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Abstract. The paper shows that the inclined rotations of all triaxial elongated bodies lead
to their π-tumbling around the axis with a minimum moment of inertia. The object (1620)
Geographos, being the most elongated body in the Solar System, demonstrates a unique set
of spin states due to its unusual shape; using the hodograph of the instantaneous angular
velocity vector on the Poinsot plane, an interpretation of the complex spherical motions of
the object under consideration is given. Based on this, two modes of complex rotations of
the asteroid are identified.
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Introduction

Object (1620) Geographos is a small near-Earth asteroid from the Apollo
group, belonging to the spectral class S. It was discovered on September 14,
1951 by American scientists Rudolf Minkowski and Albert Wilson at the Palo-
mar Observatory. In 1994, at the moment of the closest approach to Earth in
the last two centuries (closer than 5 million km), radar studies of this body
were carried out, during which a series of images were obtained. It turned out
that the asteroid has the most elongated shape among all known bodies in the
Solar System. Radar studies have shown that the light curve of this asteroid
has deep minima and changing periodicity [1,2], which indicates the complex
nature of its rotation. In paper [3], polarimetric and photometric observations
of the object (1620) Geographos were carried out over four nights in Septem-
ber 1994. The observation results are compared with the spectral dependence
of the inversion angle for (4179) Toutatis. After applying synchronous pho-
tometry, a composite light curve of the object 1620 Geographos was obtained.
In paper [4], new photometric observations of the asteroid (1620) Geographos
were carried out in 2000. It is shown that models with a constant period can-
not satisfactorily describe the entire set of data on the light curves. Of great
interest was the angular dynamics of the interstellar space object (1I/2017)
Oumuamua. The data obtained in [5] demonstrate the widest range of vari-
ations in the object’s brightness, which suggests an elongated shape of the
body and the presence of complex revolutions in its motion. In paper [6], pref-
erence is given to the disk model for Oumuamua. In this paper, the tumbles
are explained by the presence of torque due to gas release. In papers [7,8], bi-
nary asteroid systems are studied. Particular attention is paid to resonance in
such systems. The study [9] presents the results of applying the Monte Carlo
method to determine the absolute magnitudes and tilt parameters for 240,000
asteroids observed by the Pan-STARRS1 telescope during the first 15 months
of its three-year all-sky survey mission. Goldstone radar observations of Ge-
ographos from August 28 to September 2, 1994, presented in [10], allowed us to
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determine that the shape of the studied asteroid is extremely elongated. Esti-
mates of the surface volumetric density of the object are presented. In [11], an
improved thermophysical model was used to specify the thermophysical prop-
erties of Geographos. The obtained data are used to make detailed predictions
of the Yarkovsky orbital drift and rotational acceleration (YORP effect), which
are then compared with published measurements to determine the volumetric
density of Geographos. In [12], using archival light curves and new photomet-
ric observations for the asteroids (10115) 1992 SK, (1620) Geographos and
(1685) Toro, the class of asteroids was expanded with respect to the YORP
effect. The values of the constant secular rotation accelerations were found for
all three asteroids considered. In [13], Harris proposed a new thermal model
for estimating the albedo and diameters of near-Earth asteroids (including
Geographos). In [14], a physical model of the asteroid 1620 Geographos was
developed using Goldstone and Doppler delayed radar images obtained in Au-
gust 1994. In [15], the light curves of 16 asteroids, including 1620 Geographos,
were analyzed. The photometric data were obtained at the Hunters Hill Ob-
servatory and at stations collaborating with it. The results of the processing
were used to determine the synodic period and the amplitude of brightness
variations. The authors [16] presented the results of a photometric study of
46 asteroids, one of which was Geographos. The study was conducted at the
Lowell Laboratory for the period from 01.05.2008 to 31.12.2008. Warner [17]
processed the light curves of 36 near-Earth asteroids. The data were obtained
at the Solar System Research Center station from October to December 2015.
Dunlap [18] processed the 1969 data for the asteroid 1620 Geographos. He
noted that there is an unexplained change in the time of the appearance of
minima. He concluded that the rotation is retrograde and determined the tilt
of the rotation axis. Paper [19] presents the results of BVRIZ photometry of
56 near-Earth objects obtained using the 1-meter Jacobus Kapteyn telescope
on La Palma Island in 2000 and 2001. Paper [20] reports that the YORP effect
can spin up or twist asteroids with a radius of 5 km on a time scale of 108

