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Scanning of stellar images by a slit diafragm
and estimation of their parameters. II. Smoothing of
stellar images having a quasi-Gamssian intensity

distribution
D. V. Dimitrov
ABSTRACT

The distortions due to the scanning of stellar images with
a quasi-Gaussian intensity distribution (e _exF(_.Lz“-e/ﬁ ) ) by
a slit diafragm are investigated.lt is assumed a constant value
of the power-"rl_c .The smoothed by the diafragm intensity distri-
bution is again approximated by a function of the same kind,but
the power?{,(tﬁ) in this case depends on the slit position with
respect to the center of the image.There is also dependence on
the slit width 2,2. (in units of the stellar image size &
B= (20"’2 )nc ) .We analyze the relation between"ﬁ(m) and Mo
by means of analytical expressions and numerical methods. The

results are presented graphically.
Key words: stellar images,scanning,approximation.
I. Introduction

Knowledge of the intensity distribution within the
long-exposure stellar images has important consequences for the
precise photometrical study of the astronomical objects. The
solution of this task is also valuable when a reconstruction of
extended images is applied.In many cases this intensity distri-
bution is well fitted (in a first-order approximation) by a

Gaussian function.Nevertheless, there is a sense to attempt for

136



such purposes other functional approximations in order to
improve the fitting.In general,we expect that the extention of
the fitting will include an additional number of parameters.The
appropriateness of the new generalized ap@roximation depends on
the possibility to measure the introduced parameters and to
evaluate accuratelly their errors.In this paper we investigate
a quasi-Gaussian distributiom,where the power of the argument of
the exponential function is not fixed equal to 2,as in the case
of a Gaussian distribution,but is allowed to vary within given
limits.

Let us introduce in the focal plane of the telescope
(or in the plane of the plate,if photographic images are scanned)
a Cartesian coordinate system (m,%) .Its origin is set to
coincide with the center of the smeared stellar image under
consideration.We suppose also that these long-exposure images
are not elongated due to the badly guiding or to the atmospheric
dispersion.Therefore, the measured intemsity distribution is
determined only by the radial distance from the center of the
image .-LE(,J:Z_‘_%Z )1/2

bution is given hy

(1) %(‘x,'j)z %(‘L)-‘- 5@:1:(-"273)'5 Se“[’ '(T'%G'z)n

where S is a normalization constant related to the total flux

.The investigated in this paper distri-

in the image andB:—'_(ZO"z)“characterises the size of the image.
The power TL is a new parameter.Its difference from unity
describes the difference of So('?.) ,given by (1),from the Gaussian
curve for which L = 1.It would be notted that the changes of
M. affect mainly the slope of the curve %("L) ,but have a
1ittle influence on its width,It would also be emphasized that
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O and L are independent parameters,and the expression (1) is
a 3-parametric curve,depending not only on the space coordinate
T ,but also on the parameters $ , O and ML +Obviously, in
the particular case of a Gaussian distribution, T, is a constant
equal to 1, and 0"2 is the dispersion.If TL = const,but is not
equal to 1,_Wd" gives the radial distance from the center of
the image at which the intensity drops to eﬂi= 36.8 % from the

central value (like the Gaussian case).
IT. Definitiom of the problem

If M. does not depend on U ,there is no difficulty to
express this quantity through %(‘1) and its derivatives %'('L) and
g/"('{._) ,where the prime’s denote differentiating with respect
to L .For this purpose we may take the natural logarithms from
the two sides of (1),and after differentiating with respect to

T ,we have

w -3 _ an 2" >0 ; n=const,
4(T) B |

Both sides of the above expression are positive for T D0

and we may again take the natural logarithms from the left and
right hand sides of (2),and differentiate with respect to T .The
final expression for T is (Dimitrov, 1980a)

