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Abstract. Physical conditions deep within planets and exoplanets have yet to be measured
directly, but indirect methods can calculate them. The polytropic models are one possible
solution to this problem. In the present paper, we assume that the interiors of planets follow
a polytropic equation of state. Hydrostatic equilibrium conditions are used to determine
the overall structural properties of the constituent matter. In the frame of the conformable
fractional derivatives, we use polytropic gas spheres to model the density profiles, pressure
profiles, temperature distributions, and mass-radius relations for the interiors of the initial
stage of exoplanets. Planets of single chemical composition were used to study the behavior of
the mass-radius relation, pressure distributions, and temperature distribution variation with
the fractional parameter. We calculated 72 fractional models for the mass of protoplanets of
1MJ , 3MJ , and 10MJ (MJ is the mass of Jupiter), and the values of the polytropic index
are n = 0, 0.5, 1, 1.5, and the fractional parameter range 0.75-1. The fractional gas sphere
has a lower pressure than an integer one, and the temperature behaves like the pressure.
In contrast to the pressure profile, the sphere’s mass grows with the fractional parameter,
while the fractional gas sphere’s volume (or radius) is less than that of the integer one. The
protoplanet pressure profiles for each mass track show an increase in mass for both integer
and fractional models. For both the integer and fractional models, the pressure close to the
protoplanets’ centers is essentially the same. Another crucial remark is that the polytrope
with n = 1.5 has more insignificant effects from the fractional models than the polytrope
with n = 0.5. As the protoplanet’s mass increases, so does its temperature.
Key words: Analytical Methods- Fractional Derivatives- Polytropes- Exoplanets

Introduction

Exoplanets, or planets orbiting other stars, are now known to be prevalent
in our galaxy. Their internal structure can vary from highly puffy gas giants
to compact rocky planets with densities as high as that of iron (de Pater &
Lissauer, 2015). Numerous studies on the formation of giant planets have been
prompted by finding extrasolar planets (Guillot, 2008; Lissauer and Steven-
son, 2007; Helled and Schubert, 2008). The first confirmed extrasolar planet
orbiting a main-sequence star, 51 Pegasi b, with a mass of between 0.5 and 3
MJ , was discovered, reviving debates over the potential mechanisms involved
in producing massive planets (Mayor and Queloz, 1995; Marcy et al., 1997;
Boss, 1998a). The formation of such planets can theoretically be explained by
the disc instability (DI) and core accretion (CA) mechanisms that have previ-
ously been supported (Pollack et al., 2012, b; Marcy et al., 1997; Boss, 1997,
1998a, b, 2000, 2003; Helled and Schubert, 2008). With certain modifications,
the DI model is seen to offer a potential path for the rapid production of giant
planets, which begins with the instability of the disc breaking apart by its
self-gravity into protoplanets of gas and dust (Paul et al., 2012a, b, 2020rr).

The explicit temperature dependency in the equation of state is handled
differently in the many theories of internal planet matter. So, if the tempera-
ture dependence of the equation of state can be neglected with no significant
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effects, the system can be thought to have a uniform temperature. Models of
this sort are commonly referred to as cold planet or zero temperature planet
models; as a result, the polytropic equation of state is suitable to model mat-
ters inside exoplanets.

Polytropes form the theoretical basis of our understanding of stellar struc-
ture and evolution (Chandrasekhar, 1958) and are broadly used in other fields
of astrophysics (Horedt, 2004). Polytropic models can calculate known global
quantities like mass and radius and conservation equations from the center to
the surface. Polytropic equations, for example, have been used to describe the
mass and position of planets and moons in solar and satellite systems (Geroy-
annis and Dallas, 1994), as well as to study globular clusters (e.g., Nguyen and
Pedraza, 2013), collapsing molecular clouds and Bok globules (Curry and Mc-
Kee, 2000), quark stars (Lai and Xu, 2009). Moreover, polytropes have been
used to solve stability and oscillation problems and to address relativistic ef-
fects in stars, Gleiser and Sowinski (2013), Breysse et al. (2014), Saad et al.
(2017), Saad et al. (2021), Geroyannis and Karageorgopoulos (2014).