years. This effect explains the rapid rotation of 1566 Icarus and the slow mo-
tion of 4179 Toutatis. The YORP effect is also quite applicable to explain the
slow rotation of 253 Mathilde. In paper [21] the authors report a change in the
rotational velocity of asteroid 1862 Apollo that is best explained by the YORP
mechanism. The change is clearly visible in the photometric light curves. It
amounts to one additional cycle in only 40 years. Paper [22] introduces the
values of angular velocity with time according to a linear law. A total of 94
light curves observed in 1969-2008 were used to optimize the two parameters
in this law. An excellent agreement between the observations and the model
was obtained. This confirms the correct trend of the long-term influence of
weak thermal torques. However, at present, the rotations of Geographos are
not simple and are therefore characterized by several frequencies. In [23], it
is demonstrated that the continuous increase in the rotational velocity of the
near-Earth asteroid (43409) 2000 PH5 can well be attributed to the sunlight-
induced torque (YORP effect). The detected spinning confirms the anomalous
nature of the rotation velocity distribution of asteroids with diameters of 10
kilometers. The YORP effect demonstrates secular variations in the rotation
velocity. This effect is capable of changing the position of the rotation axis
and, as a consequence, leading to a change in the regime of complex rotations.
However, there is a whole set of fundamental spin states determined only by
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the shape of the object. These are the spin states that an elongated body of
a given shape will have if it is spun at a certain angle between its long axis
and the initial axis of rotation. We find these states in this paper. In [24-26],
the coordinate approach to determining the orientation of a body in space
presented in this study is used to analyze the rotations of carbon framework
structures and crystalline grains of iron.

The purpose of this paper is to determine the complete set of fundamental
spin states of the inertial motion of the asteroid (1620) Geographos.

1. Mesh model of the body

If three diameters of a body are known d1 = 5 km; d2 = 2.1 km; d3 = 2 km,
then the geometrical shape can be approximately reconstructed from a flat
image and these three diameters. To do this, one must select the large diameter
of the object and take the coordinates of two half-contours. Let ξ be the
coordinate measured along the large diameter of the flat image, and {ξi} be
a system of points lying on the large diameter; {η1(ξi)} and {η3(ξi)} are the
coordinates taken from the upper and lower half-contours. Let {η2(ξi)} and
{η4(ξi)} be the coordinates of the upper and lower half-contours of the angle
perpendicular to the original. If we do not have an image corresponding to
the second angle, then we proceed as follows: {η2(ξi)} = k{η1(ξi)}; {η4(ξi)} =

k{η3(ξi)}, where k = d3
d2

. The first parameter of the grid surface was the

coordinate ξ. The second parameter will be the angle ϕ (the angle between
the planes passing through the ξ axis). Piecewise linear interpolation between
the distributions of the four semi-contours is performed using the angle ϕ,
which in a form that does not contain superscripts looks like this:

η = η1 +
2ϕ

π
(η2 − η1), 0 ≤ ϕ < π

2

η = η2 +
2(ϕ− π

2 )

π
(η3 − η2),

π

2
≤ ϕ < π

η = η3 +
2(ϕ− π)

π
(η4 − η3), π ≤ ϕ < 3π

2

η = η4 +
2(ϕ− 3π

2 )

π
(η1 − η4),

3π

2
≤ ϕ < 2π

(1)

Absolute coordinates of points on the body surface are calculated using
the following formulas:

xi,j = xii,

yi,j = ηi,j sinϕi,

zi,j = ηi,j cosϕi
(2)

