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Seanning of stellar images by a slit diafragm
and estimation of their parameters.
I. Approximation of turbulent disks by a

Ganssian distribution
D, V. Dimitrov

Abstract
Exact analytical expressions are dexrived for evaluation
of the smoothed sizes of the stellar images when they are
scanned by an infinitely long slit with a finite width Za- .
Two cases are congidered: (i) the data are approximated by a
Gaussian curve by the least squares method; (ii) the data are
approximated by a Gaussian curve,which has the same y-coordi-

nate of the centexr of weight as the smoothed curve.
Key worda: stellar images,scanning.
I. Introduction

It igs well known that for a long enough exposure times
(e.g.,to smear out the speckle structure) the distribution of
light intensity within the turbulent disks of stellar images
may be well fitted by a Gaussian function with a dispersion 042
This statement is true if the observations are made by a
ground-based telescope with a large aperture,greater than
e 50 em,and if also a narrow transmission band filters are
used to eliminate the atmospheric dispersion at large zenith
angles,The conclusions following below are,obviously,applicab-
le when photographic stellar images are scanned by a long slit

window with a finite width zﬂ. .
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Let us introduce in the focal plane of the telescope a
rectangular coordinate system (X,4) with an origin at the
center of the turbulent stellar disk.Then the addopted unsmoo-
thed intensity distribution is given by the éxpression

5
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where S is a normalization constant and 0'; is the dispersion
of the two-dimensional Gaussian distribution.Addopting a
circular symetry of the atellar images we set G‘mzﬁ" :O‘;

The gquantity _0'; is connected with the Fried’s parameter 7, ’

giving the correlation radiug of the atmospheric turbulence
(Fried, 1966); the greaterT, ,the smaller is O'; «Because we
are interesting only of the relative light distribution in the
stellar images and not of their total photometric fluxes we
get further S = 1 .For simplicity we set also 6-; =1,
remembering hereafter in this paper that zll linear scales

are measured in unit of length O‘; .
IT. Definition of the problem

We shall describe the rectangular window of the scanning
diafragm by an infinitely long alit,with a finite width Z'PL o
The slit is alighned along the axis l& .Denating by &L the
abcissa of the midlle line ef the slit,the intensity flux 23,3_’(:,)
transmitted by the diafragm is given as follows

T—+pb L
(2) _@(m):S S%(m,g)(l.g dox -_-..(2R_)‘1 (I)(wg.)-@(m-ﬁ):l :
_ x-f L= . _
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where ?(&)-‘-’ (2-3[,)-1/2 S 'e&P (—tz/Z) J'JC is the error

integral (Korn et al.,1977; Janke et al.,1977) and performing
the integration by 3, in (f.) we have get the multiplierm .
The smoothed distribution 3'(91'.) is not exactly a Gaussian
curve but we may approximate it by a Gaussian one with a

dispersion O e

» §m=(all o) exp (- sc‘z/'z.d”') :

0f course,if the width of the slit Z‘R, is not too large,
we would expect that the value of 6~ is not very different
from that of O, = 1 of the unsmoothed distribution %('x,%) .
In this paper we give exact functional relations between @ ,O';
and FL for two different cases: (i) the approximation (3) is
performed by the least squares method; and (ii) the approxima-
tion (3) is obtained by equating the centres of weight (by
the y-coordinates) of the areas constrained by the unsmoothed
and smoothed curves,respectively.These results may be used to
correct the measured ¢§ ?s for the finite width of the slit
2.91. ,when very precize values of 6; *s are needed to be
known.Obviously, the results in this paper are applicable not
onlyll in the case of a real-time astronomical scanmning of
stellar images.They are useful in the slit microphotometry of
photographic stellar images.

[ d
ITI, Approximation of %(:r.) with a Gaussian curve by
the least squares method

[ )

~Cc ~
In this section we shall denote % from (3) by %LS .
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The approximation by the method of least squares in our case

is described by the condition (Brandt, 1975)

_oso [‘@(m)-@bs(m)]zo[mz mrn

or equivalently

(5) S E}(x) %Ls( )]i %Ls(sc)cl:c = 0.

This is an equation for the desired quantity @  as a function
or 2R ana 6, (in units 6= 1 ).Substituting (2) and (3)

in (5), the least squares condition forxr 6 becomes

. < _ 24 | o2
()_i q’(wfﬁ) ?(x-&)-—--———-—-— e:xf)(_ ) |

(250 2072/

x (:3’-0"2)0_9: (- 20“’ )J.m =0.

Further we denote by jcgt)the integral

@ K,R) = _.é’ O 4k) exp (-2 / 26%) (l:x

and rewrite (6) as a sum of six integrals

Z 3{’1.(2') =0 ’

L=4 _
where 3({'(&)(:& = 1,40.,6) are defined further in this section

as follows

(9) 3{1(1{)=_S Dl +h) xzexr(—xz'/zo‘z)clx .

