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Abstract. We construct anisotropic dark stars using the generalized Chaplygin gas (GCG)
equation of state, where the GCG is an exotic fluid model that unifies dark matter and dark
energy. This approach allows for an elegant theoretical treatment of dark stars. We apply the
quasi-local anisotropy model of Horvat et al., which introduces direction-dependent pressures
at each point inside the star, and test the strong and dominant energy conditions, which
serve as criteria for ensuring physically plausible behavior in the stellar interior. Our study
extends to Rastall gravity, a modified theory of gravity in which the usual conservation
of energy and momentum is relaxed. By solving the modified Tolman - Oppenheimer -
Volkoff equations, which describe the equilibrium structure of spherically symmetric stars,
we determine the macroscopic properties of GCG dark stars. Our results demonstrate that
the Rastall parameter, which characterizes the deviation from standard energy conservation,
has a significant impact on the mass - radius relations, compactness, and tidal effects, while
anisotropy further modifies equilibrium properties. Energy condition tests confirm that only
specific ranges of the Rastall and anisotropy parameter values allow for physical viability.

Key words: dark matter, dark energy stars, modified gravity, tidal deformability, moment
of inertia, anisotropy

1 Introduction

General Relativity (GR) was formulated by Albert Einstein in 1915. It remains
the standard framework for describing gravity as the curvature of spacetime
produced by mass and energy. This framework explains the dynamics of mas-
sive astrophysical objects and the universe’s large-scale structure [Glenden-
ning, 2007]. However, several fundamental problems, including the nature of
dark matter and dark energy, remain unresolved within pure GR.

Rastall modified gravity is a well-studied alternative to GR [Rastall, 1972].
It relaxes the requirement that energy and momentum must always remain
constant in curved spacetime. In this theory, changes in energy and momentum
are directly tied to a property of spacetime geometry known as the Ricci scalar.
This approach offers a broader perspective, allowing energy and momentum
variations to help explain unresolved astrophysical phenomena, such as dark
matter and dark energy [Rastall, 1972]. Recent studies have examined compact
stars and exotic matter within Rastall’s framework. These studies suggest that
such changes can influence our observations of stars.

Although it has been argued that Rastall gravity is formally equivalent to
Einstein gravity with a mere rearrangement of the energy - momentum tensor
[Visser, 2018], this interpretation has been critically examined in other studies.
Darabi et al. compared the two gravity theories and demonstrated that such
a redefinition modifies the physical content of Rastall gravity [Darabi et al.,
2018]. Unlike Einstein gravity, Rastall gravity is fundamentally characterized
by a non-minimal coupling between matter and geometry and by modified
conservation laws. We can regard Rastall gravity as a specific case of the
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broader class of f(R,T) gravity [Fisher and Carlson, 2019,Shabani et al., 2022,
Harko and Moraes, 2020], further emphasizing its departure from standard
GR. Chagoya et al. [Chagoya et al., 2023] conducted a study on the equivalence
of parameterized fluids in Rastall gravity and GR, which showed that the
same matter translates to different effective matter properties when switching
between the two gravity frameworks (e.g. cold dark matter fluid in Rastall
gravity corresponds to warm dark matter in GR). Rastall gravity has also
been applied to numerous astrophysical systems and in cosmology [Sakti et al.,
2020, Abbas and Shahzad, 2018, Abbas and Shahzad, 2019, Moradpour et al.,
2017b,Prihadi et al., 2020,Sakti et al., 2022,Sakti and Sulaksono, 2021,0Oliveira
et al., 2015].

The non-conserved energy-momentum tensor in Rastall gravity is particu-
larly appealing for the dark matter (DM) and dark energy (DE) studies. The
lack of observational evidence of DM and DE allows the possibility of a frame-
work with violations of the usual GR conservation laws. Such non-conserved
situations have also been supported by phenomenological indications from rel-
ativistic diffusion models [Calogero and Velten, 2013] and cosmological particle
creation processes [Moradpour et al., 2017a]. In this framework, the divergence
of the energy-momentum tensor is proportional to the Ricci scalar, where the
conservation law is obeyed in the case of a flat geometry.

Fundamental principles in physics are usually derived from action prin-
ciples, which is an aspect missing in Rastall gravity. Although this can be
a weakness of Rastall gravity, it has been investigated in several works how
a Lagrangian construction may be possible in the Rastall framework. One
study constructed a Lagrangian using non-minimal couplings between matter
and geometry and showed that it reproduced Rastall’s field equations, while
also leading to consistent physical results (i.e. Gédel-type solutions) [Moraes
and Santos, 2019]. In another study, a Lagrangian was constructed using a
variational principle and the Rastall field equations were derived from it [dos
Santos and Nogales, 2017]. Their method was applied to cosmological mod-
els, which were successfully compared with observational data. Fabris et al.
also analyzed the possibility of a Lagrangian formulation for specific cases of
the Rastall framework through studying the similarities between Rastall grav-
ity and two f(R) gravity theories: f(R, Ly,) and f(R,T) [Fabris et al., 2023].
These two f(R) theories also violate the conservation of the energy-momentum
tensor while still preserving diffeomorphism invariance.

