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Abstract. According to infrared measurements of the James Webb Space Telescope, there
exist very luminous galaxies at distances z ∼ 13 that should not exist according to the
standard ΛCDM cosmological model for the flat universe with normalized curvature index
k = 0. In this paper, we introduce a spacetime-lens principle that could explain why these
very distant galaxies shine so much. We present 10 specific examples showing that the ob-
served large flux luminosities may be mere optical effects due to the positive curvature index
k = 1 of an expanding 3-sphere modeling our physical universe in time. For Euclidean or
hyperbolic geometries such large flux luminosities seem implausible. This suggests that the
right model of a homogeneous and isotropic physical universe for each fixed time instant is
a 3-sphere. The angular size of the most frequent fluctuations in the power spectrum of the
CMB radiation is about 1◦. This enables us to exclude flat and hyperbolic geometries and
also indicates that the correct curvature index is k = 1.

Key words: luminosity distance; comoving distance; supermassive black hole, cosmic mi-
crowave background; maximally symmetric manifold

1. Introduction

For the time being we do not know what is the global geometry of our universe,
if it is spherical, flat, or hyperbolic, see e.g. Carroll (2014), Chiba and Naka-
mure (1998), Kř́ıžek (2024), Peebles (1993), Suntola (2018), Weinberg (1972).
The James Webb Space Telescope recently found very distant and luminous
galaxies whose masses are estimated up to 1011 stars at the distance ∼ 13
Gly, see Wang (2023) (and also Labbe et al. (2023), Laporte et al. (2021)).
Such large galaxies with so many stars should not exist according to the stan-
dard ΛCDM cosmological model of a currently proposed flat universe. In this
paper, we show that these large flux luminosities could be explained by a pos-
itive curvature of our universe that creates several fairly big artificial optical
magnification effects (see Examples 1–3 below). We focus on a geometrical ap-
proach which is more illustrative and pedagogically more valuable than mere
manipulations with arithmetic formulas.

Karl Schwarzschild (1900) conjectured that our universe can roughly be
described by a huge three-dimensional sphere (called 3-sphere) in the Euclidean
space E4,

S
3
a = {(x, y, z, w) ∈ E

4 |x2 + y2 + z2 + w2 = a2}, (1)

where a > 0 is its radius and the curvature 1/a of S3a is positive. Also Albert
Einstein (1917, p. 152) in his famous paper on cosmology assumes that the
entire universe can be modeled by the sphere S3a with fixed a. In this way he
could avoid initial and boundary conditions for his field equations. If a = 1
we write only S3. Let us point out that ten different ways to imagine the unit
3-sphere S3 are described in Kř́ıžek and Somer (2023, Sect. 6.2).
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Alexander Friedmann (1922) applied Einstein’s field equations to the entire
universe. In this way he obtained an ordinary differential equation for the time
variable radius a = a(t). This equation (cf. (23) below) is at present called the
Friedmann equation and it is the basis of the current ΛCDM cosmological
model. In another paper Friedmann (1924) considers a negative curvature
index k = −1. However, he suggests that only negative mass density is possible
for a static universe (see Friedmann (1924, p. 2006)) and thus it is not clear how
to satisfy such a paradoxical requirement. Note also that Friedmann did not
consider the case k = 0, which corresponds to the three-dimensional Euclidean
space E3 now favored by the ΛCDM model. We show that there is a very big
difference of observed galaxies between the cases k = 0 and k = 1 for large
redshifts.

For k = 1 our approach is more general than that described by the ΛCDM
model, since the radius a = a(t) may not satisfy the Friedmann equation (23).
It can be any positive continuous function, which thus serves as a pedagogical
tool to understand the geometrical properties of spherical spacetime, regardless
of general relativity.

Using movements of globular clusters, Schwarzschild (1900) derived for
the spherical model (1) that the corresponding radius a should be at least 108

au ≈ 1.5 · 1019 m. At present, this lower bound can be made much larger.
We know that the mean density of the universe in our neighborhood is ρ ≈
10−26 kg/m3, i.e., approximately 6 protons per cubic meter. Moreover, over
1012 galaxies are currently observed each having on average about 1011 stars.
Consequently, the total mass M of the entire universe can be roughly bounded
from below by M > 1012 ·1011 ·M⊙ = 2 ·1053 kg. Since the volume of 3-sphere
is V = 2π2a3 = M/ρ, we find that π2a3 > 1053+26 m3. Hence, for the present
value of the radius we get the following lower bound

a >
3
√
1078 = 1026 [m]. (2)

Furthermore, let L be the intrinsic bolometric luminosity of a galaxy (i.e.,
the total luminosity integrated over all frequencies and measured in Watts).
The luminosity distance dL is related to the flux ℓ measured in W/m2 by (see
Weinberg (1972, p. 421))

ℓ =
L

4πd2L
, i.e. dL =

√

L

4πℓ
. (3)

For a geometrical interpretation of this distance we recall that it is practically
equal to the Euclidean distance in a close neighborhood of the Milky Way.
However, for distant objects we have to take into account that the universe
expands and might be curved. The luminosity distance for the 3-sphere will
be defined later in (9).

