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Abstract. Asteroid 2020 CD3 is one of the Earth’s Temporary Captured Orbiters. This
study aims to investigate the dynamical evolution of the asteroid, notably its pre-capture
and post-capture phases. The dynamics was analyzed through the framework of Circular
Restricted Three-Body Problem with the Sun and the Earth-Moon system as primaries. We
investigated the role of invariant manifold from Lyapunov and Halo orbits to the asteroid
motion. It shows that the invariant manifold of Lyapunov orbit may play a significant role
for guiding the asteroid to enter the Hill region of Earth through the Lagrange point L1.
We also discovered that the invariant manifold of Lyapunov orbit guides the asteroid after
the escape process from L2. In contrast, we found that the asteroid differs from Halo orbit’s
invariant manifold, both for pre- and post-captured periods.
Key words: CRTBP, Invariant Manifold, 2020 CD3

Introduction

The Temporally Captured Orbiter (TCO) is an object that is gravitationaly
locked by a planet and becomes its temporal natural satellite. There are two
criteria for classifying an object as a TCO. First, its planetocentric energy
must be negative, and second, it must complete at least one orbit around
the planet [Rickman & Malmort(1981)]. Several asteroids have been found to
behave as the Earth’s TCOs. The first discovered asteroid to experience a
temporary capture by the Earth is the 1991 VG [Tancredi(1997)]. This object
orbited the Earth for about a month in February 1992. Several years later, the
asteroid 2006 RH120 was also discovered to be captured by the Earth. Unlike
the 1991 VG, this asteroid orbited the Earth much longer, from July 2006
to July 2007 [Kwiatkowski et al.(2009)]. Another known temporal satellite of
the Earth is the asteroid 2020 CD3. It was observed in mid-February 2020
and did continue orbiting the Earth until mid-May 2020. A numerical study
suggests that the asteroid was captured by the Earth between 2011 and 2018. It
escaped in 2020 and may be captured again in the future [de la Fuente Marcos
& de la Fuente Marcos(2020)]. Recently, objects have been found that became
known as Earth ’mini-moons’, such as 2022 NX1 and 2024 PT5 [de la Fuente
Marcos et al.(2023), de la Fuente Marcos & de la Fuente Marcos(2024), see
e.g.]. However, these objects are not TCOs since they do not complete a full
orbit around the Earth.

Although only three minor bodies have been confirmed as Earth’s TCOs,
and other objects merely fly by Earth, there remains a possibility that Earth
hosts several mini-satellites [Granvik et al.(2012)]. Moreover, Fedorets et al.
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[Fedorets et al.(2020)] predicted that the upcoming Large Synoptic Survey
Telescope could detect a TCO once every year or even every two months.
There are at least two advantages in studying the TCOs. First, it provides
a scientific benefit, as understanding this phenomenon can contribute to the
development of theories regarding the origin of natural satellites [Heppen-
heimer(1975),Horedt(1976)]. Second, the TCOs become potential objects for
capture and mining [Anderson & Lo(2018)]. Hence, understanding the be-
haviour of these objects’ motion is important for the future of satellite mis-
sions.

The dynamics of minor bodies can be investigated through the framework
of Circular Restricted Three-Body Problem (CRTBP). This concept is par-
ticularly implementable to minor bodies that experience capture event by a
planet, as they are predominantly bounded by two primary objects, i.e. the
Sun and the planet, and have negligible mass compared to the primary bodies.
In recent developments, several authors have used this approach by focusing
on the role of invariant manifold in the dynamics of minor bodies. [Howell
et al.(2001)] used this approach to study the orbital evolution of comets He-
lin–Roman–Crockett and Oterma, which experienced a capture event with
Jupiter. They concluded that the orbits of these comets are well described by
the invariant manifold of the periodic orbit equilibrium point. This statement
was reinforced by [Koon et al.(2001)] who suggested that the invariant man-
ifold structures of L1 and L2 have facilitated the temporary capture of some
short-period comets by Jupiter. More recently, [Swenson et al.(2019)] used the
three-body approach to understand the capture of comet Shoemaker-Levy 9 by
Jupiter. They concluded that the orbit of this comet partly follows the invari-
ant manifold of Sun-Jupiter system. For the case of Earth’s TCOs, [Anderson
& Lo(2016)] studied the dynamical evolution of the asteroid 2006 RH120 un-
der the framework of CRTBP. They used the invariant manifold theory and
focused on the orbital evolution before and after the capture event. This work
was extended by [Anderson & Lo(2018)] to study the dynamical evolution
during the capture event itself. Unlike the previous study, they treated the
trajectory in the Elliptic Restricted Three-Body Problem.