In our work, we have chosen to apply Rastall gravity due to its simple and
minimal modification. Modifying only the energy—momentum tensor, with-
out introducing new fields or higher-order curvature terms, makes the theory
mathematically tractable while still allowing for new physical effects.

Recently, research within the Rastall framework has increased notably.
This includes studies analyzing gravitational-wave data and examining how
static neutron stars deform in a weak external tidal field. In these scenarios,
tidal Love numbers are smaller in Rastall gravity than in GR [Meng and Liu,
2021]. The Rastall framework has also been applied to study quark matter; for
instance, quark stars have been examined with an interacting quark matter
equation of state (EoS) in Rastall gravity, revealing effects on stellar mass-
radius relations and the adiabatic index [Banerjee et al., 2024], and compara-
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tive studies of magnetized quark star deformations under Einstein and Rastall
gravity have previously been conducted [Rizaldy and Sulaksono, 2019].

There have also been studies explaining the stability of compact stars in
Rastall gravity, showing that the stability conditions depend mainly on the
Rastall parameter [Pretel and Mota, 2024], as well as studies of anisotropic
stars using the Krori and Barua metric, which confirm that higher Rastall
parameters yield larger maximum masses while still agreeing with observations
[Biswas et al., 2025]. Rastall gravity is also applied beyond compact stars. For
instance, black holes and exotic objects have been explored in Rastall gravity
using Kerr/CFT correspondence [Sakti et al., 2022]. They demonstrated that
the Rastall coupling alters the entropy, absorption cross-sections, and echo
time delays, which can be observed as potential signatures of the theory.

Dark matter is believed to constitute about 27 percent of the universe’s
mass-energy content and it remains a major unresolved issue in modern as-
trophysics. Its existence is inferred from galactic rotation curves, gravita-
tional lensing, cosmic microwave background (CMB) anisotropies, and the
formation of large-scale structure. However, DM has not been directly de-
tected. Proposed candidates and models include the Lambda Cold Dark Mat-
ter (ACDM) paradigm [Weinberg et al., 2012], Weakly Interacting Massive
Particles (WIMPs) [Gelmini, 2017], and axions [Chadha-Day et al., 2022].
Unified dark fluid models such as the Chaplygin gas (GCG) [Kamenshchik
et al., 2001] have also been proposed. Additional dark energy models include
those represented by a phantom field [Sakti and Sulaksono, 2021].

The concept of a dark star, a compact astrophysical object composed pre-
dominantly of dark matter and/or dark energy, extends these considerations
to the field of stellar astrophysics. The GCG equation of state (EoS) has been
widely adopted as a unified description of DM and DE within a single fluid.
This model is consistent with observational tests involving gravitational lens-
ing, the CMB, and gamma-ray bursts, while maintaining a mathematically
simple EoS [Bento et al., 2002]. In this research, we assume a stellar config-
uration entirely composed of the simplified modified Chaplygin gas (SMCG).
Other versions of the Chaplygin gas have also been studied as possible equa-
tions of state for the dark stars (see Sec. 2). However, the SMCG model is
particularly appealing due to its mathematical simplicity. While it is more
realistic for compact objects to be composed of multiple components (i.e. a
mixture of ordinary matter, dark matter, and dark energy), such fluid system
may introduce extra free parameters, making it more difficult to focus on the
specific effects of the gravitational framework. To date, observational evidence
regarding the composition of dark stars is still lacking. Because of this un-
certainty, we find it reasonable to employ an idealized, simple model like the
SMCG at present.

Since our constructed dark stars have not been officially confirmed by ob-
servations, they remain a theoretical prediction. However, recent developments
indicate that this situation may change in the near future. Several observations
from the James Webb Space Telescope have revealed massive objects with high
luminosities, which have been proposed as potential dark star candidates [Ilie
et al., 2023, Ilie et al., 2025]. Although these findings and their propositions
are still under debate, they demonstrate that observational tests of dark star
models are becoming increasingly feasible. Accordingly, we conduct this re-
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search with the aim of developing a possible theoretical framework that can
be confirmed or refuted once reliable observational data are acquired.

An additional layer of complexity arises from anisotropy in compact stars,
where radial and tangential pressures differ. Such anisotropies can result from
various physical mechanisms and may be essential for describing exotic states
of matter, including dark sector candidates [Cadoni et al., 2020]. Several pres-
sure anisotropy prescriptions are used, such as the Bowers-Liang model [Bow-
ers and Liang, 1974] and the quasi-local model proposed by Horvat et al. [Hor-
vat et al., 2011].

In 2023, Pretel constructed dark stars using a simplified version of the GCG
model within the GR framework and analyzed their properties by introducing
an anisotropy factor from the quasi-local model of Horvat et al. The study
examined the dimensionless tidal deformability and the moment of inertia, fo-
cusing on anisotropic Chaplygin dark stars in hydrostatic equilibrium [Pretel,
2023].