Further, let us note that the luminosity distance in Mpc is usually calcu-
lated from the observed apparent magnitude µ and the absolute magnitude
µabs of a given galaxy by the Pogson’s equation µ − µabs = 25 + 5 log10 dL.
This is a key relation in cosmology, because we can use the observed flux to
obtain dL, see e.g Carroll et al. (1992), Kř́ıžek et al. (2015, p. 110), Weinberg
(1972).
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To introduce the main idea of the spacetime-lens principle, we initially
assume that the radius a in (1) is a fixed constant. Note that this assumption
is satisfied for the well-known Einstein’s static universe. For clarity, consider
only the cross section of the 3-sphere (1) by the equatorial hyperplane w = 0.
Suppose that the corresponding 2-sphere S2a is perfectly transparent. Let an
observer be located at an arbitrary point N of the 2-sphere S2a. Without loss
of generality we may assume that it is at the North Pole of the spherical
coordinate system (see Figure 1), since 2-sphere is a maximally symmetric
manifold. Note that this is not the North Pole of the celestial sphere.

Furthermore, suppose there are two galaxies of the same size and the same
bolometric luminosity. For simplicity, we assume that they are disc galaxies
(spiral or lenticular) and that they are oriented facing an observer. In this case
their observed flux intensity is proportional to the square of their diameter.
Then the observer will see these two galaxies at the same angular size ϕ
and also possessing the same flux even though their physical distances to N
are radically different. This means that the observed flux intensity does not
decrease with square of the distance like in Euclidean space. Only in a close
neighborhood of the North Pole N , where the space is locally almost flat, the
observed flux decreases approximately with the square of the distance (see
Figure 2).

Fig. 1. Two galaxies having the same diameter and the same bolometric luminosity are seen
from the North Pole N of the sphere S

2
a under the same angle ϕ when the radius a is fixed.

Their observed flux will also be the same although their distances along geodesics to N
measured through spherical coordinates θ1 and θ2 differ substantially.

Example 1. Assume that the spherical-coordinate angle of the upper
galaxy is θ1 = 30◦ and that of the lower galaxy is θ2 = 180◦ − θ1 = 150◦,
see Figure 1. Then their viewing angle ϕ from N is the same (proportional to
1/ sin θ1 = 1/ sin θ2) and the lower galaxy is 5 times more distant from N than
the upper galaxy. The observer registers the corresponding photons traveling
along geodesics (i.e. great circles) passing through the North Pole N . Since
he sees both the galaxies under the same viewing angle ϕ, the same observed
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flux intensity must be detected. (In Euclidean space, the closer galaxy would
have a diameter 5 times larger and would be 25 times brighter than the more
distant one.)

For θ1 = 15◦ and θ2 = 180◦ − θ1 = 165◦, the distance of the lower galaxy
from N would be even 11 times larger than that of the upper galaxy. It means
that distant objects near the South Pole S (the antipodal point to N , see
Kř́ıžek and Somer (2023, p. 167) and Suntola (2018, p. 277)) will be extremely
magnified and their observed apparent luminosity will be enormous. This is
not a coordinate effect but a real physical effect, cf. also specific Examples
2–5, 9, and 10 below.

Further, recall that a three-dimensional manifold is a set of points for which
there exists an open neighborhood that can be continuously mapped onto an
open set in E3 such that the inverse is continuous, too. If this mapping is
smooth, then the manifold is called smooth and looks locally as Euclidean
space. However, locally flat does not imply that it is globally flat.

According to the Copernican principle, our Earth is not at some privileged
part of the physical universe. According to the Einstein cosmological principle,
the universe on each isochrone is homogeneous and isotropic on large scales.
These principles are, in fact, assumptions. By Weinberg (1972, Chapt. 13)
and Penrose (2005, p. 721) there exists exactly three maximally symmetric
three-dimensional manifolds up to scaling, namely S3, E3, and the hyperbolic
pseudosphere H3 that perfectly model the required homogeneity and isotropy.
Their corresponding curvature indices are k = 1, 0,−1, respectively. We shall
see that the luminosity distance, angular distance, and comoving distance
essentially depend on a particular choice of k when the cosmological redshift
z is large.

In the next section, we introduce the space-lens principle for the 3-sphere
with time independent radius to illustrate the basic ideas. In Section 3, we show
how it can be modified for an expanding 3-sphere (1) to the spacetime-lens
principle which covers also the standard FLRW metric, see (30) below. This
principle can explain the observed large flux intensities of galaxies at z & 13 if
k = 1. In Section 4, we present the main theorem stating that the trajectory
of a photon in a linearly expanding space is a logarithmic spiral when k = 1.
This enables us to estimate the comoving distance θ by means of the measured
cosmological redshift z. In this paper, we will carefully distinguish between
the coordinate z in (1) and redshift z to avoid ambiguities. Several arguments
against Euclidean (k = 0) and hyperbolic (k = −1) models of the physical
universe are collected in Section 5. The last Section 6 contains a few concluding
remarks.

2. The space-lens principle for a non-expanding 3-sphere

The angular size α of galaxies (except for the Milky Way) is indirectly propor-
tional to their distance if the space is modeled by Euclidean space E3 (keeping
in mind that sinα ≈ tanα ≈ α for small α measured in radians). In this case,
the areal size (measured in steradians) and thus also observed flux intensities
of galaxies decrease with the square of their distance, assuming the universe
is perfectly transparent.
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However, these dependencies are completely different for the 3-sphere. To
see this we set

θ =
d

a
, (4)

where θ is called the comoving distance, a is the radius of the 3-sphere (1),
and d is the usual physical distance along geodesics, see Figure 1.