_ § ) 4')
3 n= 0.5 {1 +7T 8.'(‘?,) — %("L) =C0T'$+—-

It would be stressed that in the above computations we have

essentially used the basic assumption that the power M. does not

depend on ' .Strictly speaking,the theoretical investigations of
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the intensity distribution within the turbulent stellar images
show that Tv may be not only smaller than unity,but also depends
on " (Dimitrov,1980b).An analogical situation when M. # const
may arise alsc when photographical images are approximated by

the guasi-Gaunssian curve (1).0ur intention is to investigate the
smoothing effect on the distribution (1) caused by the scamming
procedure.Throughout this paper we are dealing with an infinitely
long slit diafragm aligned to the axis l# «The slit has a finite
width Z‘R: .Further, the abscissa of the middle line (parallel to
axis % ) of the slit is denoted by £ .Then the transmitted

through the diafragm energy flux is given by (Dimitrov,1980a}

&-!-‘P\ — oo — — -
9 n

(4) 22@(&): SSJ: _S&F - (mg% ) Jﬁr >tJ.:r.1,

S — ——

—

PN .
where %(&) is the smoothed by the slit diafragm quasi-Gaussian
distribution (1).
[ a N ]
Let us approximate %(!I:) ,by analogy with %(’l) ,by a

quasi-Gaussian curve of the same kind as the distribution (1)
N

<5>?;m) Setf EE@F -(:m’/z'c;"z'rL
B=(2 2)'“‘

where the tilde’s denote quantlta.es related to the ‘s\n}oothed

=F
distribution.What may be said about the parameters 'S 6" and
Lt

M with respect to their unsmoothed values S 0 anda TL ,

o

reapectively? The scanning does not change the total energy flux
from the image,but slightly enlarges its width a:nd decreases its

central intensity,correspondingly.Consequently, S 45
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Gaussian curves, this increasing 0f0‘3 relative to q is of the
order of e~ 1 % (Dimitrov,paper in this volume).There is not reason
to believe that the situation is essemtially distinet in the
non-Gaussian case (M. # 1),provided that M, is not too different
from unity.Because we are not interesting now of the total flux,
the only remaining parameter which we shall investigate in this
work is the quan-bityr’ﬁ ydescribing the variation of the slope of
the function ‘g(m) .In general,we may expect that ﬁ depends on
the position of the scanning slit X ,even if M, is a constant.
According to (4),the smoothed curve %(ﬂ:) represents an

averaging of %('Z.:" J.'-?'-I'H'z )over the diafragm area.Hevertheless,
the scanmning along the axis % ,with a consequent using of the
approximation (5),gives a (distorted) local estimation‘?{ for the
quantity M. .We may uwse the scanning data in an attempt to
evaluate "?1.‘ mg(m) by means of a relation which is an analogy
to the formula (3)

~ et -
¢ q(=)

3@ G/ |’

[
(>0 and lecallym = constant),

© Mx)=05 |4 +=x

where the prime’s demote differentiating of the smoothed curve
-~
%—(&) with respect to & .It would be noted that the application
of (6) to the data does not require knowledge of the parameters
S andB =(20" ) ,but the center of the image must be
preliminary known (because we have set the abscissa of the center
of the image Xy to be equal te zero).

Generally speaking,there are two distinct reasons for

to depend om X
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(i) The intrinsic variability of the undisturbed by the
scamming power 'Y'L::TL(T, :"x?‘,*_ %2 ) (Dimitrov, 1980b). It is
suitable to measure this functional dependence by a circular
diafragm with a radius well bellow the size of the stellar image
0  ,but not by a slit diafragm which may have a width 24
comparable to 0~ .This source of global variability is fully
neglected in the present work.Throughout this paper it is assumed
that the quantity . has a constant global value ‘T'I..c ywhich to
some extent is an averaged over to whole stellar image mean
value of the functiom M (T) ; |

(ii) According to (4), the total intensity transmitted
through the slit is a linear superposition of the intensities
from different points of the image,which are not the same as the
intensity at .-.Ehe point (x,y = 0). Comsequently,the smoothed
distribution %(I) is characterized by a power r'ﬁ ydifferent
from TLC .and depending om )¢ even if T'Lc = constant.Because the
slit is perpemdicular to the axis X ,we expect that the points
near the abscissa give the main contributionm to the total
transmitted flux.In that semse,rounthly speaking,'g-:(m) represents
a "radially® smoothed distributionm of the umperturbed quasi-
Gaussian functiom %("(.:ac,%go ) (1).For this reason,we have
adopted formula (6),by analogy with (3),to compute the global
changes of the local (slit averaged) values of rﬁ,('.l:) .

