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Abstract. This study examines Kaniadakis holographic dark energy in the anisotropic and
spatially homogeneous Bianchi type-II spacetime, framed within the Brans-Dicke-Rastall
theory of gravity. The dark energy model is established by analyzing the correlation between
the metric potentials to resolve the model’s field equations. This results in a variable decel-
eration parameter that signifies a shift in the cosmic acceleration rate from deceleration to
acceleration. This scenario involves the formulation of numerous cosmological parameters,
including the scalar field, equation of state, deceleration, skewness, squared speed of sound,
and statefinder parameters. The examination of these characteristics is presented through
graphical representation. The examination of the evolution parameter substantiates the no-
tion of holographic dark energy. Furthermore, the statefinder cosmic plane is linked to the
λRasCDM framework and other recognized dark energy hypotheses.
Key words: Brans-Dicke-Rastall gravity, Bianchi type-II model, Kaniadakis holographic
dark energy, Anisotropic model, Cosmology.

1 Introduction

A significant advancement in cosmology is the identification of the Uni-
verse’s accelerated expansion, attributed to enigmatic dark energy (DE) (Perl-
mutter et al. 1999; Reiss et al. 1998; Spergel et al. 2007; Copeland et al.
2006). The nature and composition of DE remain open questions. Thermody-
namic studies suggest that DE may consist of massless particles (bosons or
fermions) behaving like a radiation fluid with negative pressure. The cosmo-
logical community widely accepts that DE acts as a repulsive force, akin to
antigravity, responsible for the Universe’s accelerated expansion. The Wilkin-
son Microwave Anisotropy Probe (WMAP) satellite experiment indicates that
73% of the Universe’s composition is DE, 23% is non-baryonic dark matter,
and the remaining 4% consists of ordinary baryonic matter and radiation. To
comprehend DE, numerous dynamical models have been created, defined by
the equation of state (EoS) parameter ω. The holographic DE (HDE) model,
grounded on the holographic principle of quantum gravity (Susskind 1995),
posits that the degrees of freedom in a confined system are finite and correlate
with its boundary area rather than its volume. Cohen et al. (1999) determined
that in a system characterized by an infrared cutoff scale L and an ultraviolet
cutoff scale λRas, the quantum vacuum energy must not exceed the mass of a
black hole, expressed as L3ρde ⪅ LM2

p , where ρde denotes the vacuum energy

density and Mp = (8πG)−1/2 represents the reduced Planck mass. Various
entropy formalisms have been employed to develop and examine cosmological
models. Recent HDE models comprise Tsallis HDE (THDE), Sharma-Mittal
HDE (SMHDE), and Renyi HDE (RHDE) (Tavayef et al. 2018; Tsallis and
Cirto 2013; Jahromi et al. 2018; Moradpour et al. 2018). Kaniadakis statis-
tics, a generalized entropy measure (Kaniadakis 2001; Masi 2005; Abreu et al.
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2018), have been utilized to investigate diverse gravitational and cosmologi-
cal ramifications. The generalized δ-entropy (Kaniadakis), which signifies the
entropy of a black hole, can be ascertained utilizing a solitary free parameter
(Moradpour et al. 2020)

Sδ =
1

δ
sinh(δSBH), (1)

where δ is an unknown parameter. The RHDE model, which assumes no inter-
action between cosmic sectors, shows greater stability (Moradpour et al. 2018).
Discussions of SMHDE, THDE, and RHDE cosmological models in various
contexts include Chern-Simons theory of gravity and the DGP braneworld
(Younas et al. 2019, Maity and Debnath 2019, Iqbal and Jawad 2019). Ob-
servational constraints on RHDE and THDE models have been investigated
by Prasanthi and Aditya (2021), Prasanthi and Aditya (2020), Aditya et
al. (2019a), and Bhattacharjee (2020). Sharma and Dubey (2022) examined
RHDE in a flat isotropic universe. The RHDE model with the particle and
future horizons as the IR cutoff has been studied by Chunlen and Rangdee
(2021). Santhi and Chinnappalanaidu (2022) investigated RHDE in Ruban’s
universe. Aditya and Prasanthi (2023), Aditya (2024) and Aditya et al. (2024)
have studied SMHDE and RHDE models in modified theories of gravitation.
Thus, by incorporating the concept of entropy and the notion of HDE, a novel
model of DE called Kaniadakis HDE (KHDE) is proposed (Moradpour et
al. 2020), which exhibits significant characteristics. Jawad and Sultan (2021),
Sharma (2022) and Drepanou et al. (2022) have examined KHDE models
within various gravitational theories. The dynamic structures of HDE, in-
vestigated by Sadeghi et al. (2022), have been analyzed within the context of
Brans-Dicke’s theory of gravity using the Tsallis and Kaniadakis approaches.
Rao et al. (2024) have studied the anisotropic KHDE model in general rela-
tivity.