Fig. 2. According to (5), the angular size α of a galaxy in E
2 is always smaller than if this

galaxy were at the same distance d > 0 from N on the sphere S
2
a with angular size ϕ.

Example 2. Consider two galaxies in E2 and S2a having the same diameter
D > 0, the same bolometric luminosity, and the same distance d from the point
N . We see that d = aθ for k = 1, see Figure 2. Then the corresponding angular
size α = D/d for k = 0 is always smaller than the angular size ϕ for k = 1;
namely, by (4) we have

α =
D

d
=

D

aθ
<

D

a sin θ
= ϕ (5)

for θ ∈ (0, π). This represents another artificial magnification effect which is
different from that sketched in Figure 1. By (4) and (5) we find that

ϕ

α
=

θ

sin θ
.

Consequently, if the comoving distance is for instance θ = π/2, then the ratio
between the two agular sizes is equal to ϕ/α = π/2

.
= 1.57.

Figure 3 illustrates a typical dependence (up to a multiplicative constant
D/a) of the angular size of a reference galaxy on the dimensionless comoving
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distance θ ∈ (0, π) on each of the maximally symmetric manifolds when k =
1, 0,−1 and a = 1. This is not taken into account in Pilipenko (2013) and
many cosmological calculators. The observed flux intensities are proportional
to the square of angular sizes. Hence, for θ ∈ (0, π) we set

R(θ) =
θ2

sin2 θ
(6)

and thus, the magnification effect for flux intensities is much larger on S3

than on E3 when θ ∈ (0, π) is large, see Table 1 and Figures 2 and 4. For
instance, if the comoving distance is again θ = π/2, then R(θ) = π2/4

.
= 2.467.

Consequently, the ratio R(θ) between the flux in S3 is almost 2.5 times higher
than that in E3 for a given reference galaxy.
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Fig. 3. The angular size of a given reference galaxy depends quite differently (up to some
multiplicative factor) on the comoving distance θ ∈ (0, π) on each of the manifolds S

3, E3,
and H

3.

The graph in Figure 4 leads the following paradoxical example on the 3-
sphere S3 that is based on special properties of the function θ ∈ (0, π) 7→
θ/ sin θ and its square.

Example 1 (continuation). Consider two galaxies as in Figure 1. Let
the upper galaxy at θ1 = 30◦ has a twice larger diameter than the lower one at
θ2 = 170◦ and let the ratio of their absolute luminosities is 22 = 4. However,
the observer at N will see that the lower galaxy produces a larger flux intensity
than the upper one, even though the lower galaxy is twice smaller in diameter
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θ R(θ)

30◦ 1.097

60◦ 1.462

90◦ 2.467

120◦ 5.848

150◦ 27.416

180◦ ∞

Table 1. The ratio R(θ) = θ2/ sin2 θ between flux intensities of a given reference galaxy for
the manifolds S3 and E

3 for several values of θ.

and much more distant from N than the upper galaxy. The reason is that

16 =
4

sin2 θ1
<

1

sin2 θ2
= 33.163,

i.e., the twice smaller galaxy in diameter produces more than twice larger
observed flux although it is at least 5 times more distant from N than the
larger galaxy.
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Fig. 4. The ratio R(θ) between flux intensities of a given reference galaxy for the manifolds
S
3 and E

3 is large if the comoving distance θ is also large: 0 ≪ θ < π.

The above-described two nonlinear optical magnification effects from Ex-
amples 1 and 2 lead to the so-called space-lens principle. It is because con-
verging geodesics passing through the North Pole N resemble the bending of
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light rays in a converging lens. This bending effect works along their entire
trajectories, cf. Figures 1 and 2. Note that geodesics in hyperbolic geometries
resemble functioning of a diverging lens.

3. The spacetime-lens principle for an expanding 3-sphere

The term “universe” is used in cosmology with various meanings: true space-
time, true space (i.e. a part of spacetime at a fixed time instant), and the ob-
servable universe, which is seen as a projection on the celestial sphere. These
are three different objects. Their mathematical models are also three com-
pletely different manifolds (see Figure 5).

In this section, we describe the third apparent magnification effect caused
by the expansion of the 3-sphere in time. First, let us realize that the 3-
sphere cannot change its geometry during its continual evolution, see Figure
5, i.e., the spherical model with bounded manifold S3a cannot be continuously
deformed into the Euclidean or hyperbolic model. From now on assume that
a = a(t) > 0 is an increasing differentiable function describing the radius of
the expanding 3-sphere (1). It is called the expansion function and for the time
being it does not have to satisfy the well-known Friedmann equation.

tx

a

y

Fig. 5. Schematic illustration of three different manifolds that are used to model our physical
universe for k = 1. For simplicity, the number three of space dimensions is reduced to one.
Thus, the 3-sphere (1) with radius a = a(t) > 0 at a fixed time instant t is replaced only by
its great (blue) circle S

1
a for z = w = 0. This model expresses the homogeneity and isotropy

of the universe. The model of spacetime can be obtained by rotation of the (red) graph of
the expansion function a = a(t) about the time axis t. The observable universe is marked by
the (yellow) manifold given by the past light cone whose vertex corresponds to an observer.
This cone is deformed towards the origin of coordinates, see Figure 6 and also Davis and
Lineweaver (2004), The last two models (red and yellow) do not satisfy the homogeneity
required by the Einstein cosmological principle.

