIDs above the ab-
scissae p = 0.25 and p = 0.6826. In this work the middle point of the 25%-SID
is used as a robust mode estimator for the DD. The 68.26%-SID corresponds
to the ±1σ interval of the ND. The half of the size of the 68.26%-SID, divided
by the median of the DD, is used here as a relative median standard deviation
SM , replacing the ordinary standard deviation (SD) of the DD as more robust
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value. The segments fo 2 SIDs in Fig. 2a are a part of the ”interval skeleton”
of the DD, these 4 ”ribs” are shown in Fig. 2b.

Let x=lg D in Fig. 2a. Then the basic parameters of the segment of the
68.26%-SID are the bounds x1 and x2, as well as the average value (AV) of
the bounds xC = (x1+x2)/2. These 3 parameters, arranged in dependence on
p as x1(p), xC(p) and x2(p), for 0< p <1, build the intergram in its definition
form (Fig. 2a).

The algorithm for the intergram building follows. In the preliminary step
the initial minimal part of data, p0, should be chosen. Here p0 = 0.1, but
usually p0 = 0.25. (Often the modal part of the DD is complicated and p0
must be large enough.) Then the respective initial size of the SID, as number
data, m1 = p0 × n, should be derived. The first step is derivation of the value
of p1 that corresponds just to the number m1, p1 = m1/n, and derivation
of the bounds xl and xr of the p1-SID, containing m1 data, follows. The last
action is realized by scanning of the (sorted) data row X by data window with
size m1, by step of one data number. The second step begins by increasing m1

to m2 = m1 + 1 and derivation of the respective p2 = m2/n. After this the
bounds xl and xr of the p2-SID are found again by scanning of the data row,
etc., until mk = n− 1.

The result is the intergram – a tripod figure containing the SID bound
points and their AV in dependence on p. In Fig. 2a the number of the used
SIDs is n−m1 + 1 points. For the collected n = 76 solar bodies, k = 70 SIDs
are used, containing from 6 to 75 data points.

Fig. 2. Intergrams of the log-diameters lg D of Solar bodies. (a) – the definition form, in
dependence on p (0.1 < p < 1); (b) – the ordinary form, in dependence on q = 1 − p. The
lines show: (1) – intergrams and vertical markers of mode, median and AV; (2) – histogram
h(lg D), scaled to unit maximal value; (3) – the SIDs (”ribs”) No.0 and No.1 in the diagram
(a), as well as the interval ”skeleton” with ”ribs” No. 0–3 in the diagram (b). The dots in
the diagrams a and b show the ordered available data, lg D. (See the text.)
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Figure 2a shows the definition form of the intergram together with two
used SID points over the abscissa, p. However such reclined tripod is not
useful. Figure 2b shows the intergram in its ordinary form, beside the ordinate
q = 1 − p. This form is (i) compatible with the histogram and (ii) it allows
logarithmic ordinate (Fig. 3b).

Note that in this paper the histograms are more wide than the intergrams
because the binning interval is two times larger than the scanning step and
because of the scaling of the histograms to unit maximal value. Note that in
Fig. 2b the histogram has large scale jags, but the intergram is more smooth.

Fig. 3. Intergrams of the flickering flux F of T CrB (f) along linear (a) and logarithmic (b)
ordinate. F1(q), FC(q) and F2(q) are ”the legs” of the intergram. The quadratic and linear
fits of the largest leg of the intergram prognosticate for 1% PHV 11.3 and 11.8. The lines are:
(1) – intergrams h(F ) and lg h(F ), vertical markers of the mode, the median and the AV, (2)
– histograms, (3) – skeleton, (4) – fits. Diagrams (c), (d) and (e) represent the morphological
functions lg C(p), lg W (p) and lg A(p) (Eq. 1). (See the text.)

