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Abstract. We have constructed a surrogate model to predict neutron star mass and radius
from a three-segment parameterized piecewise polytropic equation of state using an artificial
neural network. We have trained the network with the generated data from the fourth-order
Runge-Kutta-based solver of the Tolman-Oppenheimer-Volkoff equation. It shows that the
neural network predicts the mass-radius with no less than 99% accuracy and significantly
reduces the computation time compared to the traditional Runge-Kutta method. However,
caution is advised when predicting outside the training data parameter ranges, as the model
exhibits poor accuracy in extrapolating data and tends to generate false output values where
no stellar solution exists. We have argued that this situation may also occur in other similar
neural network-based surrogate models.
Key words: Neutron stars, neural network, surrogate models.

Introduction

Beside black holes, neutron stars (NSs) are one of the most compact objects
in the universe. A NS forms in the center of an exploding massive star (M &
8M⊙) through gravitational collapse, leaving a dense degenerated star in the
core. A NS typically has a mass of about 1.4M⊙ with a radius only 12 km,
making this object one of the densest in the universe (Camenzind, 2007).

The matter properties in a neutron star determine its overall structure,
such as its mass and radius. It can be described by an equation of state (EoS),
relating between the (energy) density and pressure of matter. Currently, there
are a number of models of the EoS of NSs which usually depend on their con-
stituents. The nuclear-physics-based EoS model is typically derived by mod-
eling the microscopic components and their interactions. However, our knowl-
edge regarding the physics of matter in extreme density objects such as NSs is
still very limited (Lattimer and Prakash, 2016). In the case of the NSs there
is a possibility that the density is higher than the nuclear saturation density.
Hence, it is difficult to test the EoS models using ground-based experiments.

The properties of EoS significantly affect the structural properties of NSs,
such as their masses and radii. Previous studies have estimated EoS profiles
inside NSs based on the observed mass and radius, such as those studied by
Ozel et al. (2015). One approach involves using the Monte Carlo method, where
the stellar structure equations are solved multiple times for a given set of EoS
models, and the likelihood of each EoS is statistically calculated based on
the observational data. This method requires intensive calculations to predict
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NS properties from a large number of EoS models in order to estimate the
probability distribution of the EoS (Jiang et al., 2022).

One can model the EoS in a phenomenological manner to parameterize EoS
models. The most simple and well-known model is the piecewise polytropic
(PP) (Read et al., 2008). In this model, realistic EoSs can be approached by
four parameters. By parameterizing EoS models, the probability distribution
of EoS can be described by the probability distribution of these parameters.

Recently, several approaches have involved machine learning techniques to
accelerate the computation of inverse problems. The EoS properties and its NS
solution are mapped into an artificial neural network. For example, Fujimoto
et al. (2017) used a neural network (NN) method to reconstruct the NS mass-
radius from a five-segment piecewise polytropic model with a constant speed
of sound. Similarly, Liodis et al. (2023) constructed several NNs on multiple
EoSs to estimate NS mass radius in a modified gravity theory. Most of the NN
studies in NS are used to deduce EoS properties from the data of observed
mass-radius data.

Aside from the EoS, the mass and radius of a NS are determined by the
assumed central pressure Pc. Higher central pressure results in a more mas-
sive star. Central pressure information also plays a role in determining the
radial stability zone, where the M − ρc gradient must be positive for a star to
be stable (Camenzind, 2007). As a consequence, because the EoS pressure is
monotonically growing with energy density, the M−Pc curve must also always
rise to ensure stability. However, certain network designs, such as those from
Fujimoto et al. (2017) predetermined central pressure (which they express as
central enthalpy), into fixed values. This can make it challenging to accurately
determine the stability turning point. In contrast, the study from Liodis et al.
(2023) includes Pc as an input for their NN. However, their NNs are trained
with additional modified gravity parameters, which are handled differently for
each EoS, as each NN only represents a single EoS model.

The goal of this paper is to construct a neural network-based model that
can predict NS mass and radius accurately from PP parameters given its
central pressure. A simple network is proposed to ensure the execution time
is shorter than the traditional Runge-Kutta method. The performance of this
neural network model is assessed for its accuracy and computing time.

This paper is organized as follows. The next section explains the basic
neutron star structure calculations and the piecewise polytropic equation of
state. Section 2 describes the basic principles of the neural network used in
this study. Section 3 discusses the generation of training data, the design of
the neural network, and the training process. Section 4 presents our results
and discusses the performance and accuracy of this method. Finally, the last
section concludes this work.