Recall that the redshift of a galaxy resulting from its radial motion is
defined by

z =
λ0

λ1
− 1,
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where λ0 is the observed wavelength of a particular spectral line and λ1 the
corresponding emitted wavelength. For the associated radii of S3a we have by
Carroll et al. (1992) and Peebles (1993) that

a(t0)

a(t1)
=

λ0

λ1
= z + 1. (7)

Here t1 is the time instant when a photon was emitted and t0 when it was
received, i.e. 0 < t1 < t0 and

t0 ≈ 13.8 Gyr (8)

is an approximate age of the universe.
The luminosity distance for the 3-sphere is given by the following formula,

see e.g. Mészáros et al. (2011, Eqs. (1)–(3)),

dL = a(t0)(z + 1) sin θ. (9)

Therefore, for the measured flux ℓ we obtain by (3) that (cf. Weinberg (1972))

ℓ =
L

4πa2(t0)(z + 1)2 sin2 θ
.

Here one factor (z + 1) appears in the denominator, since photons loose their
energy during the expansion of the physical universe. The second factor (z+1)
in this denominator is due to the fact that 1 second lasted longer when a photon
was emitted than when it was received.

Note that for any k = 1, 0,−1, we have (see e.g. Peebles (1993, pp. 313, 328))

ℓ =
L

4πa2(t0)(z + 1)2 sinn2 θ
,

where sinn depends on the curvature index k as follows (see Figure 3)

sinn θ =

{

sin θ if k = 1,
θ if k = 0,
sinh θ if k = −1.

(10)

We see that the two galaxies from Figure 1 have, paradoxically, according
to (9) the same luminosity distance from N for a non-expanding universe with
redshift z = 0. So there is a serious ambiguity (non-uniqueness) in establishing
the correct comoving distance θ ∈ (0, π/2]∪ (π/2, π], i.e., if an object is above
or below the equatorial hyperplane w = 0, cf. (1). We see that the angular
distance, defined by (see Weinberg (1972, p. 423))

dA(z) =
dL(z)

(z + 1)2
,

86



M. Kř́ıžek

possesses the same non-uniqueness problem, and thus it also does not help us
to verify whether

θ ∈ (0, π/2] or θ ∈ (π/2, π]. (11)

Therefore, in Section 4, we show how to find a proper comoving distance θ
from the observed cosmological redshift z.

An increasing radius of the 3-sphere produces the third apparent magnifi-
cation effect which is called the time-lens principle, see Kř́ıžek (1999), Kř́ıžek
et al. (2015, p. 314). So now we show how the intrinsic expansion of the uni-
verse with k = 1 apparently magnifies the angular size of very distant objects,
see also Pilipenko (2013) for k = 0. It practically functions at very “large” dis-
tances — at least several billion light years. On the other hand, this apparent
magnification effect at “short” distances is almost negligible.

We see very distant galaxies with large time delay given by the finite speed
of light. Hence, we must consistently distinguish between “at that time” and
“actual dimensions”, i.e., the size of the universe when observed photons left
a particular galaxy and the universe was much smaller, and “today’s” dimen-
sions when “ancient” photons (see the yellow lines in Figures 5 and 6) arrived
at our ground-based telescopes. Roughly speaking, the younger the objects
which are observed, the larger the magnification appears. Therefore, by angu-
lar measurements we paradoxically see a very distant object as being larger.
From (7) we find that this angular magnification is proportional to z + 1.
This partly explains the “observed” superluminal speeds of plasma jets at dis-
tant quasars, see e.g. Pearson and Zensus (1987, p. 3). Some ejections achieved
speeds far exceeding the speed of light. Moreover, according to (5), the abso-
lute length D of these jets should be θ/ sin θ times shorter when we replace
k = 0 by k = 1. For another reason see also Kř́ıžek et al. (2015, p. 309).

Let us illustrate supporting evidence of the functioning of the time-lens
principle by another two examples.

Example 3. The cosmic microwave background (CMB) radiation as ob-
served by the Planck Collaboration (2014) comes from the period

t2 = 380 000 years (12)

after the Big Bang, when atoms were created and the universe started to be
transparent for photons (cf. also Vavryčuk (2018)). This almost homogeneous
and almost isotropic radiation corresponding to the temperature 2.73 K comes
from all directions of the sky at the distance of about 13.8 Gly — the so-
called horizon of the observable universe. According to Eisenstein and Bennett
(2008), the corresponding redshift is about

z = 1089. (13)

Thus the CMB came into existence in the period when the universe was ap-
proximately 1000 times smaller in diameter than is at present. In other words,
every current cubic meter of space was concentrated on average in one cubic
millimeter at that time.

It would be a mistake to believe that the well-known map of the CMB shows
the entire universe, how it looked like 380 000 years after the Big Bang. This
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map only shows only a part of the observable universe, which is a relatively very
small two-dimensional slice S2r with radius r = a(t2) of the three-dimensional
manifold S3a(t2)

corresponding to the universe with z ≈ 1089, see Figure 5. For

instance, the ball region of all galaxies with z . 13 is not contained in this
slice. All known galaxies such as M31, M51, M87, . . . are in this region (each
map of CMB currently observed from these galaxies would look different than
that from Earth).