It would be mentioned that the presence of the second
'de.ri'\ra;tive‘g,."(m) in the expression (6) requires using of a wider
slit diafragm in order to measure N(:r,) with a high enough signal
to noise ratio (the derivatives N'(x) and %"(sc) are numeri-
cally computed frmn%:(x) ).This obstacle introduces larger
smoothing of the parameters S , O and exceptiomally TL .
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In the next sections of this paper we give a quantitative
eva.lua.t:l.on of the differences between‘n.(:r,) and ‘n_ = const ,
depending on the slit width ZFL

ITTI. Analytical expressions

According to our preceeding assumptions we set into (4)
Tn =---’l“lc= const and s = 1, The later equality is introduced
because we are not interesting onm the total flux,but only on the
slope of the distribution ‘g,’('x.) .Paking into account that the
stellar image is symmetric with respect to axis X ,the integra-
tion over % may be performed omly from zero to infinity,and (4)

can be rewritten as

T+l oo

o §=K° ] {Senpl -l ) /B dy 1
x-f oo
o SwP[ ey /B:I i%}i’ni

Differentiating the above expression with respect to X
one or two tlmes we obtain amalytical results for the first g (x)
and second% (:I!) derivatives,respectively

2 2™
(8) %l(m)z K-igwr - [(x*‘o‘] “'?] (l%

B

_R-iioem - [(x_ﬂf*_%z]n“ ‘15};

B
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(x +Pv.):5° I:('J:+PL)2+ 3/2] men?
X exp {- l:(:zr:+ﬂ.)2 + I(Jr?': 1“7B} (J.lé,
1

-~ (m-—ﬂ,)oso[(m_ M?- R 3’2: n -

' e'x.‘:{- [ +y’] “75}&%:“ .

a) Scanning of stellar images vaving an exact Gaussian

distribution by an infinitely thin slit ( ‘n.c = 1,& £LL070)

Let us denote by J{ the constant

w %= fop(y/B)dy.

We set'”n.c = 1 in the formulae (7) - (9) and use the
L'Hospital’s rule for evaluation of indeterminate expressions in
terms of the ratio 0/0 in order to perform the tramnsition ‘PL---O.
Because in (6) we are involved only the ratios of the functions
L oo | N“

%('x) ,_.% (!I‘.) and % (x.) ,without loosing of generality we set
further S = 1.

oo o o) = o RF]_ g, 4 < [k5e]

f—o0

= 2K exp(- SL‘?‘/B) ;
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(13) -&/m. %"( ) = — %/m ‘K-i(m+3.)

xexP[ (x+R) /B:I +h (:)c—ma‘nibl: x- &)/B:]}
A% (34 -22%/B )exp(-=*/B)

From (11) - (13) it follows

(14) %”(x)/ @'(ﬂ:) =x'_22/B ,

(15) gf(m)/g(m)._-__zm/B ,

where there is not need to compute the constant 3{ from (10).

From the above two equalities it obvmusly follows,according to (6),
that the smoothed value of the power 'n.(:x:) is exactly equal to
unity constant,independent of X .Consequently,when images with a
Gaussian distribution of the intemsity are scanned by a narrow
infinitely long slit, the resulting distribution is agaln a Gaussian
one ( ‘n.[:n) = 4 ) with the same dispersion 0’ (Dimitrov,
paper in this volume).Intuitively,we should expect that the
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situation with the slope of the smoothed curve is not different
in the case when M(X) is close to unity,but the gquantitative
check of this statement requires numerical calculations,as it is

done in the next section.

b) Scanning of stellar images having an exact Gaussian

distribution by a slit with a width Z.‘R. comparable to the
size of the image O~ ( Tlc = 1, Z,-Pl, 2, G’)

Let us compute the integral

) ert ) Jen -,
o L= VB exp(-27/B) .

We can express %(.‘x:) % (:!'_) a.nd% (‘J'.) through the
function L('-Z) Substltutmg'n. -1 in the formulae (7) - (9)

=R V2 (oct m_/V‘E'

(16) %'(x)--ﬂ j.L( cl.:: FB emp(-mf'/z)cl::
'V"(:r-ﬁ)/Vﬁ'

Finally,we get the following expression for the smoothed

curve g(nc)

(19) ‘%’(m)z %—— ;@ [W(x*'ﬂ)/ﬁ]
- | -R)/ V]

we have
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wheTe @(m):(?,ﬁt)_i/z SexP(.-tz/Z) cH'. is the error

integral (Korm et al.,1977).Further,from (8) we have

(20) '%,'(:x) = Px-i [3{.(&+m- J((ﬂt'%)]

_\%B (x+R) (x-&)*
=2k | B '_'mf B ’

Correspondingly,from (9) follows that

(21) rg"(:n:) == (Z/KB) [(m-rﬁ):]{(m?u) - (m-ﬂ.):]{ (ﬂ'-'ail

=(1/4VB { (=-Rezp[-(=-R)/B]
~(c+R) exp :- (o + %)Z/B:l } .