Figure 3 is example #00 in this paper. It contains the DD of the U flux (F )
of the symbiotic double star T CrB, expressed in units of 10−15 erg cm2 s−1 A−1

(Georgiev, Boeva, Latev et al., 2021). In diagram 3(a) the intergram and the
histogram are shown along linear ordinates, q = 1−p and h(F ). The histogram
is scaled to unit height in its maximum. In diagram 3(b), the intergram and the
histogram are drown along logarithmic ordinates, lg q and lg h(F ) respectively.
Diagrams 3(c), 3(d) and 3(e) show the intergram functions lg C(p), lg W (p)
and lg A(p) (Eq. 1), with their linear fits and gradients G (see below).
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2. The skeleton indices, function gradients and intergram
prognoses

The intergram in Fig. 2b and Fig. 3b includes two more special SIDs than the
intergram in Fig. 2a and Fig. 3a. The SID No. 2 contains 95.44% of the data
like the ±2σ interval of the ND. The ±3σ interval, containing 99.72% of the
ND, is not useful because in practice it depends on the presence or absence
of tails in the DD. For this reason in this paper the SID No. 3 contains 99%
of the data and it is a good 1% zero level for the diagrams with log-ordinates
(diagrams (b)).

The SIDs 0–3 in diagram (b) draw intergram skeleton with 4 ribs. Some-
times the lowest (almost vertical) segment of the skeleton, 2–3, is deviated in
respect to the other segments. Such circumstance is seen better beside log-
ordinate and this is a direct evidence of excess or deficit of tails in the DD. In
Fig. 2b the deviated segment 2-3 (seen better in #18) hints to a deficit of one
more large planet. In Fig. 3b such a circumstance is not seen. The skeletons are
present in the diagrams (b) in Fig. 3 and in the (b) diagrams in the Appendix.

The SIDs No.1 and No.2 diagrams (b) may be used naturally for charac-
terization of the intergram body, i.e. for deriving of robust indices of the SP.
These two p SID are chosen for easy comparison with the ND. They give ro-
bust skeleton indices of the intrgtam shape of the DD – the average width and
asymmetry, as well as the average rates of change of the width and asymmetry.
These indexes are compatible with ordinary skewness, kurtosis, etc. (Georgiev,
2020, G2020, figs. 6, 8, 9). The mentioned skeleton indexes are independent on
the tails of the DD, but they are derived by only four points of the intergram.
For this reason the present paper is concentrated on the intergram functions
(trends), derivable by (almost) all SIDs of the DD.

One local parameter of every p%-SID is the center of the SID: xC = (x1 +
x2)/2 (Fig. 2a). Other useful parameters are the semi-width xW = (x2−x1)/2
and the asymmetry in respect to the mode of the DD, xA = ∆2/∆1, where
∆2 = x2 − xmed and ∆1 = xmed − x1. (In this paper the mode is the center of
the 25%-SID.)

Therefore, the morphology of the DDs may be characterized by 3 morpho-
logical functions of the intergram: center-function C(p), width-function W (p),
and asymmetry-function A(p):

C(p) = xC/xmod, W (p) = xW/xmod, A(p) = ∆2/∆1. (1)

Note that while A(p) is dimensionless by definition, C(p) and W (p) may be-
come relative and universal after scaling trough division by the mean position
of the DD, here xmod.

Logarithms of these functions show quasi-linear dependences on p on the
diagrams c, d, e in Fig. 3 and in the Appendix. Comparisons between gradi-
ents of these functions with the statistic parameters and by themselves are
shown in Figs. 5, 6 and 7. Figure 4 shows schemes of intergrams with different
shapes,characterised by different function trends.

Another useful application of the intergram in the case of positive AD is
the prognosis of 1%-PHV shown in Fig. 3b. Along the logarithmic ordinate the
largest led of the intergram (with positive asymmetry), F2(lg (q)), becomes
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Fig. 4. (a) The intergram ABC’ is more tilt (skewed) than ABC and its gradient GC is larger.
(b) The intergram A’B’C has more wide base than ABC and its gradient GW is larger. (c)
The intergram AB’C is more asymmetric than ABC and its gradient GA is larger.

quasi-quadratic or quasi-linear. The respective fit crosses the abscissa (the 1%
level) on F = 11.3, or F = 11.8. This is the alternative of the prognosis, based
on the reverse cumulative function (Fig. 1b).