Let us emphasize that the observable universe is not homogeneous, since
for different cosmological redshifts z, it has a different mass density. Thus, it
is an entirely different object than the universe as a space. From a similar
reason the spacetime is also not homogeneous. Therefore, the expansion of the
universe is a completely different notion than the expansion of the observable
universe.

Hence, when the CMB radiation was created, the universe would be rep-
resented in Figure 5 by an extremely small circle (near the origin) with radius
ca. 1090 times smaller than the radius a(t0) of the circle corresponding to the
present time. Consequently, astronomers observe the sphere S2r with CMB ex-
tremely magnified (cf. also Figure 6). Moreover, from (7) and (2) we get the
following lower bound

a(t2) =
a(t0)

z + 1
>

1026

1090
m ≈ 3 Mpc ≈ 9 Mly. (14)

Furthermore, we will estimate the behavior of the expansion function a =
a(t) in a neighborhood of the time instant t2 corresponding to the origin of
CMB. Using (7), (8), (12), and (13), we get

a(t2)

t2
=

t0
(z + 1)t2

a(t0)

t0
=

13.8 · 109
1090 · 380 000

a(t0)

t0
= 33.3 · a(t0)

t0
, (15)

and thus the mean expansion rate of the space on the interval (0, t2) was 33.3
times larger than that on the interval (0, t0). Taking into account that 1 yr
≈ π107 s, we find from (2) and (15) that

a(t2)

t2
> 33.3

1026

13.8 · 109 · π · 107 m/s
.
= 25 c, (16)

where c is the speed of light in a vacuum. Note that such a large expansion
rate does not contradict to the special theory of relativity, see e.g. Davis and
Lineweaver (2004). The inequality (16) indicates that the expansion function
had much bigger the first time derivative ȧ = ȧ(t) over the interval (0, t2) than
at present (see Figure 5). The expansion speed, given by the Hubble parameter

H(t) =
ȧ(t)

a(t)
, (17)

was very large at that time. Recall that the present measured value of the
Hubble-Lemâıtre constant is

H0 = H(t0) =
ȧ(t0)

a(t0)
≈ 70 km s−1Mpc−1 ≈ 2.27 · 10−18 s−1. (18)
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Further analysis of the CMB radiation is given in Example 10.
Example 4. An enormous magnification is produced the Big Bang itself,

which appeared roughly 13.8 Gyr ago, see (8). Although it happened in a
minimal volume, see Kř́ıžek and Somer (2023, p. 117), its present position
seems to be on the possibly greatest 2-sphere (the so-called horizon) with an
unimaginable large radius (much larger than in the previous example).

Thus, the farther we look, the corresponding sphere seems to be bigger and
bigger, even though the universe was smaller and smaller. This is the main
reason of functioning of the time-lens principle. Monitored objects from the
time t are seemingly magnified a(t0)/a(t)-times and thus the magnification
effect is “small” close to N , see Weinberg (1972, p. 423). The magnification
effects described in Sections 1, 2, and 3 lead to the so-called spacetime-lens
principle.

4. The main theorem

Now we show how to estimate the comoving distance θ corresponding to a
given cosmological redshift z. Throughout this section we assume that k = 1
and that the expansion function a = a(t) is linear over some long time interval
(t1, t0), where t0 is given by (8). This assumption is not too restrictive (see
Kř́ıžek (2024)), since the actual expansion function is almost linear during the
last 12 Gyr, see also the situation sketched in Figure 7 below, which illustrates
the behavior of a = a(t) for the standard cosmological FLRW model driven
by the Friedmann equation.

Theorem 1. Let S3a expand at a constant velocity V > 0 over an interval
(t1, t0), i.e., ȧ(t) = V for all t ∈ (t1, t0). Then the trajectory of a photon
towards the observer at N can be described by a logarithmic spiral (in space
variables) with slope angle φ = arctan(c/V ) and the comoving distance

θ = (tanφ) ln(z + 1) =
c

V
ln(z + 1)

corresponds to the cosmological redshift z ≥ 0.

P r o o f. Each geodesic of S3a(t) is represented by an expanding great circle

which lies in a plane passing through the center of S3a(t). Thus since a photon

traveling to N moves along geodesics in a plane, we can choose without loss of
generality the Cartesian coordinate system in (1) so that w = z = 0. Since the
space expands in the radial direction in this plane at the constant velocity V
and since the photon moves in the tangential direction at the constant velocity
c, the total velocity

√
c2 + V 2 is also constant and thus the corresponding slope

angle

φ = arctan
c

V

is constant, too, see Figure 6. Therefore, the trajectory of the photon is de-
scribed by the logarithmic spiral in the standard polar coordinates (r, θ) as
follows:

r(θ) = a1 exp(θ cotanφ), (19)
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where a1 = a(t1) > 0 and φ > 0 are given constants.
From (19) and (7) we find the searched relation between z and θ,

θ =
1

cotanφ
ln

a0
a1

= (tanφ) ln(z + 1) =
c

V
ln(z + 1), (20)

where a0 = a(t0), see Table 2. �

θ z

0◦ 0

30◦ 0.69

60◦ 1.85

90◦ 3.81

120◦ 7.12

150◦ 12.71

Table 2. Redshifts corresponding to several comoving distances θ given by (20) for the
3-sphere and V = c.