The error Integral Q(Dl) is tabulated in many reference

books (Abramowitz et al., 1979,chapter 7 ; Janke et al., 1977 ;
Korn et al., 1977).There are also analytical expressions for its
calculation (Abramowitz et al., 1979,chapter 7).Therefore,the
expressions (19) - (21) enable us to calculate analytically the
local values of the smoothed power R(x) by setting them into
formula {6).The results Tﬂf(m) are listed in Table 1 (first rows)
for M, = 1 and 6° =1 (e.g., BB = 2).The width of the slit 28
varies from 0.30 to 2.50 (in units 0 = 1).It is evident that
'?{(:l:) is at some extent larger than the unsmoothed value M, = 1
if the width of the slit Zﬂ, is comparable to the diameter of

the stellar image 2,0" «»The enlargement is more pronounced when
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the outer parts of the images are scanned and may reach the order
of a few per cent.But it would be emphasized that the scanming
procedure gives here not very good signal to neise ratio in
comparision to the central parts of the images.We may expect that
a such enlargement of the smoothed powers W(:x:) will be seen in
the cases when ’h.c # 1. This can be understood in the following
way.The smaller values of the power TV in the expression (1) mean
that its central part (giving the main contribution into the flux)
is sharper.The scanning of the image flattens its shape and ,
consequently,we expect that the smoothed power"l‘\: is larger.This
qualitative treatment is checked in the next section (Fig.1 a-i).

IV. Numerical evaluations (M, < 1)

Computing of the smoothed values of the power r‘\":(:r.) reguires
numerical integrations of the expressions (8) and (9).In view of
the fact that the turbulent stellar images have an intrinsic
(variable) power 'n.("(,) less than unity (Dimitrov, 1980b,Fig.2),we
have considered only (constant) unsmoothed powers 'n'c also less
than wnity: Tt, = 0.55,0.60,...,0. 95 and 1.00,Tt would 1 be noted
that the numerical integration of %,(:x:) (eq.(8)) and% (m)
(eq.(9)) must be performed only by one Cartesian coordinate .
For the expression (7) a similar numerical integration (in that
case by two Cartesian coordinates :)‘,'.i and % ) is more tedious.
Of course,the expression (7) for %(m) may be simplificated if
instead of Cartesian coordinates (:I:i,.% ) polar coordinates
(T ,9 ) are used.In the later case it is possible to perform
an analytical integration over the polar angle 9 ,and then it
remains to integrate over I numerically.In the case of polar

coordinates (L, 0 ) it may be shown that instead of (7) we can
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use the expressions (s = 1)

(22) g‘(m)zjta’i S*c eaco(- 'me/B ) d
A fr () e /B ) e

T

. _i-igatam(x;‘ﬂ )&F(“Iznc/B)AI ,

(2 Glax)= ﬂ-:S_ . "“‘“CDS(K;PL )E”'F(' ?‘mc/B)AR'
R = A T

x+h
for :!:Z_‘R, .

But even this method of numerical integration over 7 ’

with a view to obtainrg(!r.) yrequires more computations in
compaiision with the direct numerical integration of the deriva-
tive %’(:x:) .We here suppose that the derivative g’(m) is already
computed from the analytical expression (20).Because (20) and (21)
are analytical formulae,the term "numerical" in our method means
that we only perform a numerical integration over of the
function g'(:x:) .The constant of integration was found from the
condition @’ (00) = 0.This integration constant would not be
mistaken with the normalization constant S which was already
been set equal to unity in the expressions (7) - (9).The computed
values of %(:n) ,gl(:x) andrg-"(ﬂ!) for & ranging from 0.0 to

3,0 (in units 0 = 1) were used for evaluation e-f"rr(a:) according
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to formula (6).The results are expressed in Fig.1 a-i ,and for
the Gaussian case ('n.c = 1 ) in Table 1 (second rows).In all
cases we have set 0 = 1 (respectively-,B = 2:“"-‘- ).