1 Neutron star structure from piecewise polytropic EoS

A neutron star has a very compact structure, making it necessary to consider
relativistic effects. Therefore, the pressure gradient is derived from the theory
of general relativity. The relativistic pressure gradient dP/dr, or the so-called
Tolman-Oppenheimer-Volkoff equation (Oppenheimer and Volkoff, 1939), is
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represented as
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where P , ǫ, and m are pressure, energy density, and enclosed mass at specific
radius r, respectively. The constants, G and c, are the gravitational constant
and speed of light. To calculate the stellar structure, Eq. (1) has to be inte-
grated with the mass gradient equation, i.e.,

dm

dr
= 4πr2ǫ, (2)

along with the equation of state ǫ(P ) that gives the relation between the
pressure and energy density of neutron star matter.

The neutron star equation of state ǫ(P ) can be modeled from the mi-
croscopic interaction of matter constituents using several models or theories,
such as the relativistic mean field (e.g., Müller and Serot, 1996) or Hatree-
Fock (e.g., Sun et al., 2009) based method. There are a number of equation of
state candidates that have significantly different NS properties. However, the
true equation of state of the neutron star remains uncertain due to limited
experimental information.

One of the techniques to model the equation of state is by considering a
phenomenological approach, such as parameterized piecewise polytropic (Read
et al., 2008). In this approach, the relation between density and pressure P (ρ)
is approximated by the collection of polytrope segment P (ρ) = Kiρ

Γi , where
Ki and Γi are polytropic coefficient and index on a segment between ρi−1 ≤
ρ ≤ ρi, respectively. The energy density can be calculated using the first law of
thermodynamics (see Read et al. (2008) for the detailed derivation). To make
ρ(P ) continuous, for Γ 6= 1, the energy density should satisfy

ǫ(ρ) = (1 + ai)ρ+
Ki

Γi − 1
ρΓi , (3)

where

ai =
ǫ(ρi−1)

ρi−1

−
Ki

Γi − 1
ρΓi−1

i−1
− 1. (4)

The polytropic coefficient Ki is calculated by the following equation:

Ki+1 =
p(ρi)

ρ
Γi+1

i

. (5)

By considering the above equations, the number of polytropic pieces i is
modeled as the equation of state. Following the method from Read et al.
(2008), the equation of state can be sufficiently approximated by dividing it
into three pieces, which is divided by 1.85ρnsat (nuclear saturation density)
and 3.70ρnsat. The equation of state then is represented by four parameters,
{p1, Γ1, Γ2, Γ3}. By fitting to specific equation of states, these parameters es-
timate the physical (microscopic) equation of states with 4% rms error. For
example, the SLy equation of state (Douchin and Haensel, 2001) can be pa-
rameterized into {log (p1), Γ1, Γ2, Γ3} = {34.384, 3.005, 2.988, 2.851}.
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2 Neural Network

A neural network is a mathematical structure that can approximate a generic
continuous function (Cybenko, 1989; LeCun et al., 2015). A neural network
consists of interconnected ’neurons.’ Each neuron processes and transforms
the input signal to output via, i.e., (Goodfellow et al., 2016)

a = f(b+

n
∑

i=1

xiwi), (6)

where the output signal a processes the input x with information of the bias b of
that neuron and weight w via the activation function f(z). A single neuron can
process signals from multiple inputs with different xi and wi. The activation
function can be modeled with different functions. One of the most common is
Sigmoid function,

f(z) =
1

1 + e−z
. (7)

Another useful activation function used in this study is the Sigmoid Linear
Unit (SiLU) function, which can be written as

f(z) =
z

1 + e−z
. (8)

The choice of activation function is crucial to determining the performance
and generality of neural network output.

The output signal from a neuron can be transmitted to the next neuron,
and it can also be broadcasted to multiple neurons. These neurons can be
arranged to form a layer, where each neuron processes signals from all neu-
rons in the previous layer and broadcasts its output to neurons in the next
layer. Passing signals through multiple layers forms a deep neural network. The
structure of this network significantly affects its performance. While more com-
plex models may provide more detailed predictions, they also require greater
computational resources for training and execution.

To make a neural network usable, the weight and bias of each neuron
should be trained with data to mimic the function that is able to process
input to predict output data. The training process consists of optimizing the
values of the weights and biases of the neurons in the NN in such a way that
the latter predicts the data correctly. Whether the prediction of the NN is
correct is determined by the so-called loss function. This usually utilizes the
back-propagation technique to find the best value of parameters. The smaller
the loss value (obtained by the loss function) the closer the prediction is to
the data. The NN then will be used to predict data using trained values of
weights and biases. The training process usually includes iterative training
and prediction cycles to monitor the performance of the network while being
trained.