In recent decades, fractional calculus has had broad applications in physics
and engineering, such as quantum physics, wave mechanics, electrical systems,
and fractal wave propagation. Various real-life problems are described using
fractional differential equations, Stanislavsky (2010) and Herrmann (2014).
Fractional derivatives were used by Mathieu et al. (2003) to improve the cri-
terion of thin detection that arises in signal processing. Debnath et al. (2012)
generalized the second law of thermodynamics for the Friedmann Universe
enclosed by a boundary in the framework of fractional action cosmology.

Many authors implemented fractional-order modeling of astrophysical and
space problems. Jamil et al. (2012) developed a dark energy model in fractional
action cosmology using a power-law weight function. Analysis of the frac-
tional white dwarf model has been performed by El-Nabulsi (2011), Bayian
and Krisch (2015) studied the incompressible gas sphere, and Yousif et al.
(2021) examined the fractional isothermal gas sphere using the Taylor series.
Nouh and Abdel-Nabulsi (2018) and Abdel-Salam and Nouh (2020) investi-
gated the polytropic gas sphere using power series expansion.

This paper uses fractional polytropes to simulate physical variables such
as radius, mass, density, temperature, and pressure inside the exoplanets. We
attempt to calculate precise values of the zero of the Emden function for a
given polytropic index and fractional parameter to calculate the radius and
mass accurately. We will use single fractional polytropes to investigate the
interior structure of exoplanets. We assume isolated spherical gaseous proto-
planets with the solar composition of gas generated by gravitational instability
and masses ranging from 0.3 to 10 MJ (Paul et al., 2021); it is worth noting
that this mass range encompasses most of the discovered exoplanets (Helled
and Schubert, 2008). During their early stages, protoplanets contract quasi-
statically, the ideal gas law holds good, and the only energy source is the
gravitational contraction (Paul et al., 2020; Paul et al., 2021). We suppose
that such a protoplanet is in a stable state in which the polytropic equation of
state holds well (Paul et al., 2014). Using symbolic manipulation in MATH-
EMATICA 12, accelerated analytical expressions for the physical quantities
will be generated.
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The structure of the paper is as follows: Section 2 is devoted to the prin-
ciples of the conformable derivative, section 3 deals with the fractional poly-
tropic equation and the physical parameters of the polytrope, section 4 gives
the computational method used for calculations, in section 5 we present the
results of the analysis, and in section 6 we outlined the concluding remarks.

Conformable Fractional Derivatives (CFD)

The conformable fractional derivative (CFD) uses the limits in the form (Khalil
et al., 2014)

Dαf(t) = lim
ε→0

f( t+ εt1−α )− f(t)

ε
∀ t > 0, α ∈ (0, 1] (1)

f (α)(0) = lim
t→0+

f (α)(t). (2)

Here f (α)(0) is not defined. When α = 1 this fractional derivative reduces to
the ordinary derivative. The conformable fractional derivative has the following
properties:

Dα tp = p tp−α, p ∈ R, Dαc = 0, ∀ f(t) = c (3)

Dα(a f + b g) = aDαf + bDαg, ∀ a, b ∈ R, (4)

Dα( f g) = f Dαg + f Dαg(5)Dα f( g) =
df

dg
Dαg, (5)

Dα f( t) = t1−α df

dg
(6)

where f, g are two α− differentiable functions and c is an arbitrary constant.
Equations (5) to (6) are proved by Khalil et al. (2014). The conformable
fractional derivative of some functions

Dαect=ct1−αect, Dα sin(ct)=ct1−α cos(ct), Dα cos(ct)=−c t1−α sin(ct), (7)

Dαect
α

=cαect
α

, Dα sin(ctα)=cα cos(ctα), Dα cos (ctα)=−cα sin(ctα). (8)

The Fractional Polytropic Model

Polytropes use the equation of state P = Kρ1+1/n with a constant K (pro-
portional to the gas entropy) and the polytropic index n to derive hydrostatic
pressure P and mass density. Any gravitating body where this simple EOS
can be applied can be considered a polytrope.