V. Discussion

From Fig.1 a=i it is evident that the finite width of the
slit diafragm causes an increasing of the power R(’x) relatively
to the unsmoothed comstant value ‘n,c .This is more clearly
manifested for the central ranges of the scanned stellar images.
This circumstance is an essential deficiency of a such kind of
measurements of the intensity distribution,because here is
concentrated the dominant part of the light flux.As would be
expected, if the slit width Z,FI. is greater,the greater are the
distortions of the power T .It is evident the tendency of their
sharp increasing when 2,3, becomes of the order or even greater
than O  .Moreover,when the difference ITLC - 1| is larger, the
larger is the distinction between W(:r.) and M, .

In the Gaussian case 'n.c = 1,the results obtained by the
numerical integration are compared with the results obtained by
the amalytical expressions (6),(18) - (21) (Table 1,second and
first rows,respectively).The agreement between these values is
satisfied with the exeption of :r.?_, 3.0.The discrepancies are due
to the insufficient accuracy of the numerical integration at

large & .In that case the dlstrlbutlong,(m) is obtained by the

¢
- g(m)-Sg @ )de,+ G Y Fle)am +Cy

L=0
where Ci is an integration comstant, AL is the step of the

mmerical integration of 5: (:r_)

integration, Xy = 0,and X =X .A small inaccuracy arising
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during the procedure of the numerical integration (24) may lead
to a certain inaccuracy in deriving of the constant Ci when the

boundary condition

~
(25) Zom. %(9"-)= 0

X —=eco
is used.A systematic underestimation of Ci arises from the

impossibility to perform the numerical integration in (24) strict-
ly to X = +©® in order to compute Ci from (25).Consequently,
the values of %’mﬁ?) may be turned out to be lower by a comnstant
value.For large & , ?(ﬁt) is close to iero-,and the reduce of
leads to the overestimate of the ratio %'(m)/(}'(ac) ,and according
to (6),to the overestimatiom of 'ﬁ(:c) .

In the quasi-Gaussian case (ﬂ°< 1),it may be seen that
for &> 07 , 'g:(:r.) will decrease (with the increasing of & )
more slowly than when TLc= 1,and this slow down is more pronounced
for "ﬂ.c more different from unity.Consequently,for smaller 'n.c the
erroreousness of the integration comstant C 4 (and respectively,
of '(E}'(oc) at large & ) will also be smaller.According to Table 1,
the accuracy of the numerical integration is checked in comparison
with the analytical method for the Gaussian case ’n.c = 1,Taking
into account the above considerations,we are certain that the
graphic results presented in Fig.1 a-i are realible for 2‘.52.8 .

Instead of the boundary comdition at infinity (25),we are
able to mse another boundary condition when the slit diafragm is
placed at the center of the stellar image ¥ = O.Remembering that
we already have assumed o’ = S = 1,from (22) follows an analy~
tical expression for ?(320)

(26) C,= g(O) = f]fﬁ"i S'T- exP(—'LG“’/B) J.'L
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- zﬁ"i OSO'L atecod (‘PL/'L) exF(-'L?"n°/ B) d

B Sid JER Yy f vt () explC 7B) ke,

Tan h

whereBd./nc:: 2 and r( 1/“1) is the Gamma function with

argument 1/’nc .Consequently, instead of (24),we may use the

numerical evaluation e
(27) §(3)=S§'(m1)hi+cz?= Z @'(mL)Am +C2 ’
0 (=0

where CZ is computed from (26).0f course,if we were able to
evaluate Ci and C‘Z. accurately,we should obtain C:L = CZ -1t
is evident that the accuracy of determination of the constant C2.
is not affected by the integration of%l(m) over L and depends
only on the numerical evaluation of the integral in the right-
-hand side of (26).