Integrating by parts we ob‘ta_j.n that
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(10) JCi(&)

exp -{e)e
w_]&ﬂ-_.

Gradshtein et al.(1963) (formula 3.462.2)} have evaluated
the integral |

oD

(11) _S :r.%e,a:f» (—Pm2+2c|,9t) d o

- z"'-i'i V—r*f f: [qv P ('%?')]

for M. posi‘tive integer and F) 0.In our case for L = % ,

P 1+°-' )/2.0" and Cl’-— -&/2 we get finally,according
to (10)

" 5 | 2
(12) J‘ci(ﬁ)zo_' j{o(‘ﬂ) 1+0_,2 3/3 eIF [ i+°"z):]

(13) 3{2(&)‘-‘—- o 2_.50 ? (=+R) ea:? (- 32/20‘ 2)&::: = -G“lﬂfo(ﬁ)

0 ) = =] Qh)aerplea’od M =-J, (R),

(15) 3{&( R,) = 0’2-33?(&— R.) exf(- 332/20"2)(1.'-'2 =06 23{0 ("a) y
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and oo

(1) K (R) == 24 § mzexf(_acz/wz)clm .

Y2 ¢ L

Integrating by parts and using the result that the error
integral at infinity is equal to unity (e.g'.',@(oo) =1,

we obtain

(m Kg(h)=- PLG'Z/VT .

Finally we get

” ncs(a):.vz_fd;:j § emp(-a?/o?)dz=2Ro

Substituting the expressioms (12) - (15), (17} and (18)

into the least squares condition (8),and performing the
" summation we obtain the desired functional dependence between
the slit width 2.9; and the dispersion 0"2 of the Gaussian
distribution by which the smoothed curve q %) from (2) has
been approximated.Note that the integrals MO(R) and D{o(_g')
during summing up annihilate,so there is not need to compute

them. . _
3 2
(19) GJ 5 z'em') - _—L—-— — 1 .
(A+0-2)¥ 2(4+672) 2V 2~
- —

This relation uniquely determines the depende,nce between
32
p\- and @ because the multipliers 0’3/(4_-}- 6'2)

Q:QFE.-R?'/Z(1+ o’ 2)] for every one fixed value of ‘R' are
strict monotonically increasing functions of O ,and also the

exponential factor strictly decreases with increasing of ‘R.
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(for a fixed value of 6 ).It is more useful to express ‘R. as
a function of 6 ,For this purpose we may take the natural
logarithms from two sides of (19) and the desired final

1/2

20 = | +0"?' | 80"6
) 28 = 2 (1 )gn L ac?)3 :

expression is

Further the quantity 6 ,connected with 3. through rela-
tions (19) or (20) (obtained by the least squares method), is
denoted by O, , .In Figures 1 and 2 the dependence of

[st(m_ G:J /0'; vs. 2&/0: is plotted by solid lines.

As mentioned earlier,in the above calculations 0'; has been

set equal to 1 .,

[t d
IV. Approximation of %('.n) with a Gaussian curve by the
y-coordinate of the center of weight

It is easy to check that the one-dimensional Gaussian
curve ?&"G’(m) (3) has an ordinate %G- of the center of weight
of the ares S ( S = 1 in our case) given by (Fihtengoltz,
1969)

(21) %Gz EVSE.‘O" > (S:i) .

We shall now compute the same quantity %G— sbut for the

smoothed curve %3(3:) given by (2),which is not exactly Gaussian
one,and by equating this value to %G' from (21) we shall -
obtain an estimation for @ .The smoothed "observed" curve %(I)
is suppoused to be symmetric relatively the axis X = 0 ,and
computing %G» we shall restrict us only to the case X2 0 .

The y-coordinate of the center of weight of the smoothed curve
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%(&) may be expressed as a ratio of two fumctions of ‘Pl.

Gy = AR [A,KR)

where %t(")
(23) Ai(m = é m(@)%ig
and (o,

@ A,R) = 3 = (§)d3

From (2) we alao have

-

05 d5_ (xeR) | x-f )
(25) cl% 2.3i =T %mr[ - :|_e::cr,;f . ):l
_

As Tollows from (2),(23) and (25)

(26) Ai(ﬂ)=(zﬂtfi]2(z%)-2§m IEI’(mﬂ)- ‘I’(a:-%):l

ot ] em ] e

Let us denote by Lo(ﬂl.) the expression

(27) L"(&):_é‘. @(m+ﬁ)emp(-x2/2) J.:I: .