The fractional form of equations of mass conservation and hydrostatic equi-
librium is given by (Abdel-Salam and Nouh, 2020)

dαM(r)

drα
= 4πr2αρ, (9)
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and
dα P (r)

drα
= −

GM(r)

r2α
ρ. (10)

Rearranging Equation (10) and perform the first fractional derivative we get

dα

drα

(

r2α

ρ

dα P (r)

drα

)

= −G
dαM(r)

drα
. (11)

Inserting Equation (9) into Equation (11), we obtain

1

r2α
dα

drα

(

r2α

ρ

dα P (r)

drα

)

= − 4πGρ. (12)

If ρ and ρc denote the density and the central density, the Emden function
(u) could be defined as

u =

(

ρ

ρc

)1/n

(13)

Define the dimensionless variable x as

xα =
rα

a
. (14)

Inserting Equations (9) and (13) in Equation (12), we get

K

(a xα)2
dα

d(a xα)

(

(a xα)2

ρcun
dα (ρcu

n)1+
1

n

d(a xα)

)

= − 4πGρcu
n. (15)

Take the fractional derivative of (u)

dα

dxα
un+1 = (n+ 1)un

dαu

dxα
. (16)

Inserting Equation (16) in Equation (15) and rearranging, we get

K(n+ 1)ρ
1

n
−1

c

4πGa2
1

x2α
dα

d xα

(

x2α
dαu

dxα

)

= −un. (17)

Now by taking

a2 =
K(n+ 1)ρ

1

n
−1

c

4πG
, (18)

then the Lane-Emden equation in its fractional form is given by

1

x2α
dα

d xα

(

x2α
dαu

dxα

)

= −un. (19)
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Computational Method

Write Equation (19) in the form

x−2αDα
x

(

x2αDα
x

)

u+ un = 0, (20)

by putting X = xα, the Emden function could be computed from the series
form (Abdel-Salam and Nouh, 2020)

u(X) =
∞
∑

m=0

AmXm, (21)

where the series coefficients will be calculated using the recurrence relations

Ak+2 = −
Qk

α2(k + 2)(k + 3)
, ∀ k ≥ 2 (22)

and

Qm =
1

m!A0

m
∑

i=1

(m− 1)!(in−m+ i)AiQm−i, ∀ m ≥ 1, (23)

Equation (20) has exact solutions only for the polytopes with n=0, 1, and 5
given by

y(x) = 1− 1
6

(

xα

α

)2
,

y(x) =
(

xα

α

)

−1
sin
(

xα

α

)

,

y(x) =

(

1 + 1
3

(

xα

α

)2
)

−
1

2

.

(24)

The mass contained in a radius r is provided by

M(rα) =

∫ r

0
4π r2αρ drα. (25)

Inserting Equations (14) and (13) for ρ and rα we found

M(xα) = 4π a3ρc

∫ x

0
x2αun dxα (26)

by substituting Equation (19) for the Emden function un, we get

M(xα) = 4π

[

K(n+ 1)

4πG

]

3

2

ρ
3−n

2n
c

[

−

(

x2α
dαu

dxα

)]

x=x1

. (27)

The radius of the polytropic gas sphere is given by

Rα = a xα1 ,
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where xα1 is the first zero of the Lane-Emden function. Then the radius is given
by

Rα =

[

K(n+ 1)

4πG

]

1

2

ρ
1−n

2n
c xα1 . (28)

The pressure and the temperature distributions could be calculated from

P = Pc u
n+1, (29)

T = Tc u
n. (30)

Results and Discussion

To determine the structure of the conformable polytropic gas sphere, we used
the analytical solution of Equation (21) with the two recurrence relations,
Equations (22-23). We elaborated a MATHEMATICA code to calculate the
series coefficients, radii, densities, pressures, temperatures, and masses of the
polytropic gas spheres for the range of the polytropic index 0 ≤ n < 3. To
explore the properties of the models, we computed 72 polytropic models for n
and α values listed in Table 1.

It is worth noting that the Emden function computed using the power series
without applying acceleration techniques is limited to the interior points (0 ≤

x ≤ 1). To reach the surface of the polytrope, we implemented the accelerating
scheme proposed by Nouh (2004) to accelerate the series convergence. As an
example, we depict in Figure 1 the Emden function calculated for n=2 and
α = 0.95; the dashed line is for the power series solution without acceleration,
and the solid line is for the calculation with the accelerated power series.