This work investigates the behavior of anisotropic dark stars described by
the GCG equation of state within the Rastall framework. Previous studies
have not systematically examined the energy conditions (ECs) in this context.
ECs are crucial for evaluating the physical plausibility of stellar configura-
tions and ensuring their structural viability. In modified gravity theories with
a non-conserved energy—momentum tensor, structures may violate physical
conditions if parameters exceed certain limits. The introduction of anisotropic
perturbations to the EoS can result in extreme pressure variations, potentially
leading to cracking phenomena. This study explicitly tests the dominant and
strong ECs to ensure that the resulting stellar models remain physically viable.
Such scrutiny is necessary to confirm that the configurations represent realis-
tic anisotropic dark stars rather than mathematical artifacts of the modified
theory.

This paper is organized as follows: In Sec. 2, we introduce our dark star
EoS (the GCG equation). In Sec. 3, we introduce the quasi-local anisotropy
model to constrain pressure distributions. In Sec. 4, we present the Rastall
modified gravity field equations, as well as the modified TOV equations. Sec. 5
discusses the tidal deformability of the star, while Sec. 6 discusses the moment
of inertia and rotational equations. In Sec. 7, physical constraints and energy
conditions are laid out. We discuss our results in Sec. 8. Finally, conclusions
are summarized in Sec. 9.

2 Equation of State

In this section, we briefly discuss the EoS that describes matter in dark stars.
Multiple observations have shown that the universe is expanding with an ac-
celeration caused by negative pressure from DM and DE. Within this context,
the Chaplygin gas was introduced in 2001, within the framework of FRW cos-
mology, as a model of a perfect exotic fluid [Kamenshchik et al., 2001]. This
model is considered to be the ”pure Chaplygin gas.” In 2002, a modified Chap-
lygin gas (MCG) was introduced and developed [Bento et al., 2002, Benaoum,
2002], where new parameters were added. Alongside these, alternative EoSs for
dark stars have also been proposed in the literature, including phantom and
quintessence scalar field models, phenomenological extensions with power-law
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and logarithmic corrections to pressure, as well as anisotropic fluid descrip-
tions motivated by nuclear and QCD effects [Smerechynskyi et al., 2021, Bhar,
2021, Yazadjiev, 2011].

Despite these options, all the aforementioned models depict stars predomi-
nantly composed of DE. Notably, the Chaplygin gas family of models remains
particularly appealing because it provides a unified description of DM and DE,
supporting the possibility of DM and DE being different manifestations of the
same substance [Xu et al., 2012, Bento et al., 2002]. Further strengthening
its relevance, the Chaplygin gas model is consistent with various cosmolog-
ical datasets (e.g., the gravitational-wave signal GW190814 interpreted as a
compact star [Abbott et al., 2020]), and offers a mathematically tractable
form suitable for stellar structure analyses. For these reasons, we adopt the
Chaplygin-type EoS as the framework for our work.

The MCG model can be described by the equation of state:

B
pouce) = Ae — . (1)

To restrict the construction of fluids with infinite mass, the exponential
constant is physically acceptable in the range 0 < C' < 1. In this research,
a simplified version of the MCG model (SMCG), where C' = 1, will be used.
The SMCG model has been studied and verified in several past studies [Pretel,
2023, Panotopoulos et al., 2021, Rahaman et al., 2010, Bhar et al., 2018, Tello-
Ortiz et al., 2020, Estevez-Delgado et al., 2021]. Building on this simplification,
several works, including analyses of Planck 2015 CMB anisotropy data, have
shown that the case where C' = 1 is a sufficiently good fit to existing observa-
tions, hence there is no need to add more degrees of freedom. In the following,
we use the simplified MCG equation of state in Eq. (1) with C' = 1 while si-
multaneously testing a range of values for the anisotropy model in Sec. 3. We
will also use the numerical values of the constants A and B that correspond
to one of the anisotropic dark star models favored by observational pulsar
measurements, as used by Pretel [Pretel, 2023].

— A = 0.3 [dimensionless],
— B = 6.0u, where = 10729 m—4,

These parameters allow the construction of a compact object with a max-
imum mass slightly smaller than the neutron star pulsars J1614-2230 [De-
morest et al., 2010] and J0348+0432 [Antoniadis et al., 2013]. This assumes
an isotropic condition for the dark star. In this research, we consider these
parameters to be suitable. We consider the possibility of extending the max-
imum mass upward once our Chaplygin dark star is subjected to anisotropic
effects, particularly under modifications from Rastall gravity. This leaves room
for configurations that may reach the observational data limits that might be
provided in the future. A brief discussion of anisotropic effects and Rastall
gravity will be given in the next section.

3 Quasi-local Anisotropy Model

Dark stars are a class of exotic stars in which the pressure of matter may
become anisotropic. Therefore, in this work, we adopt this assumption. Sev-
eral studies have also explored the possibility of constructing dark matter as
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an anisotropic fluid [Pretel, 2023]. In compact stars, a state of anisotropy
means that the pressure inside the star does not always equal its radial pres-
sure (radial pressure # tangential pressure). Anisotropic matter can lead to
inhomogeneities, which could be responsible for the formation of DM and
DE [Cadoni et al., 2020]. Over the years, numerous anisotropy models have
been proposed. Some popular models include the Bowers-Liang model [Bowers
and Liang, 1974] and the quasi-local model proposed by Horvat et al. [Horvat
et al., 2011]. Many of these approaches rely on a phenomenological ansatz
that introduces a functional relation between the radial and tangential pres-
sures without being directly connected to a fundamental physical mechanism.
While such models are useful for exploring the qualitative role of anisotropy,
we adopt the anisotropy model proposed by Horvat et al., particularly because
it exhibits a quasi-local dependence of the anisotropy on the compactness of
the star. This framework has the advantage of being more physically grounded
and dynamically consistent than many other anisotropy models. With the nat-
ural unit system (¢ = G' = 1), the anisotropic matter is expressed through the

variable o:
2m
0o =w (> Pr,y (2)

r

where « is a dimensionless parameter that determines the anisotropy factor
o, which is defined as

0 =DpPt — Dr- (3)

In this work, we study the allowed values of « by testing the energy con-
ditions for compact objects.