Another approach to understanding the Universe’s accelerated expansion
is modifying Einstein-Hilbert’s action of general relativity (GR), leading to
modified gravity theories. Among these, the study of Brans-Dicke (BD) (1961),
Saez-Ballester (1986), f(R) and f(R, T ) theories (Nojiri and Odintsov 2003;
Capozziello and De Laurentis 2011; Harko et al. 2011) (where R is the curva-
ture scalar and T is the trace of the energy-momentum tensor), and Brans-
Dicke-Rastall (BDR) theory (Carames et al. 2014) are significant for explaining
DE models.
Rastall Theory: Since the inception of GR, various geometric theories have
been developed to explain gravitational phenomena (Brans and Dicke 1961;
Rastall (1972, 1976); Moffat 1995; Bekenstein 2004). The conservation law is
a critical aspect of GR. The pioneer non-conservative theory of gravity is the
steady-state model (Bondi and Gold 1948; Hoyle 1948). In his non-conservative
gravity theory, Rastall modified the conservation law T ij

;i = kR;j , where T is
the energy-momentum tensor and R is the Ricci scalar curvature. This change
shows that particle production in cosmology violates conventional conservation
rules and may cause curvature. Rastall’s Einstein equation modification is:

Rij −
1

2
gijR = 8πG

(
Tij −

λRas − 1

2
gijT

)
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T ij
;i =

λRas − 1

2
T ;j

where λRas is Rastall’s parameter, and setting λRas = 1 recovers GR.
Brans-Dicke-Rastall Theory: In the BD context, identifying G = 1

ϕ , we

have:

T ij
;i =

(1− λRas)ϕ

16π
R,j .

Generalizing Rastall’s field equations to the BD case:

Rij −
λRas

2
gijR =

8π

ϕ
Tij +

w

ϕ2

(
ϕ;iϕ;j −

1

2
gijϕ;kϕ

;k

)
+

1

ϕ
(ϕ;i;j − gij□ϕ)

in which the dimensionless BD parameter is denoted by w and the BD
scalar field is denoted by ϕ. With these equations, we can find the trace:

R =
1

1− 2λRas

(
8π

ϕ
T − w

ϕ2
ϕ;kϕ

;k − 3
□ϕ

ϕ

)
.

Using this, the field equations become:

Rij −
1

2
gijR =

8π

ϕ

(
Tij −

1− λRas

2(1− 2λRas)
gijT

)
+

w

ϕ2

(
ϕ;iϕ;j +

λRas

2(1− 2λRas)
gijϕ;kϕ

;k

)
+
1

ϕ

(
ϕ;i;j +

1 + λRas

2(1− 2λRas)
gij□ϕ

)
. (2)

The Bianchi identities lead to:

□ϕ =
8πλRas

3λRas − 2(1− 2λRas)w
T − w(1− λRas)

3λRas − 2(1− 2λRas)w

ϕ;kϕ;k

ϕ
.

For λRas = 1, the usual BD theory is recovered. The Kaluza-Klein modified
holographic Ricci DE models in the BD theory of gravity have been reviewed
by Aditya and Reddy (2018a). In their discussion of FLRW model within the
context of the generalized Rastall theory of gravity, Das et al. (2018) utilized
a perfect fluid as the matter source. Static self-gravitating systems are studied
by Maurya and Ortiz (2020) within the context of Rastall gravity, with the aim
of deducing star interiors. A comparison investigation of Einstein and Rastall’s
theories of gravity has been conducted by Darabi et al. (2018). The observa-
tional limitations on Rastall’s cosmology have been investigated by Tang et al.
(2019). In Rastall’s theory of gravity, the flat FRW HDE model has been ex-
amined by Ghaffari et al. (2020). Anisotropic DE models in BDR theory have
been researched by Salako and Jawad (2015), and FLRW metric has been
examined by Salako et al. (2016). The static spherically symmetric model in
Rastall gravity has been studied by Moradpour (2016), whereas the flat FRW
model has been studied by Moradpour and Salako (2016). Researchers Bamba
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et al. (2018) have examined Rastall gravity’s thermodynamics under entropy
adjustments. In Rastall gravity, Darabi et al. (2018) have addressed the topic
of Einstein’s static solution stability. In their work, Shabani and Ziaie (2020)
established a relationship between Rastall-type and f(R, T ) gravities. The
Rastall gravity extension of the conventional λRasCDM model has been thor-
oughly examined by Akarsu et al. (2020). The authors Lin and Qian (2020)
put forward a model of cosmic evolution within the framework of generalized
Rastall gravity. Within the framework of Rastall’s theory of gravity, Shamir et
al. (2021) have investigated a number of solutions that are exactly cylindrically
symmetric.