Such prognoses are marked and inserted in numerous diagrams in the Ap-
pendix. Generally, Fig. 4b shows that the largest positive flickering deviations
seem somewhat suppressed like the suppression of the largest Wolf numbers in
Fig. 1. Diagrams c, d and e in Fig. 4, as well as in the Appendix, show the in-
tergram functions and their linear fits. The relevant gradients are summarized
in Table 1.

3. Examples of data distributions

Figure 3, plus 20 panels in the on-line Appendix represent intergrams, his-
tograms, intergram skeletons and intergram gradients of various DDs. Data
about the DDs and their statistical and intergram parameters are summarized
in Table 1. The examples in this work are intended mainly for illustrations.
However, brief comments of some interesting particularities of the DDs are
given below. In the Appendix, the first 10 examples contain linear abscissae
(target parameters) and the next 10 – logarithmic abscissae.

The shapes of the collected DDs take 3 types of asymmetry. Positive skew-
ness have 13 DDS: #00, #01, #02, #03, #04, #07, #13, #14, #15, #19,
#04l, #17L, #18L. Quasi-symmetric shapes show 5 DDS, 3 NDs – #11, #12,
#20 plus 2 log-NDs – , #13L, #14L. Negative skewness have 3 DDs: #01L,
#02L, #03L.

The collected DDs include 3 types by the coverage of the distribution
through the observations/measurements – full (exhaustive), occasional (provi-
sional) and limited (preliminary bounded). 12 DDs are exhaustively observed.
They seem to cover the ranges of the target parameter and the ranges of the
density function. The respective 1%-PHV are collected in Table 2.

The distributions of the Wolf number and the Planetarium visits, W and
N , are the most interesting among the exhaustively observed DDs. They are
similar in all diagrams (Fig. 1, panels #01, #02, #03, #01L, #02L, #03L).
The distributions over square root of the numbers are quasi-normal. Another
such pair of DDs is not found in this work. The distribution of the Wolf
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number has been modeled and simulated by Noble & Wheatland (2011). The
largest values of W are suppressed as if some unit area of the solar surface
must support limiting Wolf number. The deviated bottom segment 2–3 of
the skeletons confirms this. The largest values of N are smaller and clearly
suppressed by the capacity of the Planetarium. It seems the Wolf number
corresponds to the total area of the spots better than to the number of spots.
May be the Planetarium visiting number corresponds to the number of the
visiting groups.

Example #04 is based on the B-flux of the LBV AF And in 1917–1989
(Ganchev et al., 2017). The positive tail in the histogram b show the excess
of high fluxes, due to the erruption in 1970–1980. For this reason the lowest
segment of the skeleton, 2–3, is turned to the right.

The atmosphere extinction over Rozhen NAO in B-band, in 138 nights in
2005–2008 is derived by Dimitrov (2009). The mode, median and AV are 0.13
mag, 0.175 mag and 0.20 mag, respectively (#07).

Six DDs are occasionally observed parameters of disk galaxies – #11, #12,
#13, #14, #13L and #14L. The sample (from Hyper LEDA) includes 639 disk
(star-forming) galaxies at distances up to 16 Mpc. The galaxies are selected to
have morphological types Sab–Ir and inclination angles i 30o–85o. Amplitudes
of the rotational velocities, which are the results of the log-masses of the
galaxies, are badly estimated if i < 30o. The luminosity of the galaxy seems
to be badly estimated if i > 85o.

Any sample of galaxies, limited by magnitude (i.e. by observing depth), has
bias: the presence of the faint galaxies decreases when the distance increases.
Therefore, the apparent distribution of the galaxies may be observed fully,
but the intrinsic distribution – not. In result the apparent mean of every
distribution is shifted toward the more luminous galaxies. The left (faint)
edges of all DDs of the galaxies are badly defined. However, the respective
DDs support the correlations and dependences in Section 4.