In this study, we aim to investigate the pre- and post-capture phases of
the asteroid 2020 CD3. We analyze the asteroid trajectory in the framework of
the CRTBP. The rest of this paper is structured as follows: Section 1 provides
a detailed explanation about the data and method used. Section 2 describes
the analysis of the asteroid’s motion within the CRTBP framework. Finally,
the conclusion of this study is given in the last Section.

1 Data and Method

In the CRTBP analysis, we simplify the system as follows. First, we consider
that the Earth has a circular orbit. Second, we treat the Earth and the Moon
as a single mass located at the Earth-Moon barycenter, hereafter referred to
as ”Earth-Moon”. Third, we consider the primaries as point mass objects. Let
m1 and m2 be the masses of Sun and the Earth-Moon, respectively. Here, the
asteroid 2020 CD3 is called the ”third body”. In the case of the three-body
problem, it is more convenient to introduce the system in rotational coordi-
nates (X,Y, Z). The primaries are located in the X-axis with the distance
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Fig. 2: The orbital evolution of 2020 CD3 during pre-capture (green), post-capture (orange),
and capture event (black) phases in the time interval between 2015 - 2050. Here, panel (b)
is a zoomed-in version of panel (a). The Sun and Earth-Moon barycenter are represented as
yellow and blue dots, respectively. Grey color represents the forbidden region.

between primaries chosen as the unit of length. The time unit is chosen by
setting the angular momentum of the system to one. The equations of motion
of the third object in the CRTBP are given as follows

Ẍ − 2Ẏ =
∂U

∂X
,

Ÿ + 2Ẋ =
∂U

∂Y
,

Z̈ =
∂U

∂Z
,

(1)

where U is a pseudo-potential function of

U =
1

2

(

X2 + Y 2
)

+
(1− µ)

r1
+

µ

r2
, (2)

with

r21 = (X + µ)2 + Y 2 + Z2,

r22 = (X − (1− µ))2 + Y 2 + Z2.
(3)

Here, µ = m2/(m1 +m2) is called the mass parameter. We took the values of
the Sun, Earth, and Moon masses from [Park et al.(2021)]. These equations of
motion are used in this study to generate the trajectory of the asteroid in the
restricted three-body framework. Here, we used the circular approximation to
the orbit since the ellipticity of the planet has small effect on this problem
[Heppenheimer(1975)]. The integral of motion can be written by

Ẋ2 + Ẏ 2 + Ż2 = 2U − C, (4)

where C is called Jacobi constant or Jacobi integral. The Jacobi constant has
a fixed value in the ideal CRTBP. This parameter plays an important role in
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dynamical analysis since it determines the allowable trajectory of the third
body.

The CRTBP has five equilibrium points, L1,2,3,4,5. Three of these points are
called collinear points (L1, L2, L3) since they are located on the X-axis while
the other two are called triangular points (L4, L5) as they form equilateral
triangles with the two massive bodies. Here, we focus on L1 and L2 since they
serve as a gateways for the third body to enter the Hill region.