In order to comprehend the behavior of the Universe on a grand scale,
spatio-homogeneous and anisotropic cosmological models are necessary. Ex-
tensive research has been conducted using GR to study these models in order
to obtain an accurate picture of the early Universe. Physicists are highly in-
terested in models such as BTs II, III, V, VI0, VIII, and IX that describe
anisotropic space-times, even though the Bianchi type (BT)-I Universe is the
main contender for studying how anisotropy in the early Universe impacted
present-day observations. A number of writers have investigated BT cosmolog-
ical models within revised theories of gravity (Pradhan and Amirhashchi 2011;
Adhav et al. 2011; Rao et al. 2015; Mishra and Sahoo 2014). The BT-II metric
is significant in cosmology and theoretical physics due to its ability to describe
a specific class of anisotropic, homogeneous models of the universe. Unlike
the standard FLRW metric, which assumes a perfectly isotropic and homoge-
neous universe, the BT-II metric allows for directional dependence, meaning
that different directions in space can expand or contract at different rates.
This makes it suitable for modeling the early universe, where perfect isotropy
might not hold. BT-II models, being anisotropic, offer a natural framework
for investigating such early-universe conditions and studying how the universe
might have transitioned to its current, mostly isotropic state. The BT-II met-
ric plays a crucial role in exploring the possibilities of an anisotropic early
universe, testing modified gravity theories, and addressing open questions in
cosmology. The BT-II metric, when studied in the context of KHDE within
the BDR theory of gravity, holds importance for several reasons related to
cosmological modeling and understanding the evolution of the universe.

From the above discussion, it is evident that several researchers have ex-
amined anisotropic KHDE models of the universe. However, BT-II KHDE
models within the context of BDR theory of gravity have not yet been stud-
ied in the literature. Motivated by this gap and the previous investigations,
we examine the BT-II space-time filled with anisotropic KHDE in the BDR
theory of gravity. This paper is organized as follows: In Section 2, we find the
solutions to the field equations that reflect the KHDE model. In Section 3, we
will go over the model’s physical features. Section 4 presents an overview of
the results and conclusions.

2 Metric and field equations

We consider the BT-II space-time in the form

ds2 = −dt2 +R2dx2 + S2dy2 + 2S2xdydz + (S2x2 +R2)dz2 (3)
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where the parameters R and S are just functions of cosmic time t. The volume
V of the BT-II space-time and the average scale factor a(t) are defined as

V = [a(t)]3 = R2S (4)

The deceleration parameter q is given by

q = −1− Ḣ

H2
. (5)

In this case, a dot above the line represents differentiation relative to cosmic
time t. The source’s energy-momentum tensor Tij , which is anisotropic along
several spatial directions, takes the following form:

Tij = diag[−px,−py,−pz, ρ]

= diag[−ωx,−ωy,−ωz, 1]ρ (6)

where the entire energy density and pressure in different directions of the
Universe are represented by ρ and pi, respectively. Here, the EoS parameters
for each direction are denoted by ωi and the relation between the energy
density and the pressure of the universe is pi = ωiρ. The symbols i = x, y, z
represent the coordinates x, y, and z, correspondingly. Since matter has a
pressure of zero and DE has a pressure that varies in all directions, we will
assume in this article that DE and matter make up the Universe. This leads
us to the following expression for the energy-momentum tensor:

Tm
ij = diag[0, 0, 0, 1]ρm

T de
ij = diag[−ωde,−(ωde + γ),−ωde, 1]ρde (7)

which are the energy-momentum tensors of matter (Tm
ij ) and DE (T de

ij ). So
that things are easier to understand, let us assume that ωx = ωy = ωz = ωde
and that the skewness parameter γ is the y-direction divergence from the EoS
parameter ωde. The energy densities of matter are denoted as ρm and DE as
ρde in this equation.

The BDR field equations (2) for the metric (3) in a comoving coordinate
system can be formally expressed using (7) as

S̈

S
+

R̈

R
+

ṘṠ

RS
+

1

4

S2

R4
=

8π

ϕ

(
1 + λRas

2− 4λRas
ωdeρde +

1− λRas

2− 4λRas
γρde −

1− λRas

2− 4λRas
(ρm + ρde)

)
+w

(
ϕ̇

ϕ

)2(
λRas

2− 4λRas

)
+

(
2− λRas

1− 2λRas

)
Ṙ

R

ϕ̇

ϕ

+

(
1 + λRas

2− 4λRas

)
Ṡ

S

ϕ̇

ϕ
+

(
1 + λRas

2− 4λRas

)
ϕ̈

ϕ
(8)

2
R̈

R
+

(
Ṙ

R

)2

− 3

4

S2

R4
=

8π

ϕ

(
1 + λRas

2− 4λRas
ωdeρde +

3λRas − 1

2− 4λRas
γρde −

1− λRas

2− 4λRas
(ρm + ρde)

)
+w

(
ϕ̇

ϕ

)2(
λRas

2− 4λRas

)
+

(
1 + λRas

1− 2λRas

)
Ṙ

R

ϕ̇

ϕ

+

(
3− 3λRas

2− 4λRas

)
Ṡ

S

ϕ̇

ϕ
+

(
1 + λRas

2− 4λRas

)
ϕ̈

ϕ
(9)
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2
Ṙ

R

Ṡ

S
+

(
Ṙ

R

)2

− 1

4

S2

R4
=

8π

ϕ

(
1− 3λRas

2− 4λRas
(ρm + ρde) +

3− 3λRas

2− 4λRas
ωdeρde +

1− λRas

2− 4λRas
γρde

)
+w

(
ϕ̇

ϕ

)2(
2− 3λRas

2− 4λRas

)
+

(
1 + λRas

1− 2λRas

)
Ṙ

R

ϕ̇

ϕ

+

(
1 + λRas

2− 4λRas

)
Ṡ

S

ϕ̇

ϕ
+

(
3− 3λRas

2− 4λRas

)
ϕ̈

ϕ
(10)