For a given polytropic index n and a fractional parameter α, the first step
of the calculations is to compute the zeroth of the Emden functions (analog to
the radius of the gas sphere). In Table 1, we listed the calculated zeroth for the
range of the n = 0(0.5)3 and α = 0.75(0.1)1; it is well noticed that the radius
of the gas sphere is decreased as the fractional parameter α decreases. This
decrease means that the volume of the fractional gas sphere would be smaller
than the integer one. From the table, we can calculate the percentage x1(α =
0.75)/x1(α = 1) of the radii of the fractional gas spheres with α =0.75 to that
of the integer one (α=1) have the following values: for n = 0 the radius of the
fractional sphere is reduced to 76% of its integer value, while for n = 0.5 is 75%,
for n = 1 is 73%, for n = 1.5 is 68%, for n = 2 is 61%, for n = 2.5 is 53% , and
finally for n = 3 is 43%. These results indicate that the volume of the fractional
gas sphere is smaller than that of the integer one, and this decrease in the
volume is directly proportional to the polytropic index. In the present study,
we consider isolated spherical gaseous protoplanets with the solar composition
of the gas with masses ranging from 0.3 to 10 MJ , it is worth mentioning
that this mass range includes the most known exoplanets in their early phases
(Helled and Schubert, 2008). We assume that the protoplanet is stable with a
well-fitting polytropic equation of state. We modeled the fractional polytropes
having solar chemical compositions with the parameters listed in Table 2 for
the range of the fractional parameter α = 0.75 − 1. The central values of
the densities, the pressures, and the temperatures are taken from Paul et al.
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Fig. 1. The distribution of Emden function for conformable polytrope with n = 2 and
α = 0.95. The dashed line represents the unaccelerated solution, and the solid line for the
accelerated solution.

Table 1. The zero (x1) of the Emden function for different fractional polytropic models.

n x1

α=1 α=0.95 α=0.9 α=0.85 α=0.8 α=0.75
0 2.44 2.36 2.27 2.15 2.01 1.85
0.5 2.75 2.65 2.52 2.40 2.24 2.06
1 3.14 3.0 2.85 2.68 2.49 2.28
1.5 3.65 3.41 3.19 2.96 2.73 2.48
2 4.35 3.87 3.54 3.24 2.96 2.67
2.5 5.35 4.37 3.88 3.50 3.16 2.83
3 6.89 4.87 4.2 3.74 3.35 2.98
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Table 2. Central values of the density, pressure, and temperature of protoplanetary masses
and radii of the polytrope with index n (Helled and Schubert, 2008).

M/MJ R(cm) ρc(gmcm−3) Pc (dyne cm−2) Tc (K)
n=0 n=0.5 n=1 n=1.5 n=0 n=0.5 n=1 n=1.5 n=0 n=0.5 n=1 n=1.5

1 5.3 3.04 5.59 10.02 18.23 36.31 709.10 1181.87 1632.27 318.83 278.09 318.83 343.37
3 7.8 2.87 5.26 9.42 17.16 69.83 1360.43 2276.51 4031.02 649.92 556.87 649.92 699.96
10 11.0 3.41 6.25 11.20 22.40 196.17 3821.57 12738.48 8796.85 1536.17 1339.86 1536.18 1654.44

* R× 1012 ; ρc × 10−9

(2014), based on the study of Helled and Schubert (2008). The distributions of
the physical parameters of the fractional polytrope, like mass, radius, pressure,
temperature, and density, could be computed from Equations (28-30). Using
the zeros of the Emden function (x1) listed in Table 1 for each (n, α) pair, we
calculated 72 conformable polytropic models. In Figures (2-4), we plotted the
pressure profile, the mass-radius relation, and the temperature distribution for
an exoplanet with a mass of 3MJ and the polytropic indices n = 0, 0.5, 1, and
1.5. The values of central densities, central pressures, and central temperatures
are taken from Table 2. The fractional gas sphere has a smaller pressure for the
polytropic indices than the integer one. In Figure 3, we plot the mass-radius
relations; the behavior is opposite to the pressure profile; the sphere’s mass
increases with the fractional parameter. The temperature will behave similarly
to the pressure (as shown in Figure 4) since temperature and pressure are
related to the central values through the Emden function.