Essentially, the trainable parameters (weights and biases) in the context of
a neural network used as a surrogate model have no direct physical meaning. In
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practice, they act as parameters of a generic function (similar to the polytropic
index in piecewise polytropic parameters) to estimate the characteristics of the
outputs from given inputs. These parameters capture patterns associated with
inputs and outputs and strongly depend on the network architecture. In our
case, the weights and biases represent the optimal configuration that allows
the model to transform the input to the desired output with minimum error,
based on the data it was trained on. The pattern of weights and biases may
vary between training runs due to the nature of NNs, which have multiple local
minima (i.e., the model identifiability problem; see Goodfellow et al. (2016)).
However, the model is designed to capture the complex and non-linear behavior
of NS mass and radius as a function of its piecewise polytropic parameters,
according to the criteria explained in the next section.

3 Methodology

To create the surrogate model within the neural network framework, we imple-
ment a ”supervised” learning method by training the feed-forward NN archi-
tecture using generated data from numerical integration based on the fourth-
order Runge-Kutta. In this section, we describe step-by-step the method for
solving the stellar structure equation to generate training data. The pre-
process of the data is also explained, followed by the design of NN architecture
and the training process.

3.1 Training data generation

To calculate neutron star properties, i.e., stellar mass M and radius R, we
integrate Eq. 1 and 2 simultaneously by using piecewise polytropic EoS pa-
rameters as the input. We implement the fourth-order Runge-Kutta method
with an adaptive step to integrate these equations from the center (r = 0,m =
0, P = Pc) to the surface (r = R,m = M,P = 0), where both the mass and
radius are defined. Each Pc produces a different mass and radius, while a
single combination of {log (p1), Γ1, Γ2, Γ3} from PP EoS gives a single mass-
radius curve. Therefore, a unique combination of Pc and {log (p1), Γ1, Γ2, Γ3}
produces a unique M and R pair.

Here, we generated 20,000 randomized EoS with 20 different central pres-
sures with randomized spaces for each EoS, between 5-1200 MeV/fm3. There-
fore, there are 400,000 training data in total. We assumed SLy EoS for the
crust (Douchin and Haensel, 2001). The parameter range of data generation
is shown in Table 1. Given the uniform distribution of EoS parameters in that
range, the distribution of mass and radius data is shown in Fig. 1.

In order to better adapt the parameter range to the neural network effective
range, the data is transformed using MinMaxScaler function from sklearn
python package (Pedregosa et al., 2011), ensuring the data ranged between 0
and 1 without changing its relative distribution. The central pressure is then
transformed to its logarithmic value, i.e., Pc,training = log(Pc), since mass and
radius are significantly altered by Pc in the logarithmic scale.
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Table 1: Parameter ranges used in the data generation. The data is generated
randomly with a uniform (U) distribution.

Parameter Range
p0 U(33.9, 34.9)
Γ1 U(2.2, 4.07)
Γ2 U(1.2, 3.8)
Γ3 U(1.3, 3.6)
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Fig. 1: The histogram of calculated mass-radius data from piecewise polytropic
EoS parameters input. Vertical axes represent the number of data.

3.2 NN architecture design

The principle of neural network design for this study is that the neural network
should be able to estimate mass-radius with high accuracy, and it has to
be simple enough so that the computational cost will be significantly lower
than its Runge-Kutta counterpart. We have implemented the neural network
architecture using pytorch (Paszke et al., 2019). After testing various options
of layer size and activation functions, our neural network architecture is shown
in Table 2. The NN process {log (Pc), log (p1), Γ1, Γ2, Γ3} as the input and
{M,R} as the output. The sigmoid and sigmoid linear-unit (SiLU) activation
functions are chosen to ensure that the prediction (M-R curve) is stable and
converges smoothly (e.g., compared to the ReLU function, which tends to give
a kinked curve and tends to overfit data).

Table 2: Neural network architecture used in this study. It consists of five
layers with sigmoid and sigmoid linear-unit (SiLU) activation functions.

Layer Description
Input { log (Pc), log (p1), Γ1, Γ2, Γ3 }
1 Sigmoid(5, 64)
2 SiLU(64, 16)
3 SiLU(16, 16)
4 Sigmoid(16, 2)

Output {M,R}
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3.3 Training process

The neural network is then trained by utilizing pytorch. We divide the training
and testing data randomly into a 2:1 ratio, respectively. The training process
is then divided again into 256 smaller batches for each step to retain the
generality of NN prediction. The loss function is defined as the mean squared
error (MSE) of all N data predictions in a batch, i.e.,

MSE =
1

N

N
∑

i=1

[

(MNN,i −MRK,i)
2 + (RNN,i −RRK,i)

2
]

, (9)

where ’NN’ and ’RK’ index denote mass or radius predicted by a neural net-
work and by the Runge-Kutta method, respectively. The training utilizes the
Adam optimizer with a learning rate set to be 0.006 and reduced by the factor
of 0.99 for each step after 300 steps. There are in total 1000 steps to train the
model until it sufficiently converged.

