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Abstract. According to Einstein’s cosmological principle, our universe at any fixed time
is homogeneous and isotropic on large scales. It is thus modeled up to scaling by one of the
following three three-dimensional maximally symmetric manifolds: the sphere, the Euclidean
space, or the hyperbolic pseudosphere, none of which contain any privileged points or direc-
tions. We present several arguments which indicate why the last two unbounded manifolds
cannot be good models of our physical universe at any fixed time. We shall then concentrate
only on the expanding three-dimensional sphere. We prove that if its radius expands linearly,
then the total travel time of a shuttle along geodesics around the entire universe is finite. If
the shuttle has a constant velocity v > 0, its trajectory on such an expanding sphere is a
logarithmic spiral.

Keywords: cosmological parameters; cosmic microwave background; max-
imally symmetric manifold; sphere; logarithmic spiral

1 Introduction

According to the Copernican principle, humans on the Earth are not privi-
leged observers of the universe. According to Einstein’s cosmological principle,
our universe on each isochrone is homogeneous and isotropic on large scales.
Roughly speaking, at any fixed time its curvature is constant at any point and
in any direction. These principles are, in fact, assumptions.

More precisely, homogeneity is the assumed property of the universe that
at any fixed time instant and on large spatial scales the universe appears the
same to all observers, wherever they are. In other words, at any fixed time the
translation symmetry of the universe is required. In the Hubble test of a local
homogeneity of the universe, one has to measure the apparent magnitude
(energy flux f from a given galaxy). By Carpenter (1938), the number of

observed galaxies in the sky brighter than f should vary as f−3/2, see also
Baryshev (2012), Peebles (1993), Weinberg (1972). For a modification of this
test to γ-ray bursts see Li (2015).

Similarly, isotropy is the assumed property of the universe in which the
universe at large spatial scales would seem to an observer at any point in
space to be the same in all directions, i.e., at any fixed time the rotational
symmetry of the universe is required. A local isotropy is continually verified by
analyzing the Hubble Deep Field, Webb’s First Deep Field, Cosmic Microwave
Background radiation (CMB), γ-ray bursts, etc. According to the Copernican
principle, we are not at some umbilic point, see Kř́ıžek (2003), as is the tip
of the egg which satisfies the required isotropy only at this point and its
antipodal.

Note that isotropy at all points implies homogeneity at all points on the
space manifold, see e.g. Weinberg (1993). The converse statement is not true.
For instance, a crystal of CaCO3 is homogeneous, but anisotropic. For the
Gödel homogeneous and anisotropic universe we refer to Stephani (2004).
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Due to Einstein’s cosmological principle our universe at any fixed time is
usually modeled up to scaling by one of the following three three-dimensional
maximally symmetric manifolds: the sphere S3, the Euclidean space E3, or the
hyperbolic pseudosphere H

3, none of which contain any privileged points or
directions. Their curvature indexes are k = 1, k = 0, and k = −1, respectively.
Recall that an n-dimensional manifold with n ∈ {1, 2, 3, . . . } is a set of points
for which there exists an open neighborhood that can be continuously mapped
onto an open set in E

n such that the inverse is continuous, too.
Already in 1900 Karl Schwarzschild conjectured that the universe can be

described as a huge three-dimensional sphere, see Schwarzschild (1900). He
also speculated that our universe could be even possibly hyperbolic.

Theorem 1.For any dimension n > 1 there exist exactly three maximally
symmetric manifolds, namely S

n, En, and H
n.

For the proof see e.g. Weinberg (1972), Penrose (2005). Now let us ask a
purely theoretical question:

Could we orbit the universe in finite time? (1)

For E
3 and H

3 the answer is NO, since these manifolds are unbounded. In
the next section, we show that these two manifolds are not likely models of
our universe. In Section 3, we concentrate on the three-dimensional sphere. In
Section 4, we prove that if it expands linearly, then the travel time of a shuttle
along geodesics around the entire universe is finite. Finally, in Section 5, we
present some generalizations and give a few essential notes.

