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Abstract. In this paper we have undertaken the study of systems with two radiating
primaries in the framework of an elliptic restricted three-body problem, where the orbits of
the two massive bodies about each other are assumed to be elliptic and the mass of the third
body is negligible. We have made a comparative study of analytical and numerical results
for the position of equilibrium points in the case of two binary systems, Eta Cassiopeiae
and Gliese 65. We have further studied the Hill’s curves and observed the pulsation of the
curves with the true anomaly and change in size of the forbidden regions (the size of the
interior forbidden region decreases but the region enclosed by the larger boundary enclosing
all primaries and equilibrium points increases in size) of motion with change in radiation
pressure of the two primaries. We did a study of Basin of Attraction for the planar equilibrium
points and found that the size of basins changes (decreases for L2-L5 and increases for L1)
with the value of radiation pressure q1 of the first primary, whereas the symmetry of the
basin of attraction of L1 was observed to be distorted with decrease in radiation pressure q2
of the second primary.
Key words: Restricted Three-body Problem, Fractal basin of attraction, Hill’s curve, Binary
systems

Introduction

Stellar dynamical problems examine how radiating bodies affect particles of
infinitesimal mass. It was found that the most dominant force affecting the
dynamics of an infinitesimal mass is the force of radiation pressure and not
the gravitational force. When the third infinitesimal mass in a system with
radiating primaries has substantial sailing capacity (for example, cosmic dust,
stellar wind etc), then the classical planar circular restricted three-body prob-
lem (CRTBP) cannot be used to study the dynamics of such systems. Thus it
was proposed to modify the classical RTBP by superposing a radiative repul-
sion field with the gravitational field of the luminous primaries. The study of
the effect of radiation pressure when one or both the primaries of the system
are radiating sources in Circular Restricted Three-Body Problem(CRTBP)
was first undertaken by Radzievskii [1950, 1953] and is known as photogravi-
tational RTBP.

Schuerman [1980] studied the inclusion of the radiation force in the re-
stricted three-body problem by observing the effect of the major radial com-
ponents of the pressure force. For this model he considered the case of a
β-particle in the vicinity of two luminous massive bodies. He showed that the
position of L4 and L5 equilibrium points may be anywhere within the union of
two circles which are centered on the radiating primaries and the circles have
equal radii which is equivalent to the separation of the two primaries.

In the previous century, several authors have studied the various aspects
of the photogravitational restricted three-body problem. Some of the contri-
butions are Kunitsyn and Perezhogin [1978], Bhatnagar and Chawla [1979],
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Kunitsyn and Tureshbaev [1985] etc. One interesting sub-topic of the pho-
togravitational restricted three-body problem, undertaken by several scientists
in this century, is the computation of families of periodic orbits (Kalantonis
et al. [2006], Kalantonis et al. [2008]). Alzahrani et al. [2017] have considered
the infinitesimal mass to be moving in the gravitational field of an irregular
asteroid and radiating primaries in photogravitational restricted three-body
problem. They established the necessary and sufficient conditions for finding
the three collinear points and proved the existence of these points and trian-
gular equilibrium points. Singh and Haruna [2020] studied the position and
stability of the triangular equilibrium points when both primaries are radi-
ating and considered as heterogeneous spheroid with three layers of different
densities. In their model, the effects of small perturbations in the Coriolis and
centrifugal forces and potential from a belt (circumbinary disc) were also in-
cluded. Numerical methods were employed to determine the positions and the
linear stability of the coplanar equilibrium points. Alrebdi et al. [2022] also in-
vestigated the equilibrium dynamics of the restricted three-body problem with
equally massed prolate radiating bodies using numerical methods. Their result
established that both radiation pressure and prolate-ness are highly influential
on the equilibria of the system.

Danby [1964] studied the Elliptic Restricted Three-Body Problem (ERTBP)
and used numerical integration to determine the linear stability of the el-
liptic Lagrange orbits. Selaru and Cucu-Dumitrescu [1995] investigated the
asymptotic disturbance approximations in the planar, elliptic restricted prob-
lem of three bodies in the neighborhood of a Lagrangian equilateral position
for motions of an infinitesimal point mass with small amplitudes. The study of
Photo-gravitational Elliptical Restricted Three-Body Problem was undertaken
by Ammar [2008]. He proved that the radiation pressure slightly reduces the
effective mass of the Sun and changes the location of the Lagrangian points.
Kumar and Ishwar [2011] studied the photogravitational ERTBP and derived
the location of the collinear libration points analytically. Further, Aliroma et
al. [2019] proved that the size of the stability region depends on the eccentricity
of the orbits in addition to other perturbations like radiation pressure.