The mesh surface obtained in this way is shown in Fig. 1 (right).
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2. Equations of angular motion

At each moment in time, the velocity of the points of the grid frame rep-
resenting the shape is completely determined by the velocity of the object
ω = (ωx, ωy, ωz):

dr

dt
= ω × ri(i = 1, N). (3)

Here ri=(xi,yi,zi) is the radius vector of a separate point of the body, measured
from its center of mass; N is the number of points constituting the body.
Equations (3) are integrated under the following initial conditions:

t = 0, ri = ri
0(i = 1, N). (4)

During inertial rotation, the vector of the kinetic moment K retains its mag-
nitude and direction in space. Therefore, we can write:

K=Jω=J0ω0 = const. (5)

Here J =

(
A F E
F B D
E D C

)
, is the tensor of inertia of a rotating body,

A =
∑

(y2i + z2i ),B =
∑

(x2i + z2i ),C =
∑

(x2i + y2i )

D = −
∑

miyizi,E = −
∑

mixizi,F = −
∑

mixiyi.
(6)

Vector equation (5) is used to determine ω. This equation is equivalent to a
system of three scalar algebraic equations with the right-hand side determined
by conditions (4), as well as the initial condition:

t=0,ω = ω0. (7)

Fig. 1. Image of the asteroid Geographos (left) and its grid model (right)

The method presented in this section has been used in previous molecular
dynamics studies [24-26] and has proven itself to be successful.
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3. Non-dimensionalization and scheme of numerical solution of
the problem

It is easy to see that the formulation of the problem of inertial rotation (3)-(7)
is invariant with respect to the following transformations of variables:

t′ = ω0t, ω′ =
ω

ω0
,

ri′ =
ri
R
, mi′ =

mi

m
.

(8)

Here ω0 is the value of the initial angular velocity of rotation of the body, R is
the radial scale of the body, m∗ is the characteristic mass of the particles that
make up the body. From this invariance follows immediately the independence
of inertial rotations from the absolute dimensions and total mass of the body
and even with the corresponding compression (expansion) of time from the
value of the initial rotational velocity. Inertial forces, caused by the tensor
nature of the mass distribution in space, do not have a gravitational nature;
therefore, in systems with different gravity, they will be the same. Due to the
universality of the manifestation of these forces, inertial rotations, perceived
as a system of spin states, will be called fundamental rotations of a body of
complex shape.

It turned out that for elongated bodies, the family of spin states is one-
parameter, i.e., it depends only on the angle between the long axis of the
body and the axis of the initial rotation. Hereinafter, this is the angle δ.
Moreover, the complete set of spin states is determined by the interval δ ∈
[0, π/2]. On the intervals adjacent to this one, the same rotational states are
determined by the mirror-symmetrical arrangement of the angle δ with respect
to the preceding interval. In other words, there is no need to consider the
intervals [π/2, π], [π, 3π/2], [3π/2, 2π]. All calculations are performed in the
absolute coordinate system with respect to the angular displacements and in
dimensionless variables (8). The time interval on which the trajectories are
constructed is equal to 100 dimensionless units, which corresponds to one
hundred dimensional periods of 1/ω0. This period is sufficient to consider
all events of the nearest future (the period of rotation of the Geographos is
1/ω0 = 5.2 hours).

4. Numerical integration scheme

The evolution equations (3) are integrated using the classical fourth-order
Runge-Kutta scheme for accuracy. However, when applying it at each time step
and even at each intermediate position within a single step, the algebraic equa-
tions (5) are solved. This solution can be written in the form: ω = J−1(J0ω0).
Here, J−1 denotes the inverse inertia tensor matrix. The synthetic combina-
tion of two standard algorithms produces a synergistic effect on the accuracy
of solving the complete problem. The small integration step of ∆t′ = 10−6

also significantly contributes to maintaining a low error in solving the defined
equations. On the entire calculation interval, the relative errors in calculating
the projections of the kinetic moment and the rotational energy do not exceed
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5 · 10−15 dimensionless units (Fig. 2). This is practically machine accuracy
of calculations, equal to the numerical interpretation of exact solutions. The
calculations reproduced all spin states of the grid shape of the asteroid 1620
Geographos.