4 Results and discussions

This section discusses the training and prediction process, as well as the ac-
curacy and performance of the network. It is followed by a demonstration of
the network’s implementation in solving the inverse problem using Bayesian
inference. Finally, the limitations of this model are addressed in the last part
of this section.

4.1 Training performance

In order to analyze the NN performance while training generated data, we
calculate the MSE error with respect to the training and testing data for each
training epoch. Ideally, the loss function for both training and testing data
should overlap. The loss between training and testing diverge when there is
overfitting or problems with the model.

Our training performance is shown in Fig. 2. In general, both training
and testing loss for each epoch are decreasing at a similar rate. The noisy
pattern arises from different loss values of 256 batches of training. We stopped
the training iteration until the training trend slightly deviated from the testing
trend, which indicates overfitting. In our case, this departure occurs at the loss
value of 10−6, which is close to the numerical accuracy of our RK4 method.

4.2 Prediction performance

Model accuracy The trained NN is tested to predict the values of mass and
radius of well-known EoS models. Here, we take four EoSs as examples, repre-
senting different classes of EoS constituents: SLy (Douchin and Haensel, 2001)
representing an EoS consisting of neutrons, protons, electrons, and muons;
BGN1H1 (Balberg and Gal, 1997) representing an EoS with hyperons, pion
and kaon condensates, and quarks; MS1 (Müller and Serot, 1996) represent-
ing an EoS with a large maximum mass (Mmax > 2.5M⊙); and ALF1 (Alford
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Table 1. The average time required to compute a single mass-radius curve
(20 mass-radius points) is approximately 0.33 ± 0.1 ms for the NN method,
compared to 840 ± 180 ms for the RK4 method. This demonstrates that the
NN method accelerates the computational time to about 2.5×103 times faster
than the standard RK4 method. However, it is important to note that the ex-
act computing time strongly depends on the code architecture and hardware
capability. For instance, optimizing the code for a specific case or utilizing a
GPU for the forward pass could significantly affect performance. For example,
the above calculations are done with CPU-optimized code, which may behave
differently with other devices such as GPUs. Overall, the NN method used
here significantly improves the calculation time.

4.3 Use case example: Inverse problem using nested sampling

As a test case, the neural network is integrated into a statistical inference
framework to estimate the probability distribution of piecewise polytropic pa-
rameters from observed mass-radius data. The method employs a sampling
approach, which involves randomly sampling the prior distributions of input
parameters to calculate the likelihood distribution through the network’s out-
put. Using Bayesian inference, these steps are combined to estimate the pos-
terior distribution of the parameters, enabling the determination of EoS pa-
rameter bounds and calculation of Bayes factor to assess statistical preference
between models.

In this case, the prior distribution is set to be uniform, as specified by
Table 1. The likelihood L is modeled as Gaussian with

lnLG ∝
(Mc,i −Mobs,i)

2

σMi

+
(Rc,i −Robs,i)

2

σRi

, (10)

where Mc and Rc represent the closest mass and radius point, respectively,
between the mass-radius curve computed by NN and the observed data, Mobs

and Robs. This approach, commonly referred to as the ”closest approach”
method, is used to determine the most probable points on the calculated MR
curve given multiple M-R data points (Raithel et al., 2017). Additionally, we
impose a strict bound to the MR curve, which satisfy

lnL ∝







−∞, if 2.35M⊙ ≤ MTOV < 3M⊙,
−∞, if ρc > ρc,TOV ,
lnLG . otherwise

(11)

The first term ensures that the maximum mass (MTOV ) lies between the mass
of the PSR J0952-0607 pulsar (Romani et al., 2022) and the lower limit of the
canonical mass of stellar-mass black holes (3M⊙). The second term ensures
that the mass and radius satisfy the radial stability condition. The posterior
is then calculated via the nested sampling method provided by the dynesty
package (Speagle, 2020). The nested sampling process involves approximately
1.7 × 105 likelihood evaluations (equivalent to the number of NN calls) and
takes about 13 minutes to converge using parallel processing on a 10-cores
CPU. In comparison, performing the same analysis with the RK4 method
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