In some recent studies, we observed the study of photogravitational ERTBP
with reference to binary systems. Narayan and Singh [2014,2014a] studied the
ERTBP where both primaries are luminous to find the position and stabil-
ity of the equilibrium points. Narayan and Singh [2014b] also studied the
resonance stability of these points. The work done by Singh and Isah [2021]
analyzed the effects of radiation pressure and triaxiality of the two radiating
primaries on the location of equilibrium points, where the primaries are as-
sumed to be surrounded by a circum-binary belt in the framework of elliptic
restricted three-body problems. They concluded that stability of the orbit of
the third body in the neighborhood of collinear libration points was affected
by triaxiality, radiation and the gravitational potential of the belt.

In this paper we have extended the works Narayan and Singh [2014] and
Narayan and Singh [2014b]. First, we compared the analytically obtained val-
ues of the position of equilibrium points, as given in these papers, with numeri-
cal results using graphical representation. We then studied Hill’s region on the
ecliptic plane. Finally, we made a study of the Fractal basin of attraction for
planar equilibrium points, comparing the effect of the radiation pressure on
the basin.
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We did the study mainly by theoretically applying the results obtained for
two binary star systems. The first binary system we studied is the Eta Cas-
siopeiae (ηCas) in the northern constellation of Cassiopeia. Eta Cassiopeiae’s
two components, i.e. ηCas A(Achird) and ηCas B are orbiting around each
other over a period of 480 years in highly eccentric orbits and are separated
from each other by an average distance of 72 AU (Strand [1969]). The second
binary system is Gliese 65 (or Luyten 726-8), which is one of the Earth’s near-
est neighbours. The two components of the system, Gliese 65A (BL Ceti) and
Gliese 65B (UV Ceti), orbit one another every 26.5 years in highly eccentric
orbits. The distance between the two stars varies from 2.1 to 8.8 astronomical
units (Luyten [1949]).

1 Equation of motion

The model proposed in this study comprises of two radiating primaries located
on the rotating-pulsating x̄−axis at the points S1(x̄1, ȳ1, z̄1) and S2(x̄2, ȳ2, z̄2),
and revolving around their common center of mass in elliptic orbits with vari-
able angular velocity ḟ = (0, 0, ḟ), with respect to the inertial frame XY Z.
The model studies the motion of the infinitesimal mass P in the proximity of
the two primaries as shown in Figure 1.

Fig. 1. The model for Elliptic Restricted Three Body Problem

The coordinate system used to frame the equations is the pulsating, rotat-
ing barycentric system x̄ȳz̄. The z̄-axis is assumed to be parallel to the Z−axis
of the inertial reference frame.
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To begin with, we write the equation of motion of the infinitesimal mass
in the inertial reference frame:

d2X

dt2
= −G

[

m1(X −X1)q1
R3

1

+
m2(X −X2)q2

R3
2

]

;

d2Y

dt2
= −G

[

m1(Y − Y1)q1
R3

1

+
m2(Y − Y2)q2

R3
2

]

; (1)

d2Z

dt2
= −G

[

m1(Z − Z1)q1
R3

1

+
m2(Z − Z2)q2

R3
2

]

.

Here, Ri =
√

(X −Xi)2 + (Y − Yi)2 + (Z − Zi)2, i = 1, 2 is the distance of
the infinitesimal mass from the primaries, respectively, in this frame, and
qi = 1 − βi is the radiation pressure exerted by the stars. The dimension-
less quantities β1 and β2 specify the effect of radiation pressure. It is defined
as

βi =
3L∗iQ̄

′

pri

16GπcmiRdρ
, where i = 1, 2. (2)

Here, ρ is the density and Rd is the radius of the infinitesimal dust particle.
mi is the mass, L∗i is the stellar luminosity and Q̄′

pri is the dimensionless
efficiency factor for the radiation pressure, averaged over the stellar spectrum.
G is the gravitational constant and c is the speed of light in vacuum.

The polar equation of elliptic orbits, considered in ERTBP (Ammar [2008]),
takes the form

r =
a(1− e2)

1 + e cos f
, (3)

where f is the true anomaly of the smaller primary S2 and e is the eccentricity
of the elliptical orbit of both primaries.

The next step was to transform to a rotating coordinate system Oxyz using
the transformation

X = x cos f − y sin f ;

Y = x sin f + y cos f ;

Z = z.

Thus we have

ẍ− 2ẏḟ − yf̈ − xḟ2 =−G

[

m1(x− x1)q1
r31

+
m2(x− x2)q2

r32

]

;

ÿ + 2ẋḟ + xf̈ − yḟ2 =−G

[

m1(y − y1)q1
r31

+
m2(y − y2)q2

r32

]

z̈ =−G

[

m1(z − z1)q1
r31

+
m2(z − z2)q2

r32

]
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In order to maintain the primaries in fixed positions, we transform to Nechville’s
coordinate system using the transformation

x = rx̄, y = rȳ, z = rz̄, r1 = rr̄1 and r2 = rr̄2,

where, the unit of length is chosen as the instantaneous distance between
the primaries, namely r defined by (3), the independent variable is chosen
to be the true anomaly f of the Keplerian motion, described by the smaller
primary. Also, following the usual practice, we choose a system of units as: the
gravitational constant is unity and the sum of the masses of the primaries is
unity, i.e m1 +m2 = 1. We define

µ =
m2

m1 +m2
, 1− µ =

m1

m1 +m2
; 0 < µ <

1

2
.