4 Rastall Modified Gravity

A fundamental equation in the theory of GR is the Einstein field equation
(EFE):
1 81G
R;w - §g,lJJ/R + Ag;w = CTT}LZM (4)
where R,,, is the Ricci curvature tensor, g,, is the metric tensor, R is the
Ricci scalar, A is the cosmological constant, GG is the gravitational constant,
c is the speed of light in vacuum, and 7}, is the stress-energy tensor (stress-
energy-momentum tensor). For the stars, A plays no role, and the EFE reduces
to:

1
Guw = Ry — §g,wR = 87T . (5)

Unlike standard GR, Rastall gravity introduces a non-conserved stress-
energy tensor and a nonminimal coupling between matter and geometry. This
approach enables greater flexibility in modeling dense stars, including the in-
corporation of anisotropic matter.

Building on these distinctions, the gravity proposed by Rastall is not dras-
tically different from the standard Einstein gravity. Rastall modified gravity
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introduced a new free parameter ~, which replaces the factor 1 in the Ricci
scalar term of EFE. The modified EFE is as follows:

Ry — %gWR = 87T, (6)

For an unperturbed, static, spherically symmetric compact star, a suitable
metric can be written as:

d82 — _62U(T)dt2 + 62)\(T)d7,_2 + T2 (d02 + sin2 0 d§b2) (7)

The Rastall field equation in Eq. (6) can be rewritten by setting the left-
hand side equal to Einstein’s field equation and the right-hand side 7}, plus
correction term. This result can be considered as GR with a modification of
the matter or with effective matter.

1
Gu = Ry — §QIWR =81(Tyw — BT 9uw)- (8)
. 1—
T is the trace of T, and 3 = 2(?37)
The stress-energy tensor for anisotropic matter is given by:
T = (e + p)UUL + piguw — okyky. (9)
U, and k, are unit four-vectors that must satisfy U, U* = —1, k,kt = 1,

and Ukt = 0. We can see that when o = 0, the fluid becomes isotropic,
denoting a fluid with equal pressure in all directions.
In anisotropic matter, the trace of the stress - energy tensor is:

T =3p, + 20 —e. (10)

We then obtain the modified TOV equations for the anisotropic star struc-
ture in Rastall’s gravity:

d
— =T, (11)
dp?” — | = (pT'eH + eeﬁ) (m + 47TT3p7’eff) + 2£ (12)
dr r(r —2m) r
1
X M
[1-38— 284 + pc]
dv 1 ff, 2y 2)
W _ 21— 8mps - 1} 1
= | (1= smp e (13)

where the effective matter variables p,* and € have the values:

pTEff - pT - /6T7
et = e 4 BT
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The TOV equations above can be solved by applying the boundary condi-
tions at the star’s center (r = 0) and the star’s surface(r = R):

pr(()) =DPr(c) > pr(R) =0 (14)
m(0) =0 m(R) = M (15)
WO0)=ve ,  w(R) = %m [1 _ Qjﬂ (16)

By supplying an equation of state for energy density as a function of
pressure, and taking into account anisotropy factors as a metric, numerical
solutions are obtained computationally using iterative schemes, such as the
fourth-order Runge-Kutta method. In this work, we study the allowed values
of 8 based on the stability conditions for compact objects.

5 Tidal deformability

Compact stars inevitably experience geometric deformations due to tidal forces
induced by nearby massive bodies. These deformations are quantified by the
tidal deformability parameter A, which relates the induced quadrupole moment
Qi; to the external tidal field [Oeveren, 2018]:

Qij = —Agij. (17)

Q;j is the induced quadrupole moment tensor, and ¢;; is the tidal field tensor.
The parameter A is further linked to the dimensionless (I = 2) quadrupolar
tidal Love number k9 and the stellar radius R:

2
A= §k2R5. (18)
A dimensionless tidal deformability, A = % = %%, can also be defined,

where C = R is the compactness of the star.

We can write the spacetime metric g,,, of a fluid under tidal perturbations
as:

Juv = ggy + huw (19)

where 921/ is a static unperturbed metric such as the spherically symmetric

metric in Eq. (7), and hy, is the linearized metric perturbation caused by

tidal effects [Thorne and Campolattaro, 1967].