2 Arguments against unbounded physical universes

The global curvature of our universe is not definitely established yet. Any-
way, below we present several arguments against Euclidean and hyperbolic
geometries. The first nonvacuum solution of Einstein’s equations was found
by Schwarzschild, see Schwarzschild (1916). He assumed that a ball with co-
ordinate radius R > 0 is formed by an ideal incompressible nonrotating fluid
with constant density to avoid a possible internal mechanical stress in the
solid that may have a nonnegligible influence on the resulting gravitational
field. For the line element dl of the interior of the homogeneous nonrotating
mass ball he derived that, see also Stephani (2004), Ellis (2012) and Florides
(1974),

dl2 =
1

1− s2r2
dr2 + r2da2 + r2 sin2 θ dϕ2, (2)

where sr ∈ [0, 1), θ ∈ [0, π], ϕ ∈ [0, 2π), s =
√

S/R3, and S is the Schwarzschild
radius. This relation is very similar to

dl2 =
1

1− kr2
dr2 + r2dθ2 + r2 sin2 θ dϕ2

for the unit sphere

S
3 = {(x, y, z, w) ∈ E

4 |x2 + y2 + z2 + w2 = 1}
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with curvature parameter k = 1, see Kř́ıžek (2016). Here r ∈ [0, 1) is a dimen-
sionless parameter. We observe that the cases k = −1 and k = 0 do not match
(2) when s > 0. Thus, the presence of a homogeneous mass distribution causes
a positive curvature globally and the most probable model of our universe at
any fixed time is the sphere S

3 up to scaling.
Another argument against the case k ≤ 0 is as follows. It is very unlikely

that an unbounded universe would have at every point and every time instant
almost the same temperature, density, pressure, curvature, etc., on large scales.
This would require an infinite speed of information transfer.

Moreover, the hyperbolic manifold H
3 has a somewhat counter-intuitive

geometry which is difficult to imagine. David Hilbert proved that the hyper-
bolic plane H

2 cannot be isometrically imbedded into E
3, see Hilbert (1901).

His statement is usually formulated as follows: There is no complete regular
two-dimensional manifold of negative constant Gaussian curvature imbedded
into E

3. Thus the hyperbolic plane should be deformed somehow to get some
idea of how it looks like. There are at least six basic ways to perform such
a deformation, see Cannon (1997). One way is, for example, the well-known
two-dimensional Poincaré disc in which all angles between geodesics in H

2 are
preserved, but distances are not preserved.

Danilo Blanuša proved that the hyperbolic plane H
2 can be isometrically

imbedded into the space E
6, see Blanuša (1955). However, for the time being

it is not known whether the dimension six can be reduced. Blanuša’s assertion
was generalized in Brander (2003):

Theorem 2 For n > 1 the pseudosphere H
n can be isometrically imbedded

into E
6n−6.

It is again not known whether the exponent 6n − 6 can be reduced. The
manifolds S3 and H

3, which possibly model our universe at any fixed time, can
be isometrically imbedded to the Euclidean space E4 and E

12, respectively, i.e.

S
3 →֒ E

4, H
3 →֒ E

12.

Here the symbol →֒ denotes the isometric imbedding. Consequently, in
a 12-dimensional Euclidean space the distances in H

3 are undeformed. The
pseudosphere H3 is thus a rather exotic object. Visualization and construction
of H3 without any deformations of distances is therefore extremely difficult,
see Thurston (1984). Note that by Brander (2007) there exists a local isometric
imbedding from H

n to E
2n−1. Hence, H3 →֒ E

5 only locally.

3 Nonuniqueness of the notion universe

From now on we shall consider only the case k = 1 and assume that the
cosmological constant Λ ≈ 10−52 m−2. For Einstein’s static universe with
radius a = 1/

√
Λ, i.e.

S
3
a = {(x, y, z, w) ∈ E

4 |x2 + y2 + z2 + w2 = a2}, (3)
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the answer to the question (1) is obviously YES. Traveling along a given great
circle (geodesic) with constant velocity v = 0.999 c, the total travel time T can
be estimated as follows

T ≈ 2πa

v
≈ 2π1026

3 · 108 s ≈ 2π1026

3 · 108 · π · 107 yr = 6.666 · 1010 yr.

This is five times the present age of the universe t0 = 13.82 Gyr according
to the standard ΛCDM cosmological model. However, the proper time of the
traveler would be much smaller than T due to time dilation.