Accordingly, the separation between the primaries will be constant and
equal to one. Then, the position of the two primaries is determined by the
coordinates (x̄1, ȳ1, z̄1) = (µ, 0, 0), (x̄2, ȳ2, z̄2) = (1− µ, 0, 0).

We take the true anomaly, f , as the new independent variable rather than
the time t. Then, using the relation df/dt = 1/r2, the equations of motion of
the particle p(x̄, ȳ, z̄) in this pulsating system, are given in the form:

x̄′′ − 2ȳ′ =Ωx̄ =
1

1 + e cos f
ωx̄;

ȳ′′ + 2x̄′ =Ωȳ =
1

1 + e cos f
ωȳ; (4)

z̄′′ + z̄ =Ωz̄ =
1

1 + e cos f
ωz̄;

where

ω =
1

2
(x̄2 + ȳ2 − z̄2e cos f) +

q1(1− µ)

r̄1
+

q2µ

r̄2
;

qi =(1− βi), i = 1, 2, (5)

r̄1 =
√

(x+ µ)2 + y2 + z2, r̄2 =
√

(x+ µ− 1)2 + y2 + z2.

The prime (′) denotes the differentiation with respect to the true anomaly f .

2 Planar Equilibrium points

The points on the plane of motion of the primaries, where velocity and ac-
celeration of the infinitesimal mass is almost zero, are called the equilibrium
points or Libration points, or Lagrangian points.
The planar equilibrium points for the problem were derived analytically (Narayan
and Singh [2014,2014a]) solving the system of equations:

Ωx̄ = 0, Ωȳ = 0

92



A. Chakraborty, A. Narayan

These equations are obtained because at the libration points the velocity and
acceleration of the infinitesimal mass is assumed to be zero and for planar
equilibrium points we also take z̄ = 0.

The first three points which lie on x−axis are known as collinear points.
For the collinear equilibrium points we have ȳ = 0. Thus, we get the equation

Ωx̄ = x̄−

(

q1(1− µ)(x̄+ µ)

|x̄+ µ|3
+

q2µ(x̄+ µ− 1)

|x̄+ µ− 1|3

)

= 0.

The solution of this quintic equation is obtained analytically by using series
expansion as shown in detail by Narayan and Singh [2014a].

The two points L4,5, which are positioned symmetrically above and below
x−axis, are known as triangular equilibrium points and are obtained by solving
the equations (Narayan and Singh [2014]):

Ωx̄ = x̄−

(

q1(1− µ)(x̄+ µ)

r̄31
+

q2µ(x̄+ µ− 1)

r̄32

)

= 0,

Ωȳ = ȳ −

(

q1(1− µ)ȳ

r̄31
+

q2µȳ

r̄32

)

= 0.

The planar equilibrium points for the problem were derived analytically (Narayan
and Singh [2014,2014a]) solving the system of equations, as given below:

L1 :

x̄ = 1− µ− ρ1, ȳ = 0

where,

ρ1 = α1 −
1

3

(

1− 2β1/3

1− 4β1/3

)

α2
1 −

1

9

(

1− 8β1/3 + 44β2
1

1− 4β1/3

)

α3
1 + · · ·

α1 =

(

µ(1− β2)

3(1− µ)(1− 4β1/3)

)1/3

L2 :

x̄ = 1− µ+ ρ2, ȳ = 0

where,

ρ2 = α2 +
1

3

(

1 + 14β1/3

1 + 4β1/3

)

α2
2 −

1

9

(

1− 32β1/3− 28β2
1

1 + 4β1/3

)

α3
2 + · · ·
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α2 =

(

µ(1− β2)

3(1− µ)(1 + 4β1/3)

)1/3

L3 :

x̄ = −µ− ρ3, ȳ = 0

where,

ρ3 = 1−
β1
3

−
12

7

(

1−
5β1

3(7 + β2)

)

α3 +
12

7

(

1−
1054β1

144(7 + β2)

)

α2
3 + · · ·

α3 =
µ

(1− µ)

L4, L5 :

x̄ =
1

2
− µ+

1

2

(

(1− β1)
2/3 − (1− β2)

2/3
)

ȳ = ±

√

(1− β1)2/3 −
1

4

(

(1− β1)2/3 − (1− β2)2/3
)2

Binary
System

Mass of pri-
mary (mi)

Eccentricity
(e)

Distance be-
tween two the
stars (a)

Mass ratio (µ) Lumonisity

(η Cas) (η Cas a)
= 0.972 M⊙

(η Cas b)
= 0.57 M⊙

0.497 71 AU 0.258126 (η Cas a ) =
1.2321L⊙

( η Cas b ) =
0.06L⊙

Gliese 65 Gliese 65 A
= 0.1225 M⊙

Gliese 65 B
= 0.1195 M⊙

0.6185 8.8 AU 0.493802 Gliese 65A =
0.00147L⊙

Gliese 65B =
0.00125L⊙

Table 1. The data for (η Cas) system (Strand [1969]) and Gliese 65 system (Luyten [1949]).