The 1%-PHV are entered in the diagrams about the galaxies and collected
in Table 2 in the Appendix. The 1%-PHV for B surface brightness is -17.2
mag/kpc2 and 3 galaxies have -17.3 – 16.4 mag/kpc2. The 1%-PHV for B
luminosity is -22.6 abs.mag, but the most luminous galaxy in the sample has
-21.6 abs.mag, i.e. it is 2.5 times less luminous. Note the long quasi-linear
leg of the intergrams in #13 and #14. The 1%-PHV for B disk diameter is
36–40 kpc and 7 galaxies have 36¡d¡45 kpc. The 1%-PHV for the amplitude
of the rotational velocity is 242–316 km/s and 6 galaxies have 245–278 km/s.
Generally, the 1%-PHV prognoses correspond well to the observations.

Further, tree DDs, #17L, #18L and #19, contain ADs of masses, diameters
and densities of solar bodies, with diameters larger than 130 km. These DDs
have big linear ranges of their masses and diameters. So, only logarithms of
these parameters may be used for histograms. The local maxima of the DDs
about lg M = 21 and lg D = 3 due to numerous bodies with diameters of
about 1000 km and density about 2 g/cm3. The available DDs about solar
bodies are bounded preliminary on the left, but they are cut naturally on the
right.

Note the deviated bottom segments 2–3 of the skeletons in #17L, #18L
and #19, in the intrgrams (b). The fits prognosticate lg M = 25.1 − 27 for
1%-HPV, while the Earth and Uranus have 24.8 and 26.0, respectively. The
prognoses for the size are D = 17800− 56000 km, while the Earth has 12756
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km and Uranus, with its giant atmosphere, has 51000 km. The intergram
prognoses by the linear fits seem to be too high.

The intergram of the density distribution (#19) prognosticates ρ = 6.1
g/cm3. Generally, according to the DDs #17L, #18L and #19 at least one big
planet should be present in the Solar system.

4. Correlations between the ordinary and intergram indices

The ordinary indices (of Pearson) that characterize the shape of the DD are
the skewness P1 and the kurtosisP2. They are based on the statistical central
moments of the DDMk, k = 1, 2, 3, 4. The k-th central moment and the second
central moment, the dispersion, are:

Mk = Σ(∆xi)
k/n = µk, M2 = Σ(∆xi)

2/n = µ2 = σ2, (2)

where ∆xi = xi−µ, µ is the population mean and σ is the standard deviation.
Then the definitions of P1, P2 and of the special kurtosis P2∗ are

P1 = µ3/σ3, P2 = µ4/σ4, P2∗ = lg (P2/3). (3)

Theoretic symmetric distributions, such as the ND (Gaussian), the double
exponential distribution (Laplassian) and the uniform distribution, have zero
skewness P1. DDs with heavier right wing/tail have convenient positive skew-
ness and vice versa. However, the mentioned distribution have not convenient
kurtosis P2 – 3, 6 and 6/5, respectively. Therefore, for compatibility with the
ND, the modified kurtosis P2∗ is introduced here. The respective modified
kurtosis values P2∗ become 0, 0.3 and -0.4.

In the parameters in Eq.3 the deviations ∆xi from the mean value par-
ticipate with their 3-rd or 4-th powers. Therefore, the large deviations are
too heavy and these parameters are not robust. The intergram gradient pa-
rameters, suggested in this work, are defined by numerous SIDs and may be
considered as robust. Moreover, in the most cases the gradients of the inter-
gram functions, in the diagrams (c), (d) and (e), are well defined.

Some indexes of the ADs were compared in the preliminary work G2020,
Figs. 6–8. The wide spread formula for estimation of the mode xAV − xmod =
3(xAV − xmed) was confirmed with coefficient 3.03 by 34 DD, with coefficient
of determination 99%.

Figure 5 shows that the intergram gradients gradients GC and GW (Fig. 3)
correlate well with the relative median deviation SM. The relative median
deviation is the half of the 68.26%-SID divided by the median value of the
DD. Here GA is usually poor defined and generally it does not correlate with
SM. DD #13, about the diameters of the galacies, seems to be strongly peculiar
in Fig. a.

Figure 6 shows other correlations between the skewness P1 and kurtosis P1

(Eqs. 12) and two intergram gradients. The remarkable parabolic dependence
between the skewness and the kurtosis in Fig. a where found early by 34 such
DDs (G2020, Fig. 7a). Correlation between squared skewness and the kurtosis
found by Schlopflocher & Sullivan (2005).