Previous studies have identified the existence of an infinite number of peri-
odic orbits in the region near collinear Lagrange points [Szebehely(1967)]. Each
periodic orbit exists at a different energy level or has a unique Jacobi constant.
Therefore, in order to study the dynamics of a small body which passes the
periodic orbit, one has to be consider the same Jacobi constant with the cor-
responding small body. Here we consider two types of periodic orbit located in
near L1 and L2: Lyapunov and Halo orbits. According to [Richardson(1980)],
the linearized solution of the Halo orbit is

X =−BX cosωt+ α

Y =kBX cosωt+ α

Z =BZ cosωt+ β,
(5)

where BX and BZ are the amplitude of halo periodic orbit in the X and Z
directions, respectively, ω is the frequency, while α and β are the phases of the
in-plane and out-of-plane motions, respectively. Meanwhile, we only consider
the first two equations of Eq. (5) for the linearized solution of the Lyapunov
orbit. The initial values of the orbital periods are computed using the analytical
method of [Richardson(1980)]. A correction to the initial condition has to be
done to find the real periodic orbit. Here we used the shooting method to
correct these initial conditions as given by [Parker & Anderson(2014)].

Fig. 4: The Jacobi constant during the orbital evolution of 2020 CD3. (a) Jacobi constant
from 2015 to 2050. (b) Jacobi constant 0.5 years before and after tpre. (c) Jacobi constant
0.5 years before and after tpost. The red zone in (a) signifies the approximate time of the
capture event. Dashed red and black lines in (b) represent the mean value of Jacobi constant
and the time of capture event respectively. The dashed red and black lines in (c) are similar
to (b), except they are for the escape event.

Lyapunov and Halo periodic orbits are unstable. Therefore, there exist
a number of asymptotic trajectories that either approach or depart from a
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Fig. 6: The orbital evolution of 2020 CD3 (a,b,d and e) and its Poincaré sections (c and
f). Pre- and post-capture orbits are shown in magenta and orange, respectively. The black
line represents the Lyapunov orbit, and grey zone signifies the forbidden region. The blue
and green lines indicate the stable and unstable invariant manifolds, respectively. Earth is
symbolized by a black dot, while the equilibrium points are represented by red dots. Here,
(b) and (e) are the zoomed-in version of (a) and (d), respectively. The Poincaré surfaces of
sections are shown in (c) and (f) for stable and unstable invariant manifolds, respectively.
We cut the trajectory at Y = −0.05 to estimate the Poincaré sections
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periodic orbit. These tube-like trajectories are known as invariant manifold.
There are two kinds of invariant manifolds: stable and unstable. The stable
invariant manifold brings the small body closer to the periodic orbit, while
the unstable one causes the small body to move away from the corresponding
periodic orbit. The invariant manifold acts as a separatrix for the motion
of small bodies. An object located inside the invariant manifold will transit
to another region, while the object outside the invariant manifold will be
bounced back to the original region [Gómez et al.(2001)]. Thus, the invariant
manifold plays a major role in the transport and capture process of small
bodies [Swenson et al.(2019)].

Table 1 shows the orbital parameter of 2020 CD3 from observation data. In
this study we have adopted the orbital parameters given by the Horizon System
of JPL NASA website5 which is based on JPL DE441 ephemerides [Park et
al.(2021)]. For the case of 2020 CD3, the data is available only from year
∼ 2015. Hence, for our analysis, we considered 35 years of data starting from
2015 to 2050, with the step of one day. ICRF [Charlot et al.(2020)] is chosen
as a reference frame. The barycenter of the Solar system was chosen as the
origin and the data is given as position and velocity in cartesian coordinates.

We follow Method 1 of [Anderson & Lo(2016)] for transforming the asteroid
trajectory into CRTBP. The concept of the transformation is briefly given as
follows. The Cartesian orbital parameters (x, y, z, vx, vy, vz) of the massless ob-
ject are normalized and computed with respect to the primaries. These orbital
parameters are converted to the rotational coordinates (X,Y, Z, VX , VY , VZ)
with the primaries lying on the X-axis. The distance and time units are com-
puted by fixing the condition of the primaries at the reference time, thus
making the orbital parameters dimensionless. Here, the time and length units
are defined from the instantaneous position and velocity of the primaries. The
X-axis is based on the instantaneous vector from the Sun to the Earth, the
Z-axis is aligned with the angular momentum vector of the motion of the Sun
and Earth, and the Y -axis completes the right-handed system with the origin
located at the barycenter of the two primaries.