In the following we shall also use the property of the
error integral @(m) (Tanke et al.,197T)

289 Q)= 1 - Bl
Obviously, according to (26),the quantity (2JL) (2&) A ( )
may be expressed asg a sum of the four :Ln'begralsL (ﬂ(i = 1,...,4)',

i
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defined by the next relations

e Ly®)= §= Pecremp [—(m-ﬁ)’/z] dx

=- g@(m&) d exp E(m—ﬂ)z/z] .
+ 4 g@(m+m exp E—(m—-ﬂ.)z/?.:‘ dx

Integrating by parts the first term in the right-hand

side of the above expression,finally we obtain

o0 L= 3h) expl-428)+ (V) “emp(- 2)
+4 ‘g@(w+mexf> [.(:r.-ﬂ)z/2:| cl. x .

Further we have

(31) Lz(gt)= -'S z@(m&-ﬁ)wfa l:-(:r_-l-mz/ 2.] cl:r,

= So@(:um d exp E(:r.a-ﬂ,)z/z:l
+'PL§°¢(:1:+%)€3CP E(oc+ﬁ)2/z] dx .

By an analogy with L i(g") , the final result is
~4/2 o0

(32) Lz(%)=- Q(%)exf(-k%.) ~(2¢) Soeacf:.(m+3.)2 dx
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+R S @ $+R)€xf»l:(‘.n+ﬁ.) /2.] cl,x
(33)L (ﬂ)— Sff-@(rx R) excp l:x-PL) /2 de = Lz(-ﬁ),
(341 L JR)= fzx@(x—ﬂ) emp[ ~(c+4) /2 J.:x::Li(-PL) .

Co n, quently

- ZLg&Hz)’ expleR2)+ & [M R+, |

— (L;;i,)'uz{f exp E(:H Kﬂc{x +‘§°€0=1>[- (2- mz] A.x} ,

where the notations

(36)M1(m=}?(x+a) _ﬂj&_g@m—ma};[&*—ﬂﬂdm

and

(37)M2(m=§°@(x+ﬁ) ‘m"'m:ldm S@( ) emP ('-!-R)

are used.Uging the property (28) it may be shown that

(38)3%& lt(mﬂ)}\ -S[: 1-98 }I‘,E (ﬁc*r{l)"]cl:‘t

—S@CF SALES S@(wrﬂ)exfl:(x-a)/]&x.

It is eas y to see that

(39) Mi(ﬂ) S @(OHZPL)Q!IP(-:JC /Z)A.:r. -Vz—ﬂ:l@( K_}
L. - Vo P-R)
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Analogically,using again the property (28),the second

term in the square brackets in_the right-hand side of (35) may
be computed as follows

(40) M?_(M =_S“ ¢ (o) em{:(-mz/z)o[m -(zﬁ“t)m[i- q’(—-ﬂ):l
= L (0 -V + Vo® $(-R) .

Substituting the results (39) and (40) into (35),and
performing the transifion from the variable X to XY 2 ,and

|
denoting also by Pt.r-‘R.uz in the brace parentheses of the
last term of (35),we find that

1/2 :

1) (29C) (ZB,)ZAi(‘PL)E > L&
=1
= 07 "exph?) 4R [ L, 2R) 4L, 0)-VEF |
™ [y s@n |

where

= Ny R) = gemFE(m+%)2/2] cl:r. , |

and

oo
2
(43) JV‘Z(M = ge&!? E(::-R) /2]4::: =JV1('PL) .
There is not difficulties to find analytical expressions

for the integ,rals,N.‘i(R_') and,_N-é(P\,‘) .
@ Ny (R =23 B¢-R") .

According to (28)
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wn N R)=x -Vax QW) .

oo W) Dowh + M@ =7,

Returning to the definition (27) and differentiating
this expression with respect to 8. ,we have

oy LB exp 8 Comn (o2 2 ) L
wn - ..S:xr(m EILE

According to Gradshtein et al.(1963) (formula 3.323.2)

o 2
mtgshie - E ek

for F A >0 .
Substituting in the above expression Pﬂ. = 1 and 1::%
’
we obtain the following differential equation for Lo(.?,,)

- d LR
(49) - V;" ex?(-‘ﬂ.z/’t) :

Its solution is equal to

so L.R) =Vz Q@AZ) +C,

wherec is an arbitrary constant.Using the condition that

the error integral is equal to unity at infinity (e.g.,@(ﬂ): 1),
from (50) follows that L,o(oa) = V2:]'{_, o+ C. +On the other hand
from (27) we have LO(OO)-_; 291 .Consequently,c = 0,Taking

into account that @(0) = 1/2 ,we may write
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sn L (0) = V2"
2 L @R) =123 ayT) :

and
s L8 +L ©0)-\zF =Vzx QRw)-Varz .
Substituting (46) and (53) into (41) we cbtain the final

expression for Ai(ﬁ.)