From (18) and (2) we get the following lower bound

ȧ(t0) = H0a(t0) > 2.27 · 10−18 s−1 · 1026 m = 2.27 · 108 m/s.

Since the estimate (2) is indeed very rough, we shall assume for simplicity in
the next two examples that the present expansion speed V = ȧ(t) is equal to
the speed of light.

Example 5. So let V = c and consider a galaxy with redshift z = 13,
see Wang et al. (2023). (As of 2024 the most distant known galaxy JADES-
GS-z14-0 has even z = 14.32.) From the relation tanφ = c/V we find that
the slope angle is φ = 45◦, see Figure 6. In fact, this figure represents the
orthogonal projection of Figure 5 along the time axis. Using (7), we get

14a1 = a0 (21)

(i.e., the volume of S3a1 is 143 = 2744 times smaller than the present volume

of S3a0). According to (20),

θ ≈ ln 14 = 2.639 >
π

2

and thus the galaxy with z = 13 is below the equatorial hyperplane w = 0
and θ = 2.639 rad = 151.2◦, cf. Table 2. From (6) we see that the flux ratio

R(θ) = 30.02 (22)
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Fig. 6. The curved (yellow) trajectory of a photon in a linearly expanding universe modeled
by the (blue) sphere S

3
a(t) in the plane z = w = 0. It is described by the logarithmic spiral

(19) whose slope angle φ = arctan(c/V ) is constant. Redshifts corresponding to comoving
distances θ for the slope angle φ = 45◦ are given in Table 2, see also Suntola (2018, p. 253).
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is really very large, cf. Figure 4. This explains why some very distant galaxies
and quasars seem to be so luminous if we would assume that k = 0. Therefore,
the actual bolometric luminosities of these objects for k = 1 are at least one
order of magnitude smaller than absolute luminosities calculated from flux
measurements. We will call R(θ) the reduction factor. It actually states by
how much is the mass calculated from the luminosity smaller when we change
k = 0 by k = 1.

It is well known that the length of the logarithmic spiral is equal to

s(θ0, θ1) =
r(θ0)− r(θ1)

cosφ
,

where φ ∈ (0, π/2) and 0 ≤ θ0 ≤ θ1. Hence, for V = c we get by (21) that

s =
a0 − a1
cosφ

=
√
2
13

14
a0,

where φ = π/4. Thus, the total travel time along an expanding geodesic sat-
isfies by (2):

T =
s√

c2 + V 2
=

√
2
13

14

a0√
2c

=
13

14

a0
c

& 10 Gyr.

Example 6. According to Abbott et al. (2020), the total mass after co-
alescence of two black holes was 150M⊙ at the luminosity distance 5.3 Gpc.
The redshift of the associated event GW190521 is z ≈ 0.82, which leads to
k = 0 by Pilipenko (2013). However, by Theorem 1 for k = 1 the correspond-
ing comoving distance is about θ = 0.6 for V = c and by (6) the reduction
factor R(θ) = 1.13, see Figure 4. Note that in Abbott et al. (2020) nothing is
mentioned about the curvature of the universe. Hence, the mass of the result-
ing black hole calculated from detected gravitational waves could be reduced
to 150M⊙/1.13 = 133M⊙. In Kř́ıžek and Somer (2022), we present several
other arguments why masses of such calculated black holes are largely over-
rated. Note that no mechanism is known which would produce binary stellar
black holes with masses greater than 50 solar masses. Moreover, there is a
large statistically significant mass gap between all known black hole mergers
and binary neutron stars, and also between single stellar black holes and bi-
nary black hole mergers. Therefore, we should carefully distinguish between
an observed and calculated stellar black hole to avoid overestimating its mass
and to eliminate those gaps.

Remark. For V = c the equatorial hyperplane of S3a with angle θ = π/2
corresponds by (20) to the redshift

z = eπ/2 − 1 = 3.81,

see Table 2. The assumption V = c is quite realistic, because of the following
inequality

V ≈ a(t0)

t0
>

1026

13.8 · 109 · π · 107 m/s = 0.75c,

see (2), (8), and (16). If V 6= c then the above relations have to be appropriately
modified.
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5. Arguments against unbounded manifolds

Let us point out that six different ways to imagine hyperbolic geometries
are clearly described in Cannon et al. (1997), see also Brandts at al. (2024)
and Kř́ıžek (2023, p. 135). According to Blanuša (1955), Kř́ıžek and Pradlová
(2003), the hyperbolic pseudosphere H3 cannot be isometrically imbedded to
Euclidean space E4 like S3 in (1). John Nash (1954) proves that H3 can be
isometrically imbedded to E7 and it is not known whether the exponent 7
can be reduced. We only know that there exists a local isometric imbedding
from H3 to E5 (see Brander (2007)). Hence, H3 is a very unusual and quite
exceptional manifold.

The unbounded manifolds H3 and also E3 serve as a model of an infinite
isotropic and homogeneous universe in the standard ΛCDM cosmology. Nev-
ertheless, the fact that such an infinite universe for a fixed time instant would
have at each point almost the same curvature, density, pressure, temperature,
etc., on large scales is very unlikely. This would require an infinite speed of
information transfer which is impossible. On the other hand, the manifold S3a
is always bounded having a finite volume. So if the expansion is slow, then all
parts of S3a can mutually influence to guarantee homogeneity and isotropy of
early universe. Hence, no inflation epoch is necessary.