Fig. 2. Error in calculating the relative values of the kinetic energy of rotations (left) and
the relative values of the projections of the kinetic values of the projections of the kinetic
moment: (right).

In fig. 2 on the left, the error is calculated as ε = T−T 0

T 0 , and on the right

as K ′x = Kx−K0
x

K0 , K ′y =
Ky−K0

y

K0 , K ′z = Kz−K0
z

K0 . Here Kx, Ky, and Kz are the

projections of the kinetic moment on the axes of the absolute basis, and K0

is the constant value of the modulus of the kinetic moment. The superscript
”0” marks the initial values of the calculated quantities.

5. Results of calculations of inclined rotations of the object

Conducted high-precision calculations have shown that for any inclinations of
the major diameter to the initial axis of rotation, any body with a homoge-
neous density with a shape close to the considered asteroid experiences flips
with respect to the long axis, i.e., it has repeatable, reproducible complex ro-
tations. The methodology for finding a set of spin states of an object consists
of a simple enumeration of its initial positions. We determine these positions
by preliminary rotations of the body by an angle of α (around the X axis)
and γ (around the Z axis). In this case, the basic position of the body is the
position when the trihedron of the main axes of the body coincides with the
trihedron of the absolute basis. Preliminary rotations of the body fix the ini-
tial positions of the coordinates of its centers of mass. We begin calculating
each of the specific examples of motion at ω0 = (0, 1, 0). This means that the
initial rotation is always performed around the Y axis. Therefore, preliminary
rotations of the body around the Y axis (β-rotations) will not matter. If the
vector of dimensionless angular velocity remains the same at subsequent mo-
ments of time, then a simple rotation of the object is realized. If noticeable
values of the first and third components of the angular velocity are generated,
then the spherical motion is complex. It is convenient to consider a complex
spherical motion on the Poinsot plane, perpendicular to the constant vector
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of the angular momentum K. The curves that the end of the vector ω draws
on this plane are herpolhode. They are shown in Fig. 4. Thus, the entire space
of the initial positions of the body will be two-parameter (two defining angles
α and γ). Calculations have established that in the case of elongated bodies,
γ-preliminary rotations generate dominant spin states. This means that in the
case of successive non-commutative αγ-preliminary rotations, everything will
be determined by the resulting angle γ. Consequently, α-preliminary rotations
can be excluded from consideration. Fig. 3 shows the trajectories of one of the
points of the grid body, which has the maximum distance from its center of
mass. These trajectories were obtained for different inclinations of the major
axis of the object to the axis of initial rotation. The curves are located from
left to right and top to bottom in decreasing order of the angle δ (δ = π/2−γ).
The first trajectory (upper left angle δ = 90◦) corresponds to the case of ro-
tation around the intermediate axis of inertia. In this example, over a time
interval of one hundred periods 1/ω0, there are 3 π-reversals around the axis
with the minimum moment of inertia. In the case of δ = 75◦, ten π-reversals
are observed. At δ = 60◦, the number of π-reversals becomes equal to 16. When
δ = 45◦, there are 20 π-reversals. At δ = 30◦, 24 π-reversals are recorded. In
the case of δ = 15◦, there are already 27 such revolutions in the interval of 100
dimensionless time units. Then the number of revolutions does not change,
and at δ = 1◦, this number reaches the maximum value of 28 π-revolutions.

Fig. 3. Trajectories of a single point of the grid model at different angles of inclination of
the long axis to the axis of the initial rotation.