78



Ts. B. Georgiev

Fig. 5. Correlations between the median deviation SM and the gradients of the functions
in Eq. 1. (1) and (2) – gradients from intergrams with linear and logarithmic abscissae. g
– gradient of the linear fit, r – coefficient of determination. The DD #13L is considered
peculiar and it is excluded from the fits.

Fig. 6. Juxtapositions of the skewness P1 with the modified kurtosis P2∗ and the intergram
gradients GC and GW. The diagrams in (a) and (b) contain quadratic fits and (a) – linear
fit. Circles mark positions of the ND and (only in (a)) the double exponential distribution
(ED). In (b) the examples #01 and #03, with Wolf numbers, are excluded from the fits. (See
Fig. 4.)

Fig. 7. Mutual correlations between the gradients of the intergram functions defined in Eq. 1.
Circles mark the positions of the ND, only in (b). Peculiar is the DDs #13L (See Fig. 4.)
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Remarkable peculiarity of the DDs #01 and #03 of the Wolf numbers
appear in Fig. 7b. They are excluded from the fits. Remarkable correlation is
seen in Fig. 7c between the asymmetry parameters P1 and GA.

Figure 7 shows juxtapositions between the gradients of the intergram func-
tions in Eqs. 1. Fig. 7a and 7b show some correlations, but the gradients GA

and GW do not correlate.
All diagrams in Figs. 5–7 may be used for elucidation of peculiar DDs. In

the available DDs such are the distribution of the Wolf number and galaxies
by diameters.

5. Conclusions

1. The intergram, suggested in the present work, is an unique representation
of the DD with the next following valuable merits (Sections 1, 2):

(i) The intergram may replace the histogram well for the visualization of
the unimodal AD (Fig. 2, 3);

(ii) The gradients of the intergram functions (Eq. 1) are robust morpho-
logical indexes of the intergram body of the AD (Fig. 3, 4);

(iii) Beside a log-ordinate the largest intergram leg of an AD with positive
asymmetry, with linear or quadratic fit continuation, may prognosticate the
high target value for 1% of the SP (Fig. 3). Table 2 in the Appendix shows
such estimation through reverse cumulative function and intergram. In most
cases they coincide.

(iv) Beside a log-ordinate the a deviation of the lowest segment intergram
skeleton shows clearly excess or deficit of tails of the DD. Examples with
significant deficit of large deviations are #01, #03, #19, #17L, #18L. Faint
deficit of deviations may be suspected in #02 and #04. Small excess of positive
deviations show #02, #04, #13, #014.

2. The DDs collected here have various origin and observing score, but
their ordinary and intergram indexes follow common statistical dependences.
Generally, these distributions are in principle similar (Figs. 5–7).

3. A quadratic dependence between the indexes of skewness and kurtosis is
found here for 21 DDs (Fig. 6a). The same dependence was found for 34 DDs
in the preliminary work (G2020, Fig. 7c). The key reason is the elucidation of
DDs with strong negative asymmetry, #01L, #02L, #01L.

4. The distributions of the Wolf number and the visiting number of the
Planetarium are very similar over linear, square root and logarithmic target
parameter. The distributions over square root of the numbers are quasi-normal.
It seems the Wolf number corresponds to the spot area better than to the spot
number. (Fig. 1., #01–#03, #01L–#03L.)

5. The B-atmosphere extinction over Rozhen NAO in 138 nights from 2005–
2008 yr. was measured with a CCD by Dimitrov (2009). The mode, median
and AV are 0.13 mag, 0.175 mag and 0.20 mag, respectively (#07).

6. Generally, the 1% PHV intergram prognoses of the basic parameters of
the disk galaxies correspond well to the observations.

7. Generally, the distributions of the masses, diameters and densities of the
largest bodies in the Solar System, #17L, #18L and #19 (without the Sun
and the giant planets) do not correspond to the observations. They give evi-
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dences that at least one more big planet should be present in the Solar System.
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