ϕ̈+

(
2Ṙ

R
+

Ṡ

S

)
ϕ̇ =

(
8πλRas(ρde + ρm − 3ωdeρde − γρde)

3λRas − 2(1− 2λRas)w

)
−
(

w(1− λRas)

3λRas − 2(1− 2λRas)w

)(
ϕ̇2

ϕ

)
. (11)

The field equations, as shown in Eqs. (8) to (11), are a set of four separate
equations with a total of six unknowns, including R, S, ρde, ωde, ρm, and γ. We
have to solve them if we want a deterministic answer. Assuming the following
physically reasonable condition can help with this:

– The model’s expansion scalar θ = 2Ṙ
R + Ṡ

S is directly related to the shear

scalar σ2 = 1
3

(
Ṙ
R − Ṡ

S

)2
of the model, creating a relationship between the

metric potentials as R = Sn, where n ̸= 1 is an arbitrary constant. Thorne
(1967) gives a detailed account of this connection and the importance of it.
Evidence from observations points to the fact that the universe’s Hubble
expansion is currently isotropic within around ±30% Kristian and Sachs
(1966), Kantowski and Sachs (1966), and observations at redshift limit this
range to σ

H ≤ 0.3. The normal congruence, where σ
H remains constant, is

derived from the work of Collins et al. (1980) and holds for a spatially
homogeneous space-time.

– The following power-law relationship is often used in literature: ϕ ∝ [a(t)]k,
where k is a power index, and it is used to describe the relationship between
the scalar field ϕ and the average scale factor a(t) (Johri and Sudharsan
1989 ; Johri and Desikan 1994 ). Researchers (Santhi et al. 2016a; Santhi et
al. 2017a; Aditya et al. 2020; Aditya et al. 2019b) explored different aspects
of this scalar field ϕ. We simplify the mathematical complexity of the
system by making the following assumption, given the physical significance
of this relationship:

ϕ(t) = ϕ0[a(t)]
k (12)

where ϕ0 is a proportionality constant.

Using the above relations in Eqs. (9) and (10), we get

S̈

S
+

(
6n+ 2kn+ k

3

)
Ṡ

S
=

1

n− 1

S3−4n

Ṡ
− 1

n− 1

8πγ

ϕ

S

Ṡ
ρde. (13)

The relationship between DE’s energy density and the skewness or deviation
parameter has been the subject of numerous recent investigations. Anisotropic
DE models were investigated by Akarsu and Kilinc (2010), who took into
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account a correlation between DE energy density and skewness factors. In a
similar vein, Sharif and Zubair (2010) examined dynamical anisotropic DE
models using the identical relation. We presuppose the following relationship
between γ(t) and ρde in order to completely resolve Eq. (13)

γ(t) =
ϕ

8πρde

[
S2−4n − (n− 1)γ0

Ṡ

S

]
(14)

in which every given constant is represented by γ0. Various authors have ex-
plored comparable relationships in the literature (Adhav 2011; Santhi et al.
2016b). One example is the use of the same relation to assess anisotropic DE
models by Santhi et al. (2017b) and Aditya and Reddy (2018b). We can find
our model’s metric potentials by plugging the Eq. (14) into Eq. (13)

S =
(
k1e

γ0t + k2
) b2

k2 , R =
(
k1e

γ0t + k2
)nb2

k2 (15)

where k1 = (2n+1)(k+3)
3

b1
γ0

, k2 = (2n+1)(k+3)b2
3 , b1 and b2 are integrating con-

stants. Now using these metric potentials (15), we can rewrite the space-time
as

ds2 = −dt2 +
(
k1e

γ0t + k2
) 2nb2

k2 dx2 +
(
k1e

γ0t + k2
) 2b2

k2 dy2

+2
(
k1e

γ0t + k2
) 2b2

k2 xdydz

+

((
k1e

γ0t + k2
) 2b2

k2 x2 +
(
k1e

γ0t + k2
) 2nb2

k2

)
dz2. (16)

Now from Eq. (12), the scalar field ϕ calculated as

ϕ = ϕ0

(
k1e

γ0t + k2
) b2k(2n+1)

3k2 . (17)

The mean Hubble parameter H can be obtained as

H =
(2n+ 1)b2k1γ0e

γ0t

3k2 (k1eγ0t + k2)
(18)

KHDE: According to the HDE, if the present accelerated expansion of the
Universe is caused by DE, then, according to the Kaniadakis black hole entropy
shown in Eq. (1), the energy of a vacuum within a box of size L3 shouldn’t be
higher than that of a black hole of the same size. As a result, this expression
is

λ4
Ras ≡ ρDE ∝ Sδ

L4
(19)

as ρDE , the vacuum energy. Since the infrared cutoff is defined by the Hubble
horizon of the universe, we can deduce that A = 4π

H2 ,

ρDE =
3d2H4

δ
sinh

(
πδ

H2

)
(20)
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The value of the constant d2 is not known in the given statement, δ belongs to
the set of real numbers, and the Hubble parameter is represented by H = ȧ

a .