To study the effect of the radiation pressure of the primaries on the position
of the planar equilibrium points and to compare the position of the points
as obtained analytically and numerically, we are applying the results of the
analysis to two binary systems namely Eta Cassiopeia (η Cas) and Gliese 65.
Table 1 lists the required parameters for the two binary systems. We have
chosen these two systems as both of them have radiating primaries and are
moving in highly eccentric orbits. However, the mass-ratio is very different in
each case.

First, we tabulate the numerically obtained position of the equilibrium
points for the two binary system in Table 2. From the values of the coordinates,
both for triangular and collinear points, we note that the radiation pressure
of both stars are effecting the position of the equilibrium points. However, the
shift in the position is more prominent with decrease in radiation pressure of
the first primary.
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We have also compared the results obtained analytically by Narayan and
Singh [2014, 2014a] with the numerical results for the two systems. Figures 2
and 3 show the change in the position of the equilibrium points for (η Cas)
with change in value of q2 and q1, respectively. In these figures, the solid lines
represent the position of the equilibrium points, obtained as a function of the
mass ratio and the radiation pressure analytically.

The dotted curves show the shift in the equilibrium points as observed
numerically, using Mathematica 10 software. Similarly, the Figures 4 and 5
are representations of equilibrium points for the Gliese65 system.

Fig. 2. The shift in the planar equilibrium points for (η Cas) system when q2 is changed
from 0.1 to 1 and q1 = 0.99. The dots denote the points corresponding to the numerical
calculation whereas the solid line shows the shift in position corresponding to analytically
obtained expression.

Table 2 and Figures 2 to 5 clearly show that all the equilibrium points are
dependent on the values of q1 and q2 for both binary star systems. However
numerical calculations show that the effect of q1 is least on L2 and effect of q2 is
least on L3. The arrow heads shown in the figures indicate the direction of shift
with decrease in radiation pressure. We may also conclude that the triangular
points are most prominently affected by radiation pressure in both cases. These
results are in concurrence with the result obtained by Ammar [2008].

We note that the shift in position of the collinear point L1, obtained as
a function of q2, is almost coincidental with the numerical results for both
systems. But the analytic value of the collinear point L2 and L3 is an over-
estimation of the numerically obtained value. The shift in position of trian-
gular equilibrium points as obtained numerically is much more pronounced
compared to the analytical predictions. As the value of q2 is increased, the
difference in the analytically and numerically calculated value was found to
be larger.

On observing, the Figures 3 and 5, we conclude that the analytical ap-
proximation of the triangular equilibrium is more accurate when studied as
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Binary
Systems

Mass ratio (µ) q1 q2 Collinear points Triangular points

1 L1(0.183787, 0),
L2(1.239, 0),
L3(−1.14772, 0)

(0.127011,±0.864089)

(η Cas) 0.258126 0.99 0.9 L1(0.195437, 0),
L2(1.21647, 0),
L3(−1.14463, 0)

(0.160926,±0.843689)

0.8 L1(0.208286, 0),
L2(1.19229, 0),
L3(−1.14155, 0)

(0.196124,±0.820501)

1 L1(0.186133, 0),
L2(1.23734, 0),
L3(−1.15016, 0)

(0.133689,±0.864089)

0.9 0.99 L1(0.173255, 0),
L2(1.23203, 0),
L3(−1.12185, 0)

(0.099774,±0.843689)

0.8 L1(0.158881, 0),
L2(1.22674, 0),
L3(−1.09143, 0)

(0.064576,±0.820501)

1 L1(0.00756609, 0),
L2(1.20013, 0),
L3(−1.19375, 0)

(0.00285943,±0.864089)

(Gliese 65)0.6185 0.99 0.9 L1(0.0198918, 0),
L2(1.17465, 0),
L3(−1.18961, 0)

(0.0367746,±0.843689)

0.8 L1(0.0335572, 0),
L2(1.14728, 0),
L3(−1.18549, 0)

(0.0719725,±0.820501)

1 L1(0.00993013, 0),
L2(1.19808, 0),
L3(−1.19584, 0)

(0.00953726,±0.864089)

0.9 0.99 L1(−0.00245286, 0),
L2(1.19384, 0),
L3(−1.17008, 0)

(−0.0243779,±0.843689)

0.8 L1(−0.0161892, 0),
L2(1.18961, 0),
L3(−1.14242, 0)

(−0.0595758,±0.820501)

Table 2. Equilibrium points for (η Cas) system and Gliese 65 system when the radiation
pressure is varied.
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Fig. 3. The shift in the planar equilibrium points for (η Cas) system when q1 is changed
from 0.1 to 1 and q2 = 0.99. The dots denote the points corresponding to the numerical
calculation whereas the solid line shows the shift in position corresponding to analytically
obtained expression.