0

0.2

0.4

0.6

0.8

1

-13.6 -10 -5

(0)a

)t(a

(Gyr) t

0

Fig. 7. The middle red graph illustrates the behavior of the normalized expansion function
a(t)/a(0) calculated numerically from the Friedmann normalized equation (24) for k = 1,
ΩM

.
= 0.3, ΩΛ

.
= 0.7, and H0 = 70 km/(s Mpc). The time variable is shifted for simplicity

so that t0 = 0 corresponds to the present time. The lower blue graph corresponds to the
linear function 1+H0t on the interval [−1/H0, 0]. The upper green graph shows the quadratic
function 1+H0t−

1
2
q0H

2
0 t

2 with deceleration parameter q0 = −0.6. The accelerated expansion
differs only very little from the linear expansion during the last few Gyr.

Now let ρ = ρ(t) be the mean mass density of the universe at time t,
G be the gravitational constant, and let Λ be the cosmological constant. The
standard ΛCDM model is based on the following ordinary differential equation
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for the unknown expansion function a = a(t) (see Friedmann (1922, 1924))

ȧ2 =
8πGρa2

3
+

Λc2a2

3
− kc2. (23)

At present it is called the Friedmann equation for the curvature index k ∈
{−1, 0, 1}. Since the terminal condition (18) for the present time t0 is known,
we may integrate (23) backward in time.

Dividing (23) by ȧ2 and using (17), we can easily derive the so-called
normalized Friedmann equation which is usually written in the form (see e.g.
Peebles (1993), Perlmutter at al. (1997), Planck Collaboration (2014))

1 = ΩM +ΩΛ +Ωk, (24)

which is still a differential equation, even though it does not look like that.
Here, ΩM(t) = 8

3πGρ(t)/H2(t), ΩΛ(t) =
1
3Λc

2/H2(t), and the measured value
of the third density curvature parameter

Ωk(t) = − kc2

ȧ2(t)
(25)

is in absolute value extremely small. From this many cosmologists deduce that
k = 0. However, this is a completely false mathematical implication, since the
time derivative ȧ can be very large. We will illustrate these facts by several
further important examples.

Example 7. By (16) and the Mean Value Theorem of differential calculus
there exists t3 ∈ (0, t2) such that ȧ(t3) > 25 c. From this and by inserting t = t3
into (25), (i.e., the Friedmann differential equation (23) becomes algebraic),
we find that density curvature parameter can be really very small for k 6= 0,
namely, we have the following two-sided estimate

0 < |Ωk(t3)| =
∣

∣

∣

kc2

ȧ2(t3)

∣

∣

∣
<

1

625
.

Hence, the case k = 1 is possible for the time instant t = t3. Moreover, from
Section 3 we know that the spherical geometry of the universe cannot suddenly
jump during its evolution to the Euclidean or hyperbolic geometries.

Example 8. According to Andreon et al. (2023, p. 4302), the mass of the
galaxy cluster JKCS 041 with z = 1.803 is 4 · 1014M⊙. Such a large mass was
obtained from measured luminosities for ΩM

.
= 0.3, ΩΛ

.
= 0.7, and k = 0.

However, for k = 1 the luminosity distance would be somewhat different.
Namely, by Theorem 1 the corresponding comoving distance of JKCS 041
is θ ≈ 1.03 rad if V ≈ c. Hence, the above large mass could be reduced
approximately 1.44 times, since the reduction factor R(θ) ≈ 1.44, see Figure
4. See also Andreon et al. (2021).

Example 9. Kroupa et al. (2020) investigate a very rapid emergence of
supermassive black holes with high cosmological redshifts, e.g. when z = 9.1
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(see also Kovács et al. (2024)). By Theorem 1 the corresponding comoving
distance is θ = 2.3 rad for V ≈ c. This leads to the reduction factor R(θ) ≈ 10.
Hence, these early black holes are perhaps not so supermassive as assumed
when we replace k = 0 by k = 1. Thus also the mass of a very distant black
hole with z = 7.5 (see Yang et al. (2020)) is considerably overestimated.

Recently the most distant known blazar J0410-0139 was detected, one of
whose jets is directed to us. Blazars are statistically very rate cases of active
galactic nuclei. It can be assumed that when we observe a blazar, then at a
similar redshift distance z ≈ 7 there are many more similar objects, but their
jets are not pointing in our direction.

Example 10. Baryonic acoustic oscillations (BAO) are fluctuations in the
density of the visible baryonic matter caused by acoustic waves of the pri-
mordial plasma in the time period (12). According to Eisenstein and Ben-
nett (2008), the power spectrum of CMB indicates that the angular size
of the most frequent fluctuations is approximately equal to ϕ = 1◦ that is
ϕ = 2π/360 = 0.01745 rad, see the right half of the sphere in Figure 1. Now
we will estimate its actual diameter D at time t2 for all three cases k = 1, 0,−1
by means of the angular distance (see Kř́ıžek and Somer (2023, p. 149) and
Weinberg (1972, p. 423)). From (9), (10), and (5) we find that

D = ϕa(t2) sinn θ,

namely,

D =

{

ϕa(t2) sin θ if k = 1,
ϕa(t2)θ if k = 0,
ϕa(t2) sinh θ if k = −1,

(26)

where by (14),
ϕa(t2) & 0.157 Mly. (27)