Now we shall consider an expanding universe, where the radius a in (3)
is a continuous increasing expansion function a = a(t) ≥ 0 depending on
cosmic time t. However, the term “universe” is used in cosmology with various
meanings: true spacetime, true space (i.e. a part of spacetime at any fixed
time instant), and the observable universe, which is seen as a projection on the
celestial sphere. These are three different objects. Their mathematical models
are also three completely different manifolds (see Figure 1). Thus altogether
we have 6 = 3+3 meanings of the problematic notion “universe” for which the
terminology is not fixed yet. The first three contain real matter, whereas the
other three are only abstract mathematical idealizations of physical reality.

In accordance with the Einstein cosmological principle, we shall understand
by the universe a cross-section of spacetime at any fixed time instant, i.e.,
the universe will be an isochrone in spacetime for constant t. For k = 1 the
corresponding model of the universe is the sphere S

3
a for some fixed radius

a = a(t) > 0, which is a three-dimensional manifold in the four-dimensional
Euclidean space E4. The model of the observable universe has dimension three,
too. The model of spacetime in E

5 has dimension four (cf. Figure 1),

M = {(t, x, y, z, w) ∈ E
5 | x2 + y2 + z2 + w2 = a2(t), t ∈ [0, t0]}.

tx

a

y

Fig 1. Schematic illustration of three different manifolds that are used
in the Big Bang model for our universe with positive curvature index. For
simplicity, the space dimensions are reduced by two. Hence, the sphere S

3
a

with radius a = a(t) > 0 at any fixed time instant t is replaced only by its
great (blue) circle S

1
a for z = w = 0. This is the model of the space (universe)

with positive constant curvature 1/a. The model of spacetime can be obtained
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by rotation of the (red) graph of the expansion function about the time axis
t. The observable universe is marked by the (yellow) past light cone whose
vertex corresponds to an observer. This light cone is deformed near the origin,
but we do not know how. Each of these three models has a different center.

All six above-mentioned objects have to be carefully distinguished, other-
wise we may come to various confusions. For instance, the observable universe
is not homogeneous, since for different cosmological redshifts z, it has a differ-
ent mass density. Thus, it is an entirely different object than the universe as
a space. From a similar reason the spacetime is also not homogeneous. There-
fore, the expansion of the universe is a completely different notion than the
expansion of the observable universe.

We often hear that the universe has no center. This is similar to the state-
ment that a circle has no center. The circle, of course, has its center even
though it does not belong to it. In Figure 1, the centers of the blue circles lie
on the axis t. Therefore, also the model of the universe S

3
a has its center at

the origin (0, 0, 0, 0) of coordinates of the space E
4 although (0, 0, 0, 0) 6∈ S

3
a.

On the other hand, the Earth is at the center (see the yellow vertex in Figure
1) of the observable universe which is finite for any k ∈ {−1, 0, 1}. Its horizon
can be modeled by a two-dimensional sphere corresponding to the CMB. The
center of the red model of the expanding universe corresponds to the Big Bang
at an initial time (see also Figure 1). The Big Bang thus happened everywhere.

Finally note that Albert Einstein is a part of the entire spacetime which is
modeled by the red manifold M in Figure 1. However, he is not a part of the
current physical universe not even of the observable universe modeled by the
blue and yellow manifolds, respectively.

4 Flight around the expanding universe

Further, we shall consider a variable radius a = a(t) of the sphere S
3
a. For

simplicity, we assume that it increases linearly with constant velocity V > 0,
cf. Remark 1 below. The expansion velocity V can be even faster than light
and there is no contradiction with Special Theory of Relativity outside the
observer’s inertial system, see Davis (2004). Furthermore, assume that a space
shuttle has also a constant velocity v > 0 with respect to its local neighborhood
(i.e. intergalactic dust). In this particular case, its trajectory will be one turn
of the logarithmic spiral instead of the great circle, see Figure 2. Recall that
the logarithmic spiral is a self-similar curve making a constant slope angle
ϑ ∈ (0, π/2] with the polar radii at all its points.