Table 1: The orbital parameters of 2020 CD3 at 2024-Oct-17. This data is taken from the
JPL-NASA site (https://ssd.jpl.nasa.gov/sbdb.cgi). The meaning of each symbol is given by
the following: eccentricity (e), semi-major axis (a), inclination (i), longitude of the ascending
node (Ω), argument of periapsis (ω), and mean anomaly (M).

Value Uncertainty (1σ)
e .01237592005052576 5.3939E-8

a (au) 1.029056248406796 2.5275E-8
i (◦) .6339854694301869 1.23E-7
Ω (◦) 82.22841213520248 6.8997E-5
ω (◦) 50.12530688163336 .00013469
M (◦) 186.2546839004304 9.741E-5

5 https://ssd.jpl.nasa.gov/horizons/
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2 Results

Fig. 8: 3D orbital dynamics of 2020 CD3 (a and d) as well as the corresponding Poincaré

sections of Halo’s invariant manifolds in Ẋ,X (b and e) and Ż, Z (c and f). Pre and post-
capture orbits are shown in magenta and orange, respectively. Black line represents the Halo
orbit. Blue and green lines represent the stable and unstable invariant manifold respectively.
Lagrangian point is represented by a red dot. The trajectory is cut at Y = −0.05 for the
Poincaré sections.

Fig. 2 shows the trajectory of the asteroid in 2D rotational coordinates
of CRTBP. As shown in green line, we remarked that the object during its
pre captured phase is always located in the left side of the zero velocity curve
with the direction in counter-clockwise. The object enters the Earth’s Hill
region through L1. During this period, it literally becomes Earth’s TCO and
stays such for a couple of years. The object then passes L2 to orbit the Sun
synchronously and the orientation of the movement becomes clockwise. Now,
the orbit is located on the right side of the zero-velocity curve and will stay
there.

As shown in Fig. 3a, the Jacobi constant in our case is not completely
constant. There are some ripples in its time series due to a non perfect trans-
formation from N -bodies to CRTBP. It should be noted that the CRTBP
transformation has assumed several things. First, we limited the primaries
only for the Sun and Earth-Moon barycentric. In the Hill region, the Moon
has a non-negligible role in the asteroid trajectory. Meanwhile, other planets,
notably Jupiter, have a role in perturbing the trajectory of the asteroid. The
simplification of this trajectory might have produced certain defect. Moreover,
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here we did not consider the system’s eccentricity in the transformation. Since
we consider the instantaneous primaries position and velocity as the length
and time unit, the Earth’s eccentricity will make these units vary, thus will
affect the estimated Jacobian Constant.

The variation of Jacobi constant can be used as a rough tool for locating
the time of entering the Hill zone of the Earth. As shown in the red region of
Fig. 4, the ripples in Jacobi constant fluctuated between 2017 and 2020. This
change of pattern can be interpreted as the captured event of the asteroid.
This captured period matches the result of [de la Fuente Marcos & de la
Fuente Marcos(2020)] where the asteroid was captured by the Earth between
2011 to 2018 and escaped from the Earth in ∼ 2020. Same energy level is
needed for analysing the dynamics in CRTBP. Thus we need to fix the Jacobi
constant. As the encounter with Earth severely changes the variation of Jacobi
constant, we estimate this constant in two regions: before the encounter (Cpre)
and after the encounter (Cpost). We take the average value between tpre − 0.5
years and tpre + 0.5 years for Cpre while Cpost is taken as the average value
between tpost − 0.5 years and tpost + 0.5 years (see Figs. 3b and 3c). Hence we
have Cpre = 3.000172326819325 and Cpost = 3.00030175227413. Here tpre and
tpost mean the time of captured and escaped respectively. We calculated the
Lyapunov and Halo periodic orbit with the nearest value possible of Jacobi
constant to Cpre and Cpost.