Unfortunately, we cannot apply Theorem 1 to establish more precisely the
comoving distance θ of the CMB, since the expansion function is far from being
linear near t2. (By (16) the slope angle would be extremely small: φ < 2.29◦ for
c/V < 1/25.) Anyway, we can use the lower bound (14) and assume that θ ≈ 3
rad, i.e., the origin of the CMB is close to the South Pole of the expanding
3-sphere (cf. also Table 2). Note that the corresponding reduction factor is
then R(θ) ≈ 452, see Figure 4. In this case, the actual diameter D can be
bounded from below by (26) and (27) as follows

D &

{

0.022 Mly if k = 1,
0.471 Mly if k = 0,
1.574 Mly if k = −1.

(28)

We observe that the actual physical size of the most frequent fluctuations is
dramatically different for spherical, flat, and hyperbolic universe. Since the
period, when CMB had appeared, was only about 104 yr, the most probable
case is again k = 1. The diameter in (28) for k ≤ 0 is so large that it contra-
dicts the causality principle, since acoustic waves could not travel such a long
distance due to (12).
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Now we present another argument against hyperbolic and Euclidean ge-
ometries of the physical universe. A positive curvature of the space arises in the
interior of a homogeneous mass ball with radius R > 0 and the Schwarzschild
radius S < R. The corresponding line element in the standard spherical coor-
dinates is given by (see e.g. Ellis (2012), Florides (1974), Stephani (2004))

dl2 =
1

1− r2s2
dr2 + r2dθ2 + r2 sin2 θ dϕ2, (29)

where rs ∈ [0, 1), s =
√

S/R3, θ ∈ [0, π], and ϕ ∈ [0, 2π). This equality looks
similarly to (see Weinberg (1972, p. 403), Kř́ıžek and Somer (2023, p. 118))

dl2 =
1

1− kr2
dr2 + r2dθ2 + r2 sin2 θ dϕ2 (30)

for the FLRW line element of the 3-sphere with the curvature index k = 1.
Here r ∈ [0, 1) is a dimensionless parameter, θ ∈ [0, π], and ϕ ∈ [0, 2π). We
observe that the cases k = 0 and k = −1 do not match (29). Thus, the presence
of a homogeneous mass distribution causes a positive curvature globally and
the most natural model of the physical universe is S3a for a fixed time instant.

Another argument is based on the hypothesis that no physical quantity
(including the diameter of the universe) can attain an infinite value. Several
arguments against unbounded manifolds used to describe the physical universe
are also given in previous sections.

6. Final remarks

Is the global curvature of the universe positive? In Examples 1, 2, and 3 (see
also Figures 1, 2, 5, and 6) we introduced there different magnification effects
to show how the spherical geometry magnifies angular sizes leading to the
spacetime-lens principle which could explain the large observed flux intensity
of galaxies at z & 13, cf. (22). Therefore, a positive curvature index k = 1
allows us to explain why in the early universe we observe:

1) supermassive stars,
2) too large stellar black holes,
3) supermassive black holes,
4) too long jets and their superluminal velocities of distant quasars,
5) too large early galaxies,
6) too large early galaxy superclusters,
7) large size of the most frequent fluctuations in CMB,
8) super energetic quasars,
9) giant γ-ray bursts,
10) very luminous supernovae,. . .

All these objects, mentioned e.g. in Kroupa et al. (2020), Mészáros (2019),
Mészáros et al. (2011), Yang (2020) could only be due to apparent optical
effects. Their absolute bolometric luminosities are just smaller than it is sup-
posed.
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Moreover, in Section 3, we showed how the time-lens principle magnifies
the angular sizes of distant objects. The main theorem that states how to
estimate the comoving distance for a given redshift when k = 1 is proved in
Section 4. In Section 5, we demonstrated why

ΩM +ΩΛ
.
= 1 ; k = 0.

We also presented several typical examples of phenomena that should be re-
vised from the case k = 0 to k = 1.

Cosmologists often claim that our universe has no center. Nevertheless, in
Figure 5 we observe that the blue manifold has its center on the time axis
t even though this center does not belong to S1a. (The circle x2 + y2 = 1
also has a center which does not belong to it.) The observable universe (the
yellow manifold in Figure 5) is centered on Earth and the center of spacetime
(represented by the red manifold) corresponds to the Big Bang at the origin
of the spacetime coordinates.

In the Hubble test of a local homogeneity of the universe, one has to mea-
sure the apparent magnitude (energy flux ℓ from a given galaxy). By Carpenter
(1938) the number of observed galaxies in the sky brighter than ℓ should vary

as ℓ−3/2, see also Li and Liu (2015), Peebles (1993), Weinberg (1972). This test
should be modified for non-Euclidean geometries, in particular for S3a. Several
other results should be revised from the case k = 0 to k = 1 as well due to
very large differences of numbers in (28).

The fact that we do not observe too many galaxies with z > 10 also
indicates that k = 1 and θ ∈ (π/2, π). Their number is proportional to sinn2θ,
where sinn is defined in (10). For k ≤ 0 we would observe a large amount of
galaxies with z > 10 which is not the case. The distribution of distant quasars
is also not so dense as predicted in Nguyen et al. (2020).
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