29



Kř́ıžek

Fig 2. Trajectory of a space shuttle in an expanding universe modeled by
the sphere S3a(t) for a(T ) = 2a(0). It is described by the logarithmic spiral of the

length L = (a(T )− a(0))/ cosϑ, where the slope angle ϑ fulfills tanϑ = v/V .

The following surprising theorem inspired by Rokyta (2012) states that if
the space shuttle has an arbitrarily small constant velocity v > 0 with respect
to V , then it always needs finite time to travel around a linearly expanding
universe, see also Remark 4. Therefore, we will deal with the nonrelativistic
addition of velocities in Theorem 3 below. Note that the spiraling trajectory
can be easily unfolded into a straight line. Thus, in fact, we shall investigate
only a one-dimensional problem. For brevity, we also make a linear shift of
cosmic time so that t = 0 corresponds to the start time.

Theorem 3. Let S3a(t) expand with constant velocity V > 0, i.e. ȧ(t) = V

for all t ≥ 0, and let v > 0 be a constant velocity of the space shuttle. Then its
total cosmic travel time around the universe is

T = a(0)
exp(2πV/v)− 1

V
. (4)

Proof. Assume that the space shuttle will launch from the axis x at time
t = 0. The circumference of a great circle (geodesic) of S3a at time t ≥ 0 is
clearly given by

2πa(t) = 2π(a0 + V t), (5)

where a0 = a(0) is the initial radius. Let b(t) be the instant distance of the
space shuttle at time t ≥ 0 along the great circle with radius a(t) from the
axis x, i.e. from the launch point in the expanding universe (see Figure 2). It
satisfies the following initial problem

ḃ(t) = v + w(t), b(0) = 0, (6)

where w = w(t) is the drifting velocity of a linearly expanding space. We see
that the ratio between the velocity w(t) and the expansion velocity 2πV of
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the great circle is the same as the ratio between the distance b(t) and the
circumference 2πa(t), namely,

w(t)

2πV
=

b(t)

2πa(t)
.

From this, (5), and (6) we get the initial problem

ḃ(t) = v + V
b(t)

a0 + V t
and b(0) = 0. (7)

The right-hand side of this first order differential equation contains the
velocity v which is increased by the drifting velocity w(t) of space expansion.
By the substitution t = 0 and differentiation, we can easily verify that

b(t) = (a0 + V t)
v

V
ln

a0 + V t

a0
(8)

is the solution to problem (7). The space shuttle will return to the launch
point from the opposite direction at time T when

2πa(T ) = b(T ).

From this, (5), and (8) we obtain the equation

v

V
ln

a0 + V T

a0
= 2π. (9)

Consequently,

a0 + V T = a0 exp
2πV

v
(10)

and thus (4) follows. Q.E.D.

5 Final remarks

Remark 1. The assumption that V > 0 is constant in Theorem 3 is
not too restrictive, since the expansion function a = a(t) in Figure 3 is al-
most linear during the last 10 Gyr, see Kř́ıžek (2015). By l’Hospital’s rule,
(4) converges for V → 0 to T = 2πa(0)/v corresponding to Einstein’s static

universe (3). Moreover, a finite travel time T̃ can be preserved if there exists
a linear upper bound a = a(t) of a nonlinear expansion function ã = ã(t) of a
particular cosmological model. Hence, if ã(t) ≤ a(t) for all t, then

T̃ ≤ T,

where T is finite by Theorem 3.
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Fig. 3. The assumed behavior of the normalized expansion function a(t)/a(0).
The time variable is shifted for simplicity such that t0 = 0 corresponds to the
present time. The lower blue graph corresponds to the linear function 1+H0t
on the interval [−1/H0, 0], where H0 is the Hubble constant and 1/H0 = 13.6
Gyr is the Hubble time. The upper green graph shows the quadratic function
1 + H0t − 1

2q0H
2
0 t

2, where q0 = −0.6 is the current value of the deceleration
parameter. The middle red graph illustrates the behavior of the normalized
expansion function calculated numerically from the Friedmann equation for
k = 1 and measured cosmological parameters, see Planck (2014). We observe
that the accelerated expansion differs only very little from the linear expansion
during the last few Gyr.

Remark 2. The assumption that v > 0 is constant in Theorem 3 is also
not restrictive, since for each variable velocity of the space shuttle greater than
v we clearly get a smaller (i.e. finite) travel time.