Fig. 4. The shift in the planar equilibrium points for Gliese 65 system when q2 is changed
from 0.1 to 1 and q1 = 0.99. The dots denote the points corresponding to the numerical
calculation whereas the solid line shows the shift in position corresponding to analytically
obtained expression.
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Fig. 5. The shift in the planar equilibrium points for Gliese 65 system when q1 is changed
from 0.1 to 1 and q2 = 0.99. The dots denote the points corresponding to the numerical
calculation whereas the solid line shows the shift in position corresponding to analytically
obtained expression.

function of q1. Whereas the analytical approximation of L1 is vaguer in these
cases.

3 The Hill’s curve on the xy-plane

The boundary curves, delimiting the regions of possible motion and forbidden
regions for the movement of the third body in a restricted three-body problem
on a plane Ox̄ȳ, or a plane Ox̄z̄, are known as Zero-velocity curves, or Hill’s
curves. A Hill’s curve is obtained by taking a cross-section of the potential
surface at a specific energy level, corresponding to the Jacobian constant of
the third body.

The zero-velocity surfaces(ZVS) in ERTBP (Szebehely [1967], Mako and-
Szenkovits [2004]) are given by

2ω(x̄, ȳ, z̄, f) = C(f), (6)

where,

C(f) = (1 + e cos f)

(

C0 + e

∫ f

f0

z̄2 sin θ

1 + e cos θ
dθ + 2e

∫ f

f0

ω sin θ

(1 + e cos θ)2
dθ

)

.

(7)

The ZVS is of type of an ellipsoid, cylinder or hyperboloid, depending on
the sign of cos f . Geometrically, it means that at each value of the true anomaly
f , a different set of surfaces of zero velocity are to be constructed. The shape
and dimension of these zero velocity surfaces vary with true-anomaly, thus for
ERTBP they are named as pulsating ZVS.
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The necessary conditions for the zero velocity surfaces (ZVS) for ERTBP
given by (6) are approximated to

2ω0(x̄, ȳ, z̄, f) = C∗(f), (8)

where,

ω0 =
1

2

(

x̄2 + ȳ2
)

+

{

(1− µ)q1
r̄1

+
µq2
r̄2

}

;

and

C∗(f) = (1 + e cos f)C0.

Therefore, the necessary conditions for the bifurcation, based on Hill’s region
(Mako and Szenkovits [2004]) are as follows:

1. For the initial condition (f0, x0), if the infinitesimal mass is outside the
Hill-zone surrounding the second primary and satisfies the condition C2 <
C∗

0
1−e

1+e cos f0
, it is never captured by S2.

2. For the initial condition (f0, x0), if the infinitesimal mass is in the exterior
of the complete Hill-zone and satisfies the condition C1 < C∗

0
1−e

1+e cos f0
, it

never enters the Hill zone surrounding S2.

Here C1 and C2 are constants corresponding to collinear equilibrium points
L1 and L2, respectively.

For each value of the true anomaly these surfaces admits two planes of
symmetry: z̄ = 0 and ȳ = 0. The projection of the pulsating zero-velocity
surfaces on the Ox̄ȳ−plane, corresponding to Jacobi constant for the planar
equilibrium points, are represented in Figures 6 to 29.

The zero-velocity curves depicted in the Figures 6-9 for the binary system
(η Cas) correspond to Jacobi constant, calculated at the three collinear points
c1 to c3, and the pair triangular points c4 for the fixed values q1 = q2 = 0.99.
These figures show the pulsation of the ZVC with respect to the true anomaly
f . The value of f is taken from 0 to the value for which delimiting curves
are observed. It can be seen, that in each case of ci for f = 0, three curves
are observed. The large circle encloses both the primaries and the equilibrium
points and the smaller circles encloses the primaries. As f increases, the large
circle shrinks, where as the internal curve opens up to form a horseshoe then
tadpoles, surrounding the triangular equilibrium points. The value of f at
which the curves open up is different for varying value of the Jacobi constant.

Similarly, the Figures 10-13 show the pulsating ZVC for the binary sys-
tem Gliese 65. In the case of Gliese 65, the large circle encloses both the
primaries and the equilibrium points, and two smaller circles of equal radii are
surrounding the primaries. As f increases, the large circle shrinks, where as
the internal circle slowly expands and opens up to form tadpoles surrounding
the triangular equilibrium points corresponding to Jacobi constants C3 and
C4, respectively. However, for Jacobi constants C1 and C2, the circles shrink
in size, but do not change shape.