The convergence of ρkde to 3d2H4

δ is obvious as k → 0, and this corresponds
to the well-established Bekenstein entropy-based HDE. A DE candidate with
a pressure pkde and a density ρkde is being considered in this scenario, along
with a pressure-less fluid with an energy density ρm. Eq. (20), with the help
of equations (15) and (17), yields the KHDE energy density as

ρde =
c2 (2n+ 1)4 b2

4k1
4γ0

4
(
eγ0t
)4

27k2
4 (k1eγ0t + k2)

4 κ
sinh

(
9π κ k2

2
(
k1e

γ0t + k2
)2

(2n+ 1)2 b2
2k1

2γ02 (eγ0t)
2

)
.(21)

The BT-II universe with KHDE inside the framework of BDR theory of
gravity is shown by Eq. (16), the scalar field (17), and the energy density (21).
The energy density of matter is calculated as

ρm =

(
3 − 3λRas

2 − 4λRas

(
ϕ0

8π

(
k1e

γ0t
+ k2

) b2k(2n+1)
3k2

(
b2

2k1
2γ0

2
(
eγ0t

)2
+ k2

2b2k1γ0
2eγ0t

k2
2
(
k1e

γ0t + k2
)2

+
n2b2

2k1
2γ0

2
(
eγ0t

)2
+ k2

2nb2k1γ0
2eγ0t

k2
2
(
k1e

γ0t + k2
)2 +

nb2
2k1

2γ0
2
(
eγ0t

)2
k2

2
(
k1e

γ0t + k2
)2

+
1

4

((
k1e

γ0t
+ k2

) b2
k2

)2 ((
k1e

γ0t
+ k2

)nb2
k2

)−4

−
wb2

2k2 (2n + 1)2 k1
2γ0

2
(
eγ0t

)2
λRas

9k2
2
(
k1e

γ0t + k2
)2 (2 − 4λRas)

−
(2 − λRas)nb2

2k1
2γ0

2
(
eγ0t

)2
k (2n + 1)

3 (1 − 2λRas) k2
2
(
k1e

γ0t + k2
)2 −

(1 + λRas) b2
2k1

2γ0
2
(
eγ0t

)2
k (2n + 1)

3k2
2
(
k1e

γ0t + k2
)2 (2 − 4λRas)

−
(1 + λRas)

(
b2

2k2 (2n + 1)2 k1
2γ0

2
(
eγ0t

)2
+ 3 k2

2b2k (2n + 1) k1γ0
2eγ0t

)
9k2

2
(
k1e

γ0t + k2
)2 (2 − 4λRas)

)

+
(λRas − 1)ϕ0

8 (2 − 4λRas)π

(
k1e

γ0t
+ k2

) b2k(2n+1)
3k2

(((
k1e

γ0t
+ k2

) b2
k2

)2−4n

−
(n − 1) γ0

2b2k1e
γ0t

k2
(
k1e

γ0t + k2
) ))

−
1 + λRas

2 − 4λRas

(
ϕ0

8π

(
k1e

γ0t
+ k2

) b2k(2n+1)
3k2

(
2nb2

2k1
2γ0

2
(
eγ0t

)2
k2

2
(
k1e

γ0t + k2
)2 +

n2b2
2k1

2γ0
2
(
eγ0t

)2
k2

2
(
k1e

γ0t + k2
)2

−
1

4

((
k1e

γ0t
+ k2

) b2
k2

)2 ((
k1e

γ0t
+ k2

)nb2
k2

)−4

−
wb2

2k2 (2n + 1)2 k1
2γ0

2
(
eγ0t

)2
(2 − 3λRas)

9k2
2
(
k1e

γ0t + k2
)2 (2 − 4λRas)

−
(1 + λRas)nb2

2k1
2γ0

2
(
eγ0t

)2
k (2n + 1)

3 (1 − 2λRas) k2
2
(
k1e

γ0t + k2
)2 −

(1 + λRas) b2
2k1

2γ0
2
(
eγ0t

)2
k (2n + 1)

3k2
2
(
k1e

γ0t + k2
)2 (2 − 4λRas)

−
(3 − 3λRas)

(
b2

2k2 (2n + 1)2 k1
2γ0

2
(
eγ0t

)2
+ 3 k2

2b2k (2n + 1) k1γ0
2eγ0t

)
9k2

2
(
k1e

γ0t + k2
)2 (2 − 4λRas)

)

+
(λRas − 1)ϕ0

8 (2 − 4λRas)π

(
k1e

γ0t
+ k2

) b2k(2n+1)
3k2

(((
k1e

γ0t
+ k2

) b2
k2

)2−4n

−
(n − 1) γ0

2b2k1e
γ0t

k2
(
k1e

γ0t + k2
) )))

×
(
−

(1 + λRas) (1 − 3λRas)

(2 − 4λRas)
2

+
(λRas − 1) (3 − 3λRas)

(2 − 4λRas)
2

)−1

−
c2 (2n + 1)4 b2

4k1
4γ0

4
(
eγ0t

)4
27k2

4
(
k1e

γ0t + k2
)4 κ

sinh

(
9

π κ k2
2
(
k1e

γ0t + k2

)2
(2n + 1)2 b22k1

2γ0
2
(
eγ0t

)2
)
.