In this research, we will be analyzing only the static, even-parity pertur-
bations in the Regge-Wheeler gauge [Regge and Wheeler, 1957]. The tidal
perturbation metric is given by [Hinderer, 2008]:

hyw = diag[—e” Ho, e Ha, 72 K, 7% sin? 0 K]Yay,. (20)

Hy, Hy, and K are functions of r, while Y, is a function of (6, ¢). Substi-
tuting this expression into the linearized Einstein field equations and using
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an anisotropic fluid model yields a system where only diagonal components
of the perturbed stress-energy tensor are nonzero. This leads to the following
relations:

Hy=—H, = H, (21)

K'=2H/ + I, (22)
H _

op; = %e 2)‘(/\’ + 1) Yop,. (23)

Combining components of the perturbed Einstein tensor yields a second-
order differential equation for H(r). [Biswas and Bose, 2019]:

H" + PH'+ QH = 0, (24)
where, for GR theory,
2 2m
p=lien {72 + drr(pr — e):| , (25)
—are [ae s, + EP 1 o3)| 20 g 26
Q =dme™ |de + 8pr + Avg(+vs)_TT_V7 (26)
with the values A = fl% and the radial speed of sound v? = %. We can

rewrite Eq. (24) as a first-order differential equation of the internal structure:

ry' +y* +yF +r*Q =0, (27)
where
Hl
y(?") == yinternal(r) = Tﬁ; (28)
F(r)y=rP —1. (29)

Eq. (27) can be solved together with the TOV equations with the boundary
condition in center, y(0) = [ = 2. We use the value [ = 2 because it is
the quadrupole mode that primarily contributes to the tidal deformation of
compact stars (deforming the star into oblate or prolate shapes under the
influence of an external tidal field). Higher multipoles (I > 3) have much
less significant effect on the overall physical effect of tidal deformations, and
therefore are negligible in the case of our research. It is worth noting that
in cases like higher precision measurements and specific multipole studies,
different modes of [ may be considered. At the solar exterior, we can rewrite
Eq. (24) with a form associated with the Legendre equation with [ = m = 2
by defining # = I~ — 1 [Thorne and Campolattaro, 1967]. Then we can write

H as the Legendre functions P? and Q3:

(22 = 1)H" +2zH' — 6(6 +

S—JH =0, (30)
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H = apPi(z) + agQ3(x). (31)

where ap and ag are coeflicients to be determined. The external structure can
be written as a function of the previously defined z:

H (P5)'(x) + a(Q3)'(x)
(

yexternal(x) = Tﬁ = (1 + .1‘)

a
where a = a—Q.

Matching the internal and external solutions of H at the surface of the star
(r = R) leads us to the solution for the Love number ks [Damour and Nagar,
2009]:

8
by = (1 - 2C)*C°12C(yr — 1) — yr + 2] [2C[4(yr + 1)C*
F(6yr — 4)C3 + (26 — 22yr)C2 + 3(5yr — 8)C — 3yr (33)

+6] +3(1 — 2C)?[2C (yr — 1) — yr + 2] log(1 — 2C)] .

Notably, in both General Relativity and Rastall gravity, the expression
for ko remains formally the same in vacuum [Meng and Liu, 2021]. However,
the calculation of yr must account for the modified gravitational dynamics
under the Rastall framework by adjusting the P and @ terms. This can be
obtained by simply replacing pressure and energy densities with their effective
counterparts:

2 2
P==4 2 [ZL + 47 (p,°F — eeﬁ)] , (34)
r r
. 6 2\
Q =dme? [4663 +8pef 4 Z;Z "1+ vg)] - w3
S

2 eff _ dp,f

where we apply similar modifications to the radial speed of sound vy ' = .

6 Moment of inertia

In GR, rotating relativistic fluids drag nearby inertial frames. This is a phe-
nomenon known as frame dragging. To analyze slowly rotating compact stars,
a small rotational correction is added to the static spacetime metric. This
correction introduces an off-diagonal component involving the angular veloc-
ity function w(r,#), and the resulting metric is based on the Hartle — Thorne
formalism.

ds? = ds} + dsig, (36)
dsip = —2w(r, 0)r* sin® Odtde. (37)
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A key quantity is the relative angular velocity w = 2 — w, where {2 is
the star’s rotational (Keplerian) angular velocity and w is the angular velocity
measured by a freely falling observer.

The first-order field equation gives:

10 (,.00 4dj _ A2 1 9 0w
-9 - Y 399% ) —
r4 Or ( T or > LT TR sin® § 96 sin a0 0 (38)

where j = j(r) = e~ A*)/2 [Hartle, 1967].

However, if we include anisotropic pressure, w can be redefined with Leg-
endre polynomials P, [Regge and Wheeler, 1957]:

0) =3 @) <—S;190$l> . (39)
=1

Expansion of the polynomials shows that all the coefficients of @ vanish
except for the case [ = 1. The differential equation (38) becomes:

1d [/, do 4dj _
- Y5 =0. 4
r4dr( dr)—'_rdrw 0 (40)
If we include anisotropic pressure, Eq. (40) becomes [L. Peterson, 2021]:
1 d 4 . dw 4 dj o B
el ey =0. 41
r4dr< dr>+rdr( +e+pr)w 0 (41)

Recalling that in Rastall gravity, we keep the standard form of the gravi-
tational equations and introduce Rastall effects through the modified matter
sector, we can use the GR-based Eq. (41) to compute the inertial properties
of the compact star. These are later combined with the Rastall effects through
the background metric and matter profiles obtained from the modified TOV
equations.