It was mentioned above that during inertial rotation the vector of kinetic
moment remains constant during the entire time of motion. This means that
there is an unchangeable plane perpendicular to this vector. On this plane
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Fig. 4. Herpolhodes of complex rotations for δ from 90◦ to 0◦.

the end of the instantaneous angular velocity vector will describe curved lines
(herpoles) representing complex rotations of a rigid body. This idea was used
by Louis Poinsot in his geometric interpretation of spherical motions. In Fig. 4,
in the same order by decreasing angle δ, the herpoles of Geographos rotations
are presented. At angles δ ∈ [60◦, 90◦], a wide precession ring is fixed, in which
double logarithmic spirals are concentrated, forming complete rotation cycles.
Each complete cycle corresponds to one π-revolution.With a decreasing value
of δ located in the interval δ ∈ [30◦, 45◦], the herpole ring degenerates into a
precession contour. At the same time, the size of the contour begins to increase.
At δ ∈ [15◦, 30◦], the circle has a constant radius. At δ decreasing in the
interval δ ∈ [0◦, 15◦], the size of the precession ring also decreases. Moreover,
they decrease not to zero, but to the values shown in the last fragment of
Fig. 4 (bottom right).

Since the points located on the axis of rotation of the body have no ve-
locity, the herpolhode, which is the trajectory of the motion of the end of the
instantaneous angular velocity vector, will simultaneously be a fixed centroid.
At δ = 0◦ (this is the case of rotation around the long axis), the circular pre-
cession of the small ring remains. This remarkable case is shown separately in
Fig. 5. It is interesting that when rotating around the axis with a minimum
moment of inertia, the body makes somersaulting movements around the same
axis. These somersaults have a fairly large amplitude (Fig. 5, left). As a result,
the average velocity of the initial rotation decreases (Fig. 5, right). Here, the
straight line shows the average value of the velocity, which shows that for a
body of the shape under consideration, the rotation slows down by 6.5%. Since
for elongated bodies the rotation system is reduced to a set of states corre-
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sponding to a change in the angle δ from the interval [0, π/2], it is easy to
estimate the probability of implementing a specific mode by the length of the
angular range that determines the selected mode. The simplest classification
of modes can be obtained from Fig. 4.

First, there is a mode of a wide circular precession ring determined by the
range δ ∈ [π/3, π/2], which is 33% of the basic interval of length π/2. This
means P1 = 1/3. In all other cases, we obtain a mode of contour precession.
Therefore, the probability of realizing the second state of rotation is: P2 = 2/3.

Fig. 5. The case of rotation around an axis with a minimum moment of inertia.

Fig. 6. Calculated light curve and observational data.
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The observational data were taken from the catalogue[27]. The calculated
light curve was constructed at δ = 29◦. In this case, the values of the min-
ima and maxima of the light curve were the most consistent. Moreover, the
calculated light curve was modelled with the assumption that the albedo of
the body is the same for the entire surface of the asteroid. This fact explains
the not quite exact correspondence between the calculated and observational
curves. If necessary, the albedo distribution can also be taken into account.As
the angle decreases further, the spread of amplitudes on the light curve will
increase.

Conclusion

For a body of such a peculiar shape as the object (1620) Geographos, no
rotations are simple. Different directions of the long axis of the body relative
to the axis of the initial rotation generate a system of different spin states of the
object. These motions are accompanied by precession of the instantaneous axis
of rotation, or precession with significant nutation swings, ending with flips
of the body around the axis with a minimum value of the moment of inertia.
Thus, in the rotations of the asteroid Geographos, one can distinguish a regime
of a wide precession ring and contour precession. Geographos, depending on
the location of its long axis relative to the vector ω0, experiences from three to
twenty-eight π-flips over a time interval of 100/ω0. These flips determine the
second frequency of complex spherical motion, which can be used to explain
changes in the light curve. Rotation around the long axis of the object in
question is also not simple. In this case, the instantaneous axis of rotation
wobbles, which leads to the effect of slowing down the axial rotation. For all
elongated bodies, due to the presence of dominant and weak rotation states,
the two-parameter system of spin states is reduced to a one-parameter one.
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