Kaniadakis holographic dark energy model in Brans-Dicke-Rastall gravity

3 Cosmological parameters and discussion

Here we define some physical and geometrical factors that will be useful for
studying the dynamics of our KHDE model within the context of BDR theory
of gravity.

Scalar field Figure 1 illustrates the evolution of a scalar field with respect
to cosmic time for different values of the parameter γ0, which significantly
influences its behavior over time. It is evident from the plot that the scalar
field decreases as cosmic time progresses. Additionally, we observe that the
scalar field’s decrease is accompanied by an increase in its kinetic energy. This
trend closely resembles the behavior observed in scalar field models of DE
developed in existing literature (Jawad et al. 2015; Naidu et al. 2021; Aditya
et al. 2021).
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Fig. 1. Plot of scalar field versus cosmic time t for k = −0.021, n = 0.97, b1 = 4.1, b2 = −1.12
and ϕ0 = 1.021.

Energy Conditions We explore well-known energy conditions in our KHDE
model. The Raychaudhuri equations, which are fundamental to any discussion
of the consistency of null and time-like geodesics, are the starting point for the
investigation of energy conditions. A number of broad theorems on the behav-
ior of strong gravitational fields can be proven using these energy requirements
as basic instruments. The following are the typical energy conditions:

– Null energy conditions (NEC) : ρde + pde ≥ 0,
– Strong energy conditions (SEC) : ρde + pde ≥ 0, ρde + 3pde ≥ 0,
– Weak energy conditions (WEC) : ρde ≥ 0, ρde + pde ≥ 0,
– Dominant energy condition (DEC) : ρde ≥ 0, ρde ± pde ≥ 0.
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According to the NEC, the universe’s energy density decreases with ex-
pansion, and the Big Rip phenomenon could happen if the NEC is violated.
Conversely, the acceleration of cosmic expansion is signified by the SEC vio-
lation. The proof of the SEC and WEC is required by the Hawking-Penrose
singularity theorems. Because violating the WEC or NEC might cause the vi-
olation of other energy conditions, they are of particular relevance among all
energy conditions. Our KHDE model’s energy conditions are shown in Figure
2. With ρde ≥ 0, it is clear from the plot that the WEC is satisfied. But the
SEC condition ρde+3pde ≥ 0 is not satisfied. The present observable evidence
is in agreement with the theory that this violation is due to the universe’s
accelerated expansion in its latter phases.

EoS Parameter The relationship between a fluid’s pressure p and energy
density ρ is described by the EoS parameter ω, which is defined as p

ρ . Various

ω values represent different phases of the universe’s expansion, from the early,
slowing phases to the current, fast-growing ones.
For instance, during the early phases:
- Stiff fluid corresponds to ω = 1,
- Radiation domination is characterized by ω = 1

3 ,
- Matter domination (dust) is represented by ω = 0,

In later stages, during the accelerating expansion:
- Quintessence is indicated by −1 < ω < −1/3,
- A cosmological constant corresponds to ω = −1,
- Phantom energy is represented by ω < −1.
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From Eqs. (8), (9), (15), (17) and (21), we get the EoS parameter of our
model as
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−1

We can see how the EoS parameter for our KHDE model changes with
different c values in Fig. 2. At first, the model starts in the quintessence epoch
and moves on to the phantom epoch when it crosses the phantom dividing line
(ωde = −1). Because of this quality, the universe acts in a quintom fashion.
Higher phantom values are also the tendency of the model when parameter c
decreases. Furthermore, according to recent Planck data, the present values
of EoS parameter in our model agree with the data (Aghanim et al. 2020).

ωde − ω′
de plane Researching the dynamical characteristics of DE models

can be greatly facilitated by the ωde − ω′
de plane analysis. Under these cir-

cumstances, prime (′) means differentiation with regard to ln a, where a is the
universe’s scale factor. This approach, which was first suggested by Caldwell
and Linder (2005), makes it easier to divide the ωde−ω′

de plane into parts where
it is thawing and regions where it is freezing. In thawing regions, ωde < 0 and
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Fig. 3. Plot of EoS parameter versus cosmic time t for γ0 = 0.54, k = −0.021, n = 0.97,
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ω′
de > 0 stand for the DE component, which is changing towards less negative

values as the universe expands. On the other hand, freezing regions are indi-
cated by ωde < 0 and ω′

de < 0, which implies that the DE stays around the
same or gets more negative as time goes on, even if the universe is expanding.
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Fig. 4. Plot of ωde − ω′
de plane for γ0 = 0.54, k = −0.021, n = 0.97, b1 = 4.1, b2 = −1.12,

λRas = 70.28, ϕ0 = 1.021, w = 252 and κ = 0.019.