Figures 14 to 17 show the change in the shape of the ZVC when the value
of q1 is decreased from 0.99 to 0.09 for the (η Cas) system, and Figures 22 to
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Fig. 6. Variation in Zero velocity curve, corresponding to when the
Jacobi constant is taken to be c1 for varying value of the true anomaly when q1 = q2 = 0.99
for the (η Cas) system.

Fig. 7. Variation in Zero velocity curve, corresponding to when the
Jacobi constant is taken to be c2 for varying value of the true anomaly when q1 = q2 = 0.99
for the (η Cas) system.
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Fig. 8. Variation in Zero velocity curve, corresponding to when the
Jacobi constant is taken to be c3 for varying value of the true anomaly when q1 = q2 = 0.99
for the (η Cas) system.

Fig. 9. Variation in Zero velocity curve, corresponding to when the
Jacobi constant is taken to be c4 for varying value of the true anomaly when q1 = q2 = 0.99
for the (η Cas) system.
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Fig. 10. Variation in Zero velocity curve, corresponding to when the
Jacobi constant is taken to be c1 for varying value of the true anomaly when q1 = q2 = 0.99
for the Gliese65 system.

Fig. 11. Variation in Zero velocity curve, corresponding to when the
Jacobi constant is taken to be c2 for varying value of the true anomaly when q1 = q2 = 0.99
for the Gliese65 system.
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Fig. 12. Variation in Zero velocity curve, corresponding to when the
Jacobi constant is taken to be c3 for varying value of the true anomaly when q1 = q2 = 0.99
for the Gliese65 system.

Fig. 13. Variation in Zero velocity curve, corresponding to when the
Jacobi constant is taken to be c4 for varying value of the true anomaly when q1 = q2 = 0.99
for the Gliese65 system.
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25 show the change in the shape of the ZVC for Gliese 65 system, respectively.
The horseshoe-shaped curve shrinks in size with the decrease in value of q1
corresponding to c1 and c4. In case of the Jacobi constants c2 and c3, the
change in the size of the curve is accompanied by a change in shape. Similar
changes are observed for both the systems. Figures 18 - 21 and 26 -29 show the
change in the shape of the ZVC when the value of q2 is decreased from 0.99
to 0.09 for (η Cas) and Gliese 65, respectively. For all four Jacobi constants,
the decrease in size of the curve is accompanied by a change in shape.

Thus, we observe the phenomenon of pulsating ZVC for the binary sys-
tems, and both the shape and size of the forbidden regions are affected by the
radiation pressure of the binaries.

Fig. 14. Variation in Zero velocity curve, corresponding to c1 for varying value of q1, when
q2 = 0.99 for (η Cas) system.

4 Fractal Basin

The fractal basin of attraction of a point (attractor) refers to the region from
which each point tends towards the point after several iterations. This basin
of attraction of equilibrium point is used to choose an initial point for periodic
orbits around the equilibrium point. An initial point, chosen from inside the
region of attraction, increases the possibility of getting a stable orbit. However,
the initial point, chosen among the boundary values, shows chaotic behavior.

The multi-variate version of Newton-Raphson’s method is employed to get
the basin of attraction of the planar equilibrium points because of its high rate
of convergence.
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Fig. 15. Variation in Zero velocity curve, corresponding to c2 for varying value of q1, when
q2 = 0.99 for (η Cas) system.

Fig. 16. Variation in Zero velocity curve, corresponding to c3 for varying value of q1, when
q2 = 0.99 for (η Cas) system.
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Fig. 17. Variation in Zero velocity curve, corresponding to c4 for varying value of q1, when
q2 = 0.99 for (η Cas) system.

Fig. 18. Variation in Zero velocity curve, corresponding to c1 for varying value of q2, when
q1 = 0.99 for (η Cas) system.
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Fig. 19. Variation in Zero velocity curve, corresponding to c2 for varying value of q2, when
q1 = 0.99 for (η Cas) system.

Fig. 20. Variation in Zero velocity curve, corresponding to c3 for varying value of q2, when
q1 = 0.99 for (η Cas) system.
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Fig. 21. Variation in Zero velocity curve, corresponding to c4 for varying value of q2, when
q1 = 0.99 for (η Cas) system.

Fig. 22. Variation in Zero velocity curve, corresponding to c1 for varying value of q1, when
q2 = 0.99 for Gliese65 system.
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Fig. 23. Variation in Zero velocity curve, corresponding to c2 for varying value of q1, when
q2 = 0.99 for Gliese65 system.

Fig. 24. Variation in Zero velocity curve, corresponding to c3 for varying value of q1, when
q2 = 0.99 for Gliese65 system.
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Fig. 25. Variation in Zero velocity curve, corresponding to c4 for varying value of q1, when
q2 = 0.99 for Gliese65 system.