To obtain the moment of inertia, we define w=w/{2 and rewrite Eq. (41)
as two coupled first-order differential equations ‘Cilw and fl—’;. These expressions

serve as auxiliary functions that allow for a simpler mathematical computation
[Rahmansyah et al., 2020]:

s 6 (0 2m\ 7
dr  A° r o

di  8mrie V(e +py) o -
ar_or 1- . 42
dr 3 (1- Qﬂ)l/2 €+ pr “ (42)

We solve the two first-order differential equations using the Runge-Kutta
methods with boundary conditions:

N 21

R(R) =1, (43)

where, I is the moment of inertia of the compact star.
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7 Energy conditions

In the framework of general relativity, the constraints and energy condition
rules to ensure a physically acceptable star are as follows:

1. The energy-momentum tensor must obey the dominant and strong energy
conditions (DEC and SEC);

2. The energy density and pressures must remain positive inside the star,
monotonically decreasing toward the surface;

3. The speeds of sound must be positive and always slower than the speed of
light inside the star;

4. At the surface of the star, the radial pressure must vanish. Additionally,
both the radial and tangential pressures must be equal at the center of the
stellar matter configuration.

7.1 DEC and SEC with different anisotropy values
The dominant and strong ECs are defined by:

— DEC: e —p, —2p; > 0
— SEC: e +p-+2p: >0

Fig. 1 shows the effect of varying anisotropy values, both positive and neg-
ative, on the dominant energy condition (DEC) and strong energy condition
(SEC) evaluated at the stellar surface for configurations with different cen-
tral pressures. The results indicate that the energy conditions remain valid for
small anisotropy values, specifically within the range o = £0.0001. However,
when the magnitude of anisotropy increases beyond this range, the structure
of the star starts to fall outside the physically acceptable numerical bounds.
Large positive anisotropy values lead to the violation of the DEC (as shown
in the leftmost panel), while large negative anisotropy values lead to the vio-
lation of the SEC (as shown in the rightmost panel). The ECs are evaluated
at the center of the star (r = 0), where the configuration is most compact. If
the ECs are satisfed at the center, they will also be satisfied as they approach
the surface (0 < r < R). This trend is illustrated in Fig. 2. Fig. 2 demon-
strates that both the dominant and strong energy conditions are satisfied for
all considered anisotropic parameters in the range —0.0001 < a < 0.0001. In
these plots, the energy conditions are evaluated throughout the stellar interior,
from the center to the surface (0 < r < R), for configurations at the expected
maximum mass limit. This confirms the physical viability of Chaplygin dark
stars within these bounds. The analysis was further extended to the Rastall
gravity framework, with parameter values —0.05 < 8 < 0.05. It was again ver-
ified that the adopted model remains consistent. The simultaneous fulfillment
of both energy conditions across these ranges reinforces the robustness of the
theoretical framework. This indicates that neither the introduction of small
anisotropy values nor the modifications arising from Rastall gravity result in
extreme behaviors in the matter distribution. These results demonstrate that
the proposed stellar model satisfies the fundamental requirements of a realistic
compact object and can be regarded as consistent in both classical GR and
its Rastall extension.
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Fig. 2. ECs in physically possible anisotropic dark stars in Rastall’s gravity for 0 <r < R
(computed for the star at the expected maximum mass configuration). Left panel: DEC.

Right panel: SEC, both as a function of star radius R.
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tangential pressure (with anisotropy present).
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Fig. 4. Internal speeds of sound for 0 < r < R (computed for the star at the expected
maximum mass configuration). Left panel: radial speed of sound. Right panel: tangential
speed of sound (with anisotropy present)

7.2 Physical viability in Rastall gravity

Figs. 3 and 4 illustrate how the star’s physical viability satisfies the second
and third energy conditions under Rastall gravity. In Fig. 3, the internal stellar
profiles for 0 < r < R, computed for the star at the expected maximum mass
configuration are shown. The left, middle, and right panels correspond to the
energy density, radial pressure, and tangential pressure. All quantities decrease
monotonically with increasing radius. This is consistent with what is expected
for a physically realistic compact object. As in earlier plots, the presence of
anisotropy produces only minor deviations that do not significantly affect the
overall trends of the matter distribution.

Fig. 4 shows the internal radial (left panel) and tangential (right panel)
speeds of sound for 0 < r < R (computed for the star at the expected maxi-
mum mass configuration). For stars with smaller masses of M, central densities
and central pressures decrease, resulting in smaller speeds of sound that even-
tually approach zero. These plots show that both radial and tangential speeds
of sound are subluminal (v? < 1). The interior matter of the star remains sta-
ble avoiding cracking or overturning. If a larger anisotropic magnitude were
applied, the interior stellar structure might experience a reversal of forces. In
this case, attractive forces could become repulsive at certain points inside the
star [Chan et al., 1993].