Here we treat the system in two- and three-dimensional perspectives. In the
2D case, the asteroid’s orbit is projected onto the XY plane. Thus, the CRTBP
transformation of the asteroid’s orbital parameters must consider the value in
the Z direction to be zero. We also consider the Lyapunov periodic orbit
as well as its invariant manifold for the 2D case. Figs. 5a and 5b display the
comparison between the asteroid’s trajectory and the stable invariant manifold
of the Lyapunov orbit in 2D case. Here the pink line represents the asteroid’s
trajectory during the pre-captured phase. The pre-captured trajectory follows
the stable invariant manifold and ultimately ends up in the Lyapunov orbit L1,
serving as a gateway into the Hill region. For the post-captured event, the same
pattern has also occurred (see Figs. 5d and 5e). After the asteroid escapes from
the Hill region through L2, the trajectory of the asteroid follows the unstable
invariant manifold. Next, we investigate the Poincaré section by cutting the
trajectory at Y = −0.05. As shown in Fig. 5c, the trajectory is inside the
Poincaré section of the invariant manifold. It means that the asteroid’s orbit
is completely driven by the invariant manifold in pre-captured phase. This
pattern also occurs for the post-captured phase. Here we recalculated the
Poincaré section by using different cutoff. We found that the stable invariant
manifold guides the asteroid’s motion starting from ∼ 0.6 year before the
capture event. In the post-capture phase, the motion is guided by the unstable
invariant manifold for up to ∼ 0.8 year after the escape event.

Next, we examine the trajectory in 3D case (Z 6= 0). The Halo orbit and
its invariant manifold are considered. Fig. 8 shows the comparison. Here we
compared the pre- and post-captured trajectories with the invariant manifold
of the northern Halo orbit. As shown in Fig. 7a, the trajectory of the asteroid
in the pre-captured phase does not follow the invariant manifold. Meanwhile,
we noted that the asteroid motion is inside the tube only when the position
is near L2 for the case of post-captured event (see Fig. 7d). The Poincaré
surfaces are shown in Fig. 8. Here we analyze the Poincaré sections for X vs
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Ẋ and Z vs Ż by cutting the trajectory at Y = −0.05. During pre captured
event, even if the trajectory is outside the invariant manifold in the space plot,
the trajectory is inside the invariant manifold in the Poincaré surface plot for
X vs Ẋ. In contrast, the trajectory is inside the invariant manifold for post
captured phase only in Z vs Ż.

Conclusions

In this paper, we have studied the orbital evolution of the asteroid 2020 CD3

within the CRTBP framework. Here, we used the invariant manifold to study
the corresponding trajectory in both two and three dimensions. In general,
we found that the invariant manifold of the CRTBP matches the orbit of the
asteroid. The pre-capture trajectory follows the stable invariant manifold and
enters Hill region via L1, while the post-capture one is entirely inside the
unstable invariant manifold. The analysis of the Poincaré surfaces shows that
the motion of the asteroid is completely controlled by the invariant manifold,
notably ∼ 0.6 years before the capture event (pre-capture) and ∼ 0.8 years
after the capture event (post-capture). This is not the case for halo orbit since
the asteroid departs from its invariant manifold (either in position or velocity).

Acknowledgment

This project is supported by RIIM LPDP-BRIN. The authors would like to
thank the reviewers for their invaluable comments that helped improve the
manuscript.

References

Anderson B. D. & Lo M. W., 2016, In: Advances in the Astronautical Sciences Spaceflight
Mechanics 2016, AAS 16-484: pp.1–19, 158. American Astron. Soc., California

Anderson B. D. & Lo M. W., 2018, In: Proceedings of Space Flight Mechanics Meeting 2018,
pp.1087–1109. American Inst. for Aeronautics and Astronautics, Florida

Charlot P., Jacobs C., Gordon D., Lambert S., De Witt A., Böhm J., Fey A., Heinkelmann
R., Skurikhina E., Titov O., et al. 2020, A & A, A159: p.1–28, 644

de la Fuente Marcos C. & de la Fuente Marcos R., 2020, MNRAS, p.1089–1094, 494
de la Fuente Marcos C. & de la Fuente Marcos R., 2024, Research Notes of the AAS, p.224,

8
de la Fuente Marcos R., de León J., de la Fuente Marcos C., Licandro J., Serra-Ricart M.,

Cabrera-Lavers A., 2023, A & A, L10:p.1–8, 670
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