Fig. 26. Variation in Zero velocity curve, corresponding to c1 for varying value of q2, when
q1 = 0.99 for Gliese65 system.
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Fig. 27. Variation in Zero velocity curve, corresponding to c2 for varying value of q2, when
q1 = 0.99 for Gliese65 system.

Fig. 28. Variation in Zero velocity curve, corresponding to c3 for varying value of q2, when
q1 = 0.99 for Gliese65 system.
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Fig. 29. Variation in Zero velocity curve, corresponding to c4 for varying value of q2, when
q1 = 0.99 for Gliese65 system.

The iterative scheme, used to get the basin of attraction for each planar
equilibrium point in the x̄ȳ plane, is as follows:

x̄n+1 =x̄n −

(

Ωx̄Ωȳȳ −ΩyΩx̄ȳ

Ωx̄x̄Ωȳȳ −Ω2
x̄ȳ

)

(x̄n,ȳn)

;

ȳn+1 =ȳn +

(

Ωx̄Ωȳx̄ −ΩȳΩȳȳ

Ωx̄x̄Ωȳȳ −Ω2
x̄ȳ

)

(x̄n,ȳn)

;

where,

Ωx̄ =
1

1 + e cos f

(

x̄−
q1(1− µ)(x̄+ µ)

r̄31
−

q2µ(x̄+ µ− 1)

r̄32

)

,

Ωȳ =
1

1 + e cos f

(

ȳ −
q1(1− µ)ȳ

r̄31
−

q2µȳ

r̄32

)

,
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Ωx̄x̄ =
1

1 + e cos f

(

1−
q1(1− µ)

r̄31
−

q2µ

r̄32
+

3q1(1− µ)(x̄+ µ)2

r̄51
+

3q2µ(x̄+ µ− 1)2

r̄52

)

,

Ωx̄ȳ =
1

1 + e cos f

(

3q1(1− µ)(x̄+ µ)ȳ

r̄51
+

q2µ(x̄+ µ− 1)ȳ

r̄52

)

,

Ωȳȳ =
1

1 + e cos f

(

1−
q1(1− µ)

r̄31
−

q2µ

r̄32
+

3q1(1− µ)ȳ2

r̄51
+

3q2µȳ
2

r̄52

)

.

The initial conditions for the position that iterates to the particular planar
equilibrium position is depicted as the Newton–Raphson basins of attraction
(BoA). The double scanning technique is used to find these regions on Ox̄ȳ
plane. Here, we have considered the intervals −3.0 ≤ x̄ ≤ 3.0 and −3.0 ≤ ȳ ≤
3.0 for the vertical and the horizontal scanning, respectively, and 10 iterations
were applied with step size of 0.005. In the Figures 30 - 33 the color coded
diagrams in the Ox̄ȳ- plane are shown. Figures 31 and 33 have four sub-figures,
the basins of attraction for (η Cas) and Gliese 65 system for varying values
of radiation pressure of the primaries.

The BoAs for the equilibrium points L2 and L3 are bug like structures flar-
ing out as two sub-parts densely formed about the equilibrium point, whereas
the BoAs for the equilibrium points L4 and L5 are wing like structures and
also it forms an extension of the legs of the bug-like structures of L2 and L3.
The points of the rest of the sub-plane −3.0 ≤ x̄ ≤ 3.0, −3.0 ≤ ȳ ≤ 3.0 con-
verges to L1. The boundary of the BoA for all the equilibrium points is very
fractus and shows very small regions converging to other equilibrium point.

Figures 30 and 32 shows the Newton–Raphson basins of attraction for
(η Cas) and Gliese 65 when radiation pressure of both the primaries is as-
sumed to be 0.99. On inspecting the Figures 30, 31(a) and 31(c), for the
(η Cas), we found that the BoA, corresponding to all the equilibrium points
except L1, decrease in size. However, the shape of none of the basins change
with decrease in the value of q1. When the value of q2 is decreased, the symme-
try of BoA of L1 near this point looses its symmetry as observed from Figures
30, 31(b) and 31(d).

Inspecting Figure 32 we note that the BoA of the equilibrium points L2
and L3 for the Gliese 65 system are symmetrical about the x− axis and the
equilibrium points L1, L4 and L5 are symmetrical about the y− axis. From
Figures 32, 33(a) and 33(c), we note that when q1 is decreased, the BoA of L3
contracts. Also, the BoA for L1, L4 and L5 to the left of the y− axis is squeezed
and looses its symmetry. Similar phenomenon is observed for the case when
q2 is decreased for the equilibrium points L2 and L1, L4 & L5, respectively.