01 R ) e emp(e?)- o2
o AR =03 (2 . ol "-xf’("‘ )- T2
AN A m?]} .

Using (25),the expression (24) for AZ(‘R) may be

rewritten as

(55) A ('PL “"(ZPLW [Pi(ﬂ) P &):l

where

o PR = §nc exp -(:r.+ﬁ) /2 dx
s P,(R) —‘iooe exp | - [ (x-R) /2, doc .

It is easy to check tha'ls

8 Py(R) = exp(-R%/2) - RN (R)
5 P, (R)=Py(-R) = exp(-8*/2)+ RN, (R).

Consequently, taking into account (42),(43) and (28)

’
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- -4
o AR =@ARE) R [M@ R = 172,

Of course,this result would be expected from our assum-

ption S = 1 ,a29 mentioned ecarlier,under the circumstance
that the integral (24) gives the half of the area enclosed
within%('x) and the abs¢issa (ld. = 0),and the ordinate (% = O);
Equating the right-hand sides of the expressions (21) and (22)

we can obtain the value of & ,which we shall denote by 6'3-6'

This means that we have approximated the smoothed quasi-gaussian

curve %(&3 with an exactly Gaussian curve which has the same

y~coordinate of the center of weight as the %(m) do {(and

also S = 1 ).The final expression for OJ\J.G' yaccording to (5%)

and (60),is

2

-~

exp ('sz)'i +8

(61) 0”%(.’: TN 9

-

V2’

v S@v)-

i

2

—

-4

-

One may check that the passage to the limit a. =0 in

the sbhove expression gives a reasonable resuli,e.g.,, lim OJ%G,(K)

= 1 (in view of the substitution;b_;

—0

= 1).Thig check may be

performed by using the L'Hospital’s rule for evaluation of

indeterminate expressions in terms of the ratio 0/0 . In

Figures 1 and 2 the dependence ofl:O"G(-ﬂ) 6"]/0-' vs. Z-R,/o"

ig plotted by dashed lines.At first glance,the analytical

expressions (19) (or(20)) and (61) giving the dependences

between the smoothed values of O and 2% for two different
[ -

methods of approximation of %(:x:) are very different.But as

can be seen from Figures 1 and 2,the solid and the dashed lines
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are very close each to other.This result is not surprising
because if the width of the scanming slit zﬂ is not too large,
the width of the smoothed curve O is not too different from
the width of the unsmocothed curve 5'0 .This is not a mew
conclusion,but the aim of this paper is to get quomtitative
expressions giving exact analytical connections between and
G:, depending on Z‘Pt .In rezgl-time astronomical observations
the scanning of turbulent stellar images by a slit "enlarges"
their sizes typically by an amount of 0.5 - 1.5 per cent. Such
sn accuracy of the estimation o:EG'; is useful if a reconstruc-

tion of long-exposure turbulent astronomical images is applied.
V. Discussion

The formula (20) is obtained without the assumption that
6 is & priori close ‘boﬁ; .In the later case this expression
may be simplified.Taking into account that 5‘?41 ( 0‘; = 1)
and using the expamsion of the logarithmic function in a
series we may write the following approximate expansion
(Rorn et al,,1977)
200? P4

+ =
f+o* o+
and substituting this result into (20) to obtain

1/2,
2 - :
o ho=| 30+ 4 ) n ¢+:§;,; Vali-1)

Remembering that in the above formula OE g and R are

fn 27 o 4
(62) '{:&:‘z— ~

measured in units of Oy (e.g.,it has been assumed that G, = 1),
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(63) may be rewritten as

1/2
() oo = (0, +2%3)

where 0 , O'i‘sand R are evaluated in ordinary units (angular
or linear).

Instead of the lé,& -coordinate of the area S enclosed
by the Gaussian curve "gﬁ(&) it is alsoc possible to use the
x~-coordinate ocG of the center of weight of this area foxr X 20
(orl‘xGI for ¢ <0 ).In place of formula (21) in this case
we are able to introduce a mew relation which includes the

unknown parameter O (Fihtengoltz,1969)

(65) x(’r = 92./31 o .

Kote that in the above expression the a:ceas doeg not appear,

ot
€eB.,this evaluation is independent of the normalization of %G(:g)_

Nevertheless,when this coordinate :!:G must be computed from

L o
the smoothed "obhserved"® curve%(ﬁ'—) it is necessary to decompose

the area S into two areas with equal sizes Si(mz°)=32fxé°)=5/z-

Then we have to egtimate thel'xl ~coordinate of the center of
weight for every one part of the area S and to take the
arithmetic mean wvalue.So the estimation of :I:G_ will be to some
extent dependent from the way by which the area S (enclosed
within the smoothed curve %('I.) and the axis X ) is separated.

Such g procedure of decomposition is absent when we are dealing

with the determination of & +through the % G -coordinate.For
this reason in this paper we have preferred to evaluate 6
(by the method of the center of weight) using only the formula
(21) but not the expression (65).
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