Remark 3. For simplicity, we have chosen a(T ) = 2a(0) in Figure 2. From
this and (9) it follows that v/V = 2π/ ln 2. Hence, the constant slope angle ϑ
between the polar radii and the tangent line to the spiral is only slightly less
than π/2, where ϑ = arctan(v/V ). Nevertheless, Theorem 3 covers also the
case 0 < v ≪ c < V which is more realistic.

Remark 4. Now we present an independent proof of formula (4). Recall
the equation of the logarithmic spiral with slope angle ϑ in polar coordinates
(r, ϕ),

r(ϕ) = r0 exp(ϕ cotanϑ), (11)

where r0 > 0 is a given constant. If ϑ = π/2, then the logarithmic spiral
reduces to a circle with radius r0. If ϑ ∈ (0, π/2) and ϕ2 ≥ ϕ1, then the length
of the logarithmic spiral is given by

L(ϕ1, ϕ2) =
r(ϕ2)− r(ϕ1)

cosϑ
, (12)

see Figure 2 for ϕ2 = 2π and ϕ1 = 0. Since the space expands in the radial
direction at the constant velocity V and since the shuttle (a nonrelativistic
massive particle) moves in the perpendicular direction at the constant velocity
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v, the total velocity along the logarithmic spiral
√
v2 + V 2 is also constant

and the slope angle is ϑ = arctan(v/V ). Hence, V sinϑ = v cosϑ and thus
V 2 = (v2 + V 2) cos2 ϑ, i.e.

V =
√

v2 + V 2 cosϑ.

Consequently, from (11) and (12) we find that the length of the entire trajec-
tory is L = (a(T ) − a(0))/ cos(arctan(v/V )) and thus, the total travel time
is

T =
L√

v2 + V 2
=

a(T )− a(0)√
v2 + V 2 cos(arctan(v/V ))

= a(0)
exp(2πV/v)− 1

V
.

This result independently confirms the formula (4).

There are several theories about the origin of the CMB, see e.g. Planck
(2014), Vavryčuk (2018). Now we show that the CMB radiation (the cosmo-
logical horizon) might be just the image of the antipodal point of our neigh-
borhood ≈ 13.8 Gyr ago.

Example. To illustrate the main idea of the above hypothesis, consider
the trajectory of a photon which is moving at the velocity v = c with respect
to its local space. Then for the trajectory from the antipodal point of S3a(0) to

our present location we find by (5) and similarly to (10) that

a(t) = a(0) + V t = a(0) exp
πV

c
,

where t is the travel time of CMB photons along trajectories of length (12) for
ϕ2 = π and ϕ1 = 0. From this the cosmological redshift of the photon is given
by

z =
a(t)

a(0)
− 1 = exp(2.22π)− 1 ≈ 1075 for V = 2.22c.

This value is quite close to the observed redshift z = 1089 of the CMB, see
Planck (2014), even though the actual expansion velocity of the universe is
variable and not a fixed constant V .

Remark 5. It would be a mistake to believe that the well-known map
of the CMB radiation shows the entire universe, how it looked like 380 000
years after the Big Bang. This map shows only a two-dimensional slice of a
three-dimensional manifold corresponding to the universe for z ≈ 1089 when
its radius was z + 1 = 1090 times smaller than at present. This radius is the
same as the radius of any great circle (e.g. equator) at the time when relict
photons were emitted. Moreover, we observe everything only on the projection
on the celestial sphere. For example, the relict radiation produced at that time
in our neighborhood is not on the map of the cosmic microwave background
radiation. We also do not see any relict radiation from the places where all 1012

galaxies in the observable universe are to date. At each of these galaxies we
would observe at present completely different maps of the cosmic microwave
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Kř́ıžek

background fluctuations. So on the Earth, an observer may have an idea about
how only a tiny part of the early universe looked like.

Remark 6. The question of whether photons can orbit a closed universe
near the initial singularity was investigated by Misner in Misner (1969), see
also Doroshkevich (1971). The answer is yes. Our main result is different, since
we accept also subluminal velocities at the present era. Moreover, we can cover
many cosmological models as explained in Remark 1.
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