We obtained the ω′
de of our model by differentiating Eq. (22) with respect

to ln(a(t)). Fig. 4 illustrates the ωde−ω′
de plane behavior for our KHDE model
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across different values of parameter c. Initially, our model starts from the freez-
ing region and transitions into the thawing region at the present epoch. How-
ever, it predominantly resides in the freezing region throughout its evolution.
Modern cosmological observations suggest that the freezing region corresponds
to a higher cosmic acceleration era compared to the thawing region. Therefore,
our model’s preference for the freezing region aligns well with observational
evidence, indicating cosmic acceleration. Additionally, the present values of
ω′
de from our model are consistent with contemporary Planck data (Ade et al.

2014 and Hinshaw 2018).

Stability analysis An essential quantity to evaluate in order to determine
the KHDE model’s stability is the squared speed of sound, abbreviated as v2s :

v2s =
ṗde
ρ̇de

=ωde +
ρde
ρ̇de

ω̇de. (22)

Figure 5 shows the relationship between cosmic time (t) and v2s for different
values of c. The positive value of v2s at the initial epoch and its continued neg-
ative value at present and late times may be seen clearly in Fig. 5. Therefore,
our model is stable at the beginning of time but becomes unstable as time
progresses. It is worth noting that similar findings of instability have been re-
ported by several authors in the literature when studying stability analysis of
DE models in various gravitational theories. Myung (2007) studied difference
between HDE, Chaplygin gas, and tachyon model with constant potential.
For this purpose, they examined squared speeds of sound and found that the
squared speed for HDE is always negative and hence HDE is classically unsta-
ble. Similarly, Jawad et al. (2015) and Jawad and Chattopadhyay (2015) have
discussed stability analysis of HDE models and found the unstable behavior
of HDE models in their study.

Deceleration parameter The model’s expansion is characterized by acceler-
ating or decelerating depending on the deceleration parameter q. In particular,
q > 0 denotes slowing down, q = 0 means keeping the expansion constant, and
−1 < q < 0 means speeding up the growth. A super-exponential expansion is
indicated by q < −1 while de Sitter (exponential) expansion is suggested by
q = −1. Here is the formula for our model’s deceleration parameter:

q = −1− 3k2
2

(2n+ 1) b2k1eγ0t
. (23)

The deceleration parameter’s evolution relative to cosmic time for different
values of γ0 is shown in Fig. 6. It is worth mentioning that our model follows the
observable universe’s behavior as it smoothly moves from an early decelerated
phase to its present accelerated phase.

Statefinder parameters The accelerated expansion of the cosmos has been
explained by numerous DE theories in recent years. However, these models
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often provide Hubble and deceleration parameters with identical present val-
ues, making differentiation difficult. To overcome this issue, Sahni et al. (2003)
suggested combining deceleration and Hubble parameters, written as

r=

...
a

aH3
, s=

r − 1

3(q − 1
2)
. (24)

The regions shown below are defined by these statefinders: λRasCDM for
(r, s) = (1, 0) and CDM model for (r, s) = (1, 1); r< 1 gives quintessence and
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s> 0 gives phantom DE phases; r> 1 with s< 0 establishes the Chaplygin gas
model. The statefinder parameter for our models are
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Fig. 7. Plot of statefinders for k = −0.021, n = 0.97, b1 = 4.1 and b2 = −1.12.

Fig. 7 illustrates the trajectory of our model in the r − s plane. Notably,
the behavior of r− s plane closely resembles the λRasCDM model during late
times. This observation suggests that our model exhibits characteristics akin
to those of dynamical DE models, such as the Chaplygin gas model (s < 0
and r > 1).

r−q plane Fig. 8 shows the evolution of our model in the r−q plane. Here,
(r, q) variables reflect several cosmological models: (1,−1) is the steady state
(SS) model, while (1, 0.5) is the standard cold dark matter (SCDM) model.
The trajectory of the λRasCDM model follows the dotted line in Fig. 8, going
from a fixed point in SCDM to a fixed position in SS. Note that our late-
time model closely resembles the SS model. This trajectory in the r− q plane
matches DE models from the literature (Aditya et al. 2022; Singh and Kumar
2016; Naidu et al. 2018).



Y. Aditya, et al.

r

0.5 1 1.5 2 2.5 3 3.5 4 4.5

q

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

γ
0
=0.46

γ
0
=0.54

γ
0
=0.62

(r,q)=(1,-1) Steady State Model

(r,q)=(1,0.5) SCDM Model

Λ CDM Model

Fig. 8. Plot of the r − q plane for k = −0.021, n = 0.97, b1 = 4.1 and b2 = −1.12.