At the end of this section, we identify the ranges of the parameters «
and § that align with the energy conditions for the adopted equation of state:
—0.0001 < a <£0.0001 and —0.05 < 8 < 0.05. These parameters directly affect
the physical properties of the stellar configurations. Our analysis indicates
that the Rastall parameter § plays a more significant role than the anisotropy
parameter «. It should be noted that the present configurations are valid only
for our chosen parameter set. Physical viability is not guaranteed for other
parameter choices. Drastic changes to the equation of state will likely impact
the physical viability and the mass—radius relation of the star.
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8 Results and Discussions

8.1 Stellar Structure

The plots in both panels of Fig. 5 show that the Rastall parameter [ signifi-
cantly affects the EoS and the stellar structure. A positive 5 (5 = 0.05) reduces
the maximum mass of the star, while a negative 5 (8 = —0.05) increases it. A
negative 5 makes the star less tightly bound, allowing for higher-mass stabil-
ity. Conversely, a positive [ restricts the formation of massive compact stars.
This behavior stems from the non-conservation of matter in Rastall’s stress-
energy tensor. The left panel also shows anisotropic configurations, but the
lines are barely discernible because their differences from the isotropic cases
are negligible.

The compactness C = M/R is shown in the right panel of Fig. 5. The
results are consistent with the mass—radius relation: a negative § allows for
a higher mass at a given radius, while a positive 8 lowers this threshold.
Thus, Rastall gravity directly influences both the maximum mass and the
compactness of viable stars.

20 0.2001
0.1751
15 0.1501
I
_ § 0125
2 3
Z 10 8 0.100 |
= £
8 0.0751
051 0.0501
0.0251
0.0 0.0001
2 4 6 8 10 0.0 0.5 1.0 15 2.0
R [km] M[Mo]

Fig. 5. Left panel: mass-radius configurations. Right panel: compactness as a function of M.

Although the anisotropy factor does not produce a significant change in
the mass-radius relation, it plays a key role in shaping the tangential pressure
of the star, where the tangential pressure refers to the force exerted perpen-
dicular to the radial direction within the stellar material. To illustrate this,
Fig. 6 shows the radial (directed toward the center of the star) and tangen-
tial pressures as functions of the stellar radius. In particular, the influence of
anisotropy—defined as the difference between the radial and tangential pres-
sures—is more evident in the tangential pressure plots, consistent with the
definition ¢ = p; — p,.. Moreover, the impact of the effective pressures, pﬁff (ef-

fective radial pressure) and p¢T (effective tangential pressure), becomes clear
under different values of the Rastall parameter.

The left panel of Fig. 7 displays the relation between the stellar mass
M and the central energy density e.. In the Rastall framework, stars with
identical central densities €. reach higher masses M for negative [ values
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and lower masses for positive § values, compared to GR. The overall trend
remains close to the GR curve, since the nonconserved stress-energy tensor 7},
depends only on the pressure p and energy density €. This reflects the effect
of the nonminimal matter-geometry coupling, which modifies the maximum
mass that can be achieved at a given central density. The right panel of Fig. 7
shows the gravitational redshift zg,, as a function of the central energy density
€c, defined by the following equation:

1
2 2
e =€ — 1= (1—m> 1 (44)

r

The gravitational redshift describes the strength of the curvature of space-
time at the surface of the star. This redshift reflects the star’s compactness:
for low-mass (less compact) stars, the effect is negligible, while in more mas-
sive (more compact) stars, the effect becomes pronounced. Specifically, the
maximum redshift increases for negative Rastall parameters and decreases for
positive ones. A higher redshift corresponds to stronger spacetime curvature,
making the star more relativistic. However, the maximum values remain well
below the extreme limit zg,, — 1, indicating that dark stars in Rastall modified
gravity remain physically stable.

Table 1 presents the stellar radius and mass configurations at central pres-
sure p, = 101 MeV/fm?3, along with the corresponding energy density and
gravitational redshift values. Only the presence of a nonzero Rastall parame-
ter alters the energy density; anisotropy parameters induce negligible changes
in all stellar properties. As the Rastall parameter 8 increases, the central mass,
radius, energy density, and gravitational redshift decrease. A positive Rastall
parameter represents a stronger coupling between geometry and matter inside
the star, implying that energy-momentum is not conserved and the energy den-
sity predicted by Rastall gravity can either increase or decrease, depending on
the specific value of the parameter.
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Table 1. Configurations for p, = 101 MeV/fm3 with different Rastall parameters and
anisotropic perturbations

Jé] a  Mass [Mg] Radius [km] € [MeV/fm®] 25y, [dimensionless]
-0.0001 1.708822 10.312401 558.382887 0.400951
-0.05 0 1.708873 10.312501  557.88815 0.400965
+0.0001 1.708924 10.312601 557.393394 0.400978
-0.0001 T1.489227 9.970901  545.750619 0.338816
0 0 1.489235 9.970901  545.750619 0.338819
+0.0001 1.48928 9.971001  545.750619 0.33883
-0.0001 1.289474  9.623101 533.213019 0.287388
+0.05 0 1.289481  9.623101  533.613088 0.28739
+0.0001 1.289521  9.623201 534.013167 0.287399

8.2 Tidal properties

The leftmost panel of Fig. 8 depicts the dimensionless, electric-type tidal Love
number ko (which quantifies how readily a star deforms in response to a tidal
field) as a function of the dark star’s compactness, defined as the ratio of the
star’s mass to its radius. The results show that larger values of the Rastall
parameter correspond to higher maximum ks values for the Chaplygin dark
star. This demonstrates that Rastall modified gravity directly affects the star’s
susceptibility to deformation under an external tidal field.