5 Discussion and Conclusion

A system of two massive objects orbiting in elliptical orbits is used as a model
for studying the dynamics of an infinitesimal mass in the vicinity of two binary
systems, η Cas and Gliese 65. In this paper we have employed the model of
the elliptic restricted three-body problems, replacing the well studied circular
restricted model, since most of the celestial bodies are known to be orbiting in
elliptic orbits and not circular orbits. Therefore, the perturbation caused by
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Fig. 30. Fractal basin for (η Cas) system when q1 = q2 = 0.99. Here, the BoA for each

equilibrium point is coded in different colors as follows: L1-Prurple, L2-Blue, L3-Green,
L4-Red and L5-Yellow. The black dots are depicting the equilibrium points.

the non-zero eccentricity of the orbits of massive bodies makes the long-term
dynamical studies more precise.

The motivations behind this study are as follows:

1. Binary star systems are common in the universe, and their dynamics can
provide insights into the formation and evolution of stars.

2. The study of equilibrium points helps in predicting the characteristics of
the gravitational waves emitted by these systems, aiding in their detection
and analysis by gravitational wave observatories like LIGO and VIRGO.

3. The study of equilibrium points in binary star systems contributes to our
understanding of how stars form within stellar nurseries.

We have compared analytical and numerical results for the position of
equilibrium points and depicted them in graphs. It was observed that in con-
gruence to the analytically obtained expressions for the position of equilibrium
points, the numerical study also showed that the equilibrium points are de-
pendent on the radiation pressure of radiating primaries, which acts as the
mass reduction factor for that primary. All the equilibrium points are affected
by the radiation pressure of primaries, namely q1 and q2. The most shifted
equilibrium point for decrease in q1 is L4, L5 and L3. Similarly, the decrease
in q2 has an impressive effect on the shift in position of L4, L5 and L2.

We note that the shift in position of the collinear point L1, as obtained as a
function of q2, is almost coincidental with numerical results for both systems.
But the analytic value of the collinear points L2 and L3 is an overestimation
of the numerically obtained value. The shift in position of triangular equilib-
rium points, as obtained numerically, is much more pronounced as compared
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(a) q1 = 0.79, q2 = 0.99 (b) q1 = 0.99, q2 = 0.79

(c) q1 = 0.49, q2 = 0.99 (d) q1 = 0.99, q2 = 0.49

Fig. 31. Fractal basin for (η Cas) system varying the values of q1 and q2.
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Fig. 32. Fractal basin for Gliese 65 system when q1 = q2 = 0.99. Here, the BoA for each
equilibrium point is coded in different colors as follows: L1-Red, L2-Yellow, L3-Green, L4-
Blue and L5-Purple. The black dots are depicting the equilibrium points.

to the analytical predictions. When the value of q2 is increased, the approxi-
mation error was found to increase too. Also, we conclude that the analytical
approximation of the triangular equilibrium is more accurate when studied as
a function of q1, whereas the analytical approximation of L1 is vaguer in these
cases.

Further, we used numerically obtained positions of the equilibrium points.
On studying the ZVC for the two binary systems, it was seen that curves
pulsate with the change in true anomaly, and both radiation pressure of the
first and second primary causes the change in shape and size of the forbidden
regions. We observe that in each case of ci for f = 0, two curves are observed.
For the (η Cas) system, a large circle encloses both the primaries and the
equilibrium points. As f increases, the large circle shrinks, whereas the internal
curve opens up to form a horseshoe, then tadpoles surrounding the triangular
equilibrium points. The value of f at which the curves open up is different
because of the varying value of the Jacobi constant.

In the case of the Gliese 65 system, a large circle encloses both the pri-
maries and the equilibrium points, and two smaller circles surround the pri-
maries. As f increases, the large circle shrinks, whereas the internal circle
slowly enlarges and opens up to form tadpoles surrounding the triangular
equilibrium points.

Studying the effect of radiation pressure on ZVC, we observed when q1
is decreased from 0.99 to 0.09 for both systems, the horseshoe-shaped curve
shrinks in size corresponding to c1 and c4, in case of the Jacobi constants
c2 and c3 change in the size of curve is accompanied by a change in shape.
When the value of q2 is decreased from 0.99 to 0.09 for (η Cas) and Gliese 65
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(a) q1 = 0.79, q2 = 0.99 (b) q1 = 0.99, q2 = 0.79

(c) q1 = 0.49, q2 = 0.99 (d) q1 = 0.99, q2 = 0.49

Fig. 33. Fractal basin for Gliese 65 system varying the values of q1 and q2.
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systems, respectively, for all four Jacobi constants, the decrease in size of the
forbidden region is accompanied by a change in shape.

The color-coded plots of the basin of attraction of the five equilibrium
points for the systems η Cas and Gliese 65 are presented in the previous
section. They show small change in the size of the BoA and its symmetry
(in the case of L1), with a decrease in the value of radiation pressure for the
η Cas system. For Gliese 65 system, the decrease in the value of both q1 and
q2 shows a prominent effect on the size and symmetry of the BoA for L2 to
L5. Thus, we conclude that when the radiation pressure decreases, the region
from which initial points for stable orbits can be started decreases except for
the collinear point L1.
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