The pressure profiles for protoplanets with masses 1MJ , 3MJ , and 10MJ
are plotted in Figure 5; the fractional models are computed for the polytropic
index n = 0.5 (upper panel) and n = 1.5 (lower panel). It is shown that from
Figure 5, the pressure for both integer and fractional models of the proto-
planets increases with increasing masses. The pressure near the protoplanets’
center is nearly identical for the integer and fractional models. Another im-
portant notice is that the fractional models have more minor effects for the
polytrope with n=1.5 than for the polytrope with n=0.5. Figure 6 shows the
temperature distributions inside protoplanets with 1MJ , 3MJ , and 10MJ and
polytopic indices n = 0.5 and 1.5. As the mass of the protoplanet increase,
the temperature increases. Our findings for the integer models (α = 1) are in
reasonable agreement with the calculations of Paul and Bhattacharjee (2013)
and Paul et al. (2014).
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Fig. 2. The pressure profile of fractional polytropic gas spheres. The polytropic index ranged
from n = 0− 1.5, and the fractional parameter ranged from 0.75− 1. Models with different
fractional parameters α are indicated by different line shapes.
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Fig. 3. The mass-radius relations for fractional polytropic gas spheres. The polytropic index
ranged from n = 0 − 1.5, and the fractional parameter ranged from 0.75 − 1. Models with
different fractional parameters α are indicated by different line shapes.
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Fig. 4. The temperature distribution for fractional polytropic gas spheres. The polytropic
index ranged from n = 0 − 1.5, and the fractional parameter ranged from 0.75 − 1. Models
with different fractional parameters α are indicated by different line shapes.
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Fig. 5. The pressure profile of the fractional polytrope with n = 0.5 (upper panel) and
n = 1.5 (lower panel), computed for the masses of 1MJ (red lines), 3MJ (blue lines), and
10MJ (green lines). The solid lines are for the fractional parameter α = 1, and the dashed
lines are for α = 0.75.

109



Fractional Polytropic Models Applied to Exoplanets

� ��� ��� ��� ��� �

�	

�

�

���

���

����

����

���

���

����

����

�
��
�

� ��� ��� ��� ��� �

�	

�

�

���

���

����

����

����

���

���

����

����

����

�
��
�

Fig. 6. The temperature distribution for fractional polytrope with n = 0.5 (upper panel)
and n = 1.5 (lower panel), computed for the masses of 1MJ (red lines), 3MJ (blue lines), and
10MJ (green lines). The solid lines are for the fractional parameter α = 1, and the dashed
lines are for α = 0.75.
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Conclusion

In the present paper, we assumed isolated spherical gaseous protoplanets with
the solar composition of the gas with masses ranging from 0.3 to 10 MJ .
The protoplanet is stable with a well-fitting polytropic equation of state. We
computed conformable fractional polytropic models for the initial stage of
protoplanets (gas giant planets). We implemented the accelerated power se-
ries expansion to solve the conformable fractional Lane-Emden equation. The
fractional models are computed for masses 1MJ , 3MJ , and 10MJ , polytropic
indices n = 0, 0.5, 1, and 1.5, and the fractional parameters in the range
0.75− 1. The results could be summarized in the following points:

– For the fractional models with polytropic indices 0 ≤ n ≤ 1.5, the gas
sphere has a smaller pressure than the integer one, and the temperature
behaves as the pressure (the integer polytropic models have larger temper-
atures than the fractional ones).

– The behavior of the mass-radius relation is opposite to the pressure profile;
the sphere’s mass increases with the fractional parameter.

– The fractional gas sphere’s radius (i.e., volume) is smaller than that of
the integer one. This decrease in the volume of the gas sphere is directly
proportional to the polytropic index.

– For each mass track, the pressure profiles for protoplanets for both integer
and fractional models show an increase with increasing masses. The pres-
sure near the protoplanets’ center is nearly identical for the integer and
fractional models. Another important notice is that the fractional mod-
els have more negligible effects for the polytrope with n=1.5 than for the
polytrope with n=0.5. The temperature of the protoplanet rises as the
protoplanet’s mass rises.

– Our results for integer models (α=1) are in reasonable agreement with
earlier investigations of Paul and Bhattacharjee (2013) and Paul et al.
(2014).
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