4 Conclusions

In this study, we constructed a spatially homogeneous and anisotropic BT-
II KHDE model within the framework of BDR theory of gravitation. By
imposing physically and mathematically reasonable conditions, we derived an
exact solution to the nonlinear field equations. Subsequently, we investigated
various cosmological parameters to understand the behavior of our model. Our
analysis led to several important conclusions:

– Our model exhibits exponential expansion throughout its evolution, with
early inflation due to its extension from a finite volume. At infinite cos-
mic time, all physical quantities remain finite, while they tend towards
infinity as cosmic time approaches zero. Additionally, the model remains
homogeneous and uniform, eventually becoming isotropic and shear-free.

– The evolution of the scalar field in our KHDE model, as depicted in Fig.
1, reveals a gradual decrease over time. This declining trend mirrors the
behavior observed in scalar field models of DE discussed in prior literature
(Jawad et al. 2015; Naidu et al. 2020; Naidu et al. 2021; Aditya et al. 2021).
As the scalar field decreases, there is a corresponding increase in kinetic
energy, a characteristic feature common in such models. Additionally, the
energy density of DE decreases as cosmic time t progresses. This dimin-
ishing energy density aligns with the dynamics expected in DE scenarios.
However, a notable aspect of our model is the violation of the NEC, as il-
lustrated in Fig. 2. This violation causes the Big Rip, where the universe’s
energy density drops with expansion, which could lead to a catastrophic
event in the future. This violation supports existing observational data that
the cosmos is accelerating late in time.Thus, our model demonstrates early
inflation and late-time acceleration, underlining its fascinating dynamics
in DE cosmology.

– The EoS parameter ωde characterizes the behavior of DE in our model,
showcasing a variation across quintessence and phantom regions, as de-
picted in Fig. 3. Moreover, the present values of the EoS parameter in our



Kaniadakis holographic dark energy model in Brans-Dicke-Rastall gravity

model are in accordance with recent observations from the Planck mission,
as reported by Aghanim et al. (2020) ωde=−1.56+0.60

−0.48 (Planck+TT+lowE),

ωde=−1.58+0.52
−0.41 (Planck+TT,TE,EE+lowE), ωde=−1.57+0.50

−0.40 (Planck+
TT,TE,EE + lowE + lensing),
ωde=− 1.04+0.10

−0.10 (Planck + TT,TE,EE + lowE + lensing + BAO).

– In the ωDE − ω
′
DE plane analysis, our model demonstrates behavior con-

sistent with the freezing region (Fig. 4), where the universe experiences
notably rapid expansion. This alignment with observational evidence un-
derscores the validity of our model’s predictions regarding cosmic dynam-
ics. Furthermore, the trajectories of the ωde − ω′

de plane intersect with
observational data, as reported by various studies (Ade et al. 2014; Hin-

shaw et al. 2018). Specifically, the values of ωde and ω
′
de obtained from

our model fall within the ranges provided by observations from the Planck
mission, ωde = −1.13+0.24

−0.25, ω′
de < 1.32 (Planck + WP+ BAO);

ωde = −1.34± 0.18, ω′
de = 0.85± 0.7 (WMAP+eCAMB+BAO+H0). This

agreement reinforces the credibility of our model’s predictions and its con-
sistency with empirical data. It is important to note that the stability anal-
ysis reveals that our KHDE model exhibits stability at initial epoch and
instability at present and late-times (Fig. 5). This finding is in line with
similar conclusions drawn by other researchers in the literature (Myung
2007; Jawad et al. 2013; Jawad and Chattopadhyay 2015), further empha-
sizing the need for additional theoretical refinement and investigation in
the study of DE models.

– The smooth passage of the deceleration parameter in our model, as demon-
strated in Fig. 6, indicates its capacity to precisely represent the uni-
verse’s evolution from an initial decelerated phase to its present accel-
erated expansion. This concordance with observational evidence enhances
the validity of our model in explaining cosmic dynamics. Furthermore,
the agreement between the current values of the deceleration parameter
q obtained from our model and those derived from observational data
q = −0.930 ± 0.218 (BAO + Masers + TDSL + Pantheon + Hz), q =
−1.2037 ± 0.175 (BAO + Masers + TDSL + Pantheon + H0 + Hz), as
reported by Capozziello et al. (2019), underscores the consistency and re-
liability of our model’s predictions.

– In the last phases of cosmic history, our model follows the same behavior
as the Chaplygin gas model, according to the statefinders analysis shown
in Fig. 6. Also, our model seems to be moving towards a steady-state
situation in the future, according to the r − q plane trajectory. Notably,
this trajectory bears resemblance to those observed in other DE models
proposed by various researchers (Aditya et al. 2022; Singh and Kumar
2016; Naidu et al. 2018). This consistency with established DE models
underscores the validity and relevance of our model’s predictions within
the broader context of cosmological studies.

Our model agrees well with the recent scenario of the Universe expanding at
an accelerated rate, as shown by the data from recent observations. With our
model, we can learn more about the anisotropic DE Universe in the context
of BDR theory of gravity.
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