We also examine the tidal parameter A (middle panel), which characterizes
the star’s deformability under an external gravitational field, and the corre-
sponding dimensionless tidal deformability A (rightmost panel), defined as a
scaled measure of A relative to the star’s compactness. The numerical values
of A at the maximum stellar mass are provided in Table 2. As with the Love
number results, the tidal effects increase or decrease depending on the cho-
sen Rastall parameter 5. For the Chaplygin dark star equation of state used
here, no qualitative changes are observed in the overall trends of the tidal
deformability.
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function of M.

Table 2. Dimensionless tidal deformability A at M = Mmax with different Rastall parame-
ters

B Mmax [MO] A at Mmax [dimensionless]

-0.05 2.075173 3.477274
0 1.916892 5.30122
+0.05 1.774664 7.667622

The obtained tidal deformability arises from quadrupolar perturbations to
the equilibrium configuration. In Rastall’s framework, this tidal effect is sig-
nificantly amplified or suppressed in the high-mass region; by contrast, the
differences remain negligible in the low-mass region. As expected, increasing
compactness leads to a decrease in tidal deformability, indicating that more
compact stars are less deformable. Moreover, these results suggest that the
Rastall parameter has little to no impact on stars with low compactness. Fi-
nally, for the Chaplygin dark star model, configurations with very small stellar
masses exhibit extremely high tidal deformability.

8.3 Rotational properties

We calculate the moment of inertia of the Chaplygin dark star by incorporating
the slow-rotation sector into our metric. As shown in the left panel of Fig. 9, the
moment of inertia decreases as the Rastall parameter 5 increases, especially
for high stellar masses. This inverse relationship implies that higher values of
[ allow stars to attain faster rotation rates. The right panel of Fig. 9 further
illustrates these findings by showing how the dimensionless moment of inertia
varies with stellar compactness.

These plots visualize effects of the slow-rotating perturbations on our dark
star model. The moment of inertia naturally increases with mass. However,
beyond a certain point, the moment of inertia reaches a maximum and then
decreases, indicating the existence of a maximum allowable moment of inertia.
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We define the relative difference AI of the moment of inertia to better
quantify the effects of Rastall gravity and anisotropyf:

I; X_I X
Al — tma. Oma; ’ (45)

I’imax

Tymax is the maximum moment of inertia for isotropic stars in GR (8 = 0),
and I;jmax is the corresponding quantity for stars with Rastall effects. Table 3
shows the AI values. The Rastall parameter 3 decreases Al almost linearly;
larger B values correspond to smaller differences in moment of inertia. This
trend is consistent with changes in other stellar properties observed within the
Rastall framework.

Table 3. Maximum moment of inertia I;max and the relative difference Al with different
Rastall and anisotropy values

B ILimax [10%° g.cm?®] AT [%]

-0.05 2.264757 14.493
0 1.978083 0 (default)
+0.05 1.732429 -12.419

To conclude this section, our research highlights the role of Rastall grav-
ity—a modified gravitational theory that alters standard conservation laws—in
changing key stellar properties. The analysis reveals significant effects on the
mass—radius relation, compactness, pressure distribution, energy density, and
redshift, with systematic shifts in the predicted maximum stellar masses for
different Rastall scenarios. These changes also affect observable quantities,
such as the tidal deformability and the moment of inertia. We found that
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adding a miniscule anisotropic effect to the Chaplygin dark star produces
only minor changes in the overall stellar behavior, largely independent of the
values of the Rastall parameter values. Overall, these findings suggest that de-
partures from GR can leave measurable marks on the structure and dynamics
of dark stars.

9 Conclusions

This study examined the structure of anisotropic dark stars described by the
generalized Chaplygin equation of state within the framework of Rastall grav-
ity. The modified Tolman—Oppenheimer—Volkoff equations were derived and
solved for various values of the Rastall parameter 5 and the anisotropy param-
eter av. Tests of the DEC and SEC were incorporated to identify the physically
viable parameter ranges.

From the energy-condition tests, we found that, for Chaplygin EoS param-
eters A = 0.3 and B = 6.01072m ™%, the resulting dark star solutions remain
physically acceptable only for —0.0001 < « < 0.0001 and —0.05 < 8 < 0.05.
The Rastall parameter § has a stronger influence on the star’s structure than
the anisotropy parameter «. This influence extends from the basic mass-radius
relations to tidal deformability and moment of inertia configurations. Our anal-
ysis showed that increasing 3 leads to less compact dark stars, while negative 8
values enable the construction of stars with larger maximum masses. These re-
sults are valid for our chosen Chaplygin EoS parameter set; therefore, physical
viability cannot be guaranteed for other parameter choices. Nevertheless, we
expect our conclusions to remain generally applicable to Chaplygin equations
of state that satisfy the ECs.

We conclude that departures from General Relativity, such as Rastall grav-
ity, may produce observable effects on the structure and dynamics of dark
stars.
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