If the expression (27) is used to compute g(&‘.) , than the
inaccuracities will be accumulated at large X .In the opposite
case, the estimate of the constant Ci has accumulated all errors
during the numerical integration of g '(:x.) from O to infinity.
Consequently, the increasing of X0 in (24) will lead to an
increasing compensation of the error of the constant Ci .In spite
of that,the equatiom (27) gives a more exact estimation for x~0;3

~~ ~r,

here %(&:) is close to its maximal vaelue, @ () is close to zero,

and consequently,the ratio % (:x:)/ g,(!l‘.) does not depend strongly
[ e d

on the error of %(&) .We prefered to use the value of Ci

instead that of Cz.
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It would also be noted that if the functions (}(DC) g (n:)
andgr (:];) are simultaneously increased (or reduced) because of

the finite integration step A\ ¢ ,this will not affect on T\-(O:)
VI. Conclusions

In this paper we have considered stellar images with a

circular quasi-Gaussian unsmoothed intensity distribution %('L)N

AN
-Q:I'Ji)(- /B) ,where the power'ﬂ. has a global (for the whole area
of the image) constant value.It is investigated the smoothing

effect on this parameter when the images are scamned by an infini-
tely lomg slit with a finite width Z'PL .In all cases the trans-
mitted flux again may be approximated by a quasi-Gaussian
distribution of the same kind,but the "observed" pawer?‘t depends
on the position of the slit and has always values greater than Tl.c
(for reasomable values of the ratio Z»R,/o" ). The numerically
computed relations between?c(x) and T'Lc (for a preliminary known
value of Z'R,/a" ) may be used to correct the measured 'ﬁf(&) 's
in order to obtain the unsmoothed power TLc .As can be seen from
Fig.1 a-i , U(%) is close to unity at the center of the images,
increases to a maximal value (if 1.00 R./o" s,‘r_ ;_'.:._’ 1.25 &/o")
and for large X tends to T\.c At first glance, it may be suggested
that it is better te evalua‘teTLc from scans made far from the
center of the image.However,it would be stressed that,according
to (6),we must evaluate from the data not only the first deriva-
tive g'(m) ,but also the second derivative @’Il(m) .To obtain a
better accuracy, this leads to the necessity to use a larger slit
width Z‘P‘./O" (which gives a better signal to moise ratio),and
consequently, to enlarge the difference '?f(m)— n

o
In the opposite case,when the central parts of the images
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are scanned,it may arise another difficulty,which is not considered
in this paper.For a real-time photoelectrically scanned turbulent
stellar disks, the power M, has not a constant valueTLc and varies
rapidly with respect to T at the center of the images (Dimitrov,
1980b, Fig. 2) .Moreover, even if 'Tl.c = constant for L o O,as follows
from Fig.?1 a-i ,the smoothed values ai(sc) are very close to umity,
independently of the fact how different is1tc from unity. This
leads t0 a greate ambiguity in the restoration of the original
values of’TLc sunsmoothed by the ?ift diafragm.Therefore, instead of
the obstacle that the differences Tl-(m)—'TLc are large at the
"middle" parts of the images (Fig.1; 0.5 0" S X L 2.5¢” ),it is
preferable to use just this range of the scans,because the correc-
tions "F‘L(:x:) -'n.c may be determined with a relatively sufficient

accuracy.
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Table 1

Comparison between analytically (first rows) and numerically

) ~r
(second rows) computed smoothed values of the power T\.(I)"

Gaussian case: Mg = 1.00; B =2 (g7 =1)
N (x)

m'&& 0.30 0.60 1.00 1.40 2,00 2.50
— | 1.000 1,000 1,000 1,000 1,001 1,002
°+2 1 4.000 0.998 1.000 0.999 1,000 1,001
1.000 1,000 1.000 1.001 1,003 1,008
> 1 1000 0.999 0.999 1,000 1.003 1.007
1.000 1,000 1.000 1.002 1.007 1.016
0-6 0.999 0.999 1.000 1,001 1.006 1.015
| 1.000  1.000 1.001 1,003  1.012 1,027
0.8 0.999 0.999 1,000 1.002 1,011 1,026
1,000 1,000 1,001 1,005 1.018 1,039
"% 1 6.99  o0l999 1.000 1.004 1,017 1.038
1.000 1.000 1,002 1,007 1,024 1,052
121 0,999 0.999 1.001 1.006 1,023 1,051
1,000 1.000 1.003 1.010 1.033 1,069
2 5999 0.999 1,002 1.009 1.033 1,067
— | 1.000 1,000 1.004 1.013 1,042 1,083
% 4. 000 0.999 1.003 1,013 1,042 1,082
| o.999 1,001 1,005 1.016 1.050 1,093
L 1,004 1.007 1,017 1,050 1,093
| 1.004 1.002  1.006 1.019 1,056 1.100
>4 o 1,014 1,015 1,026 1,060 1.101
1.000 1.000 1.008 1.022 1,060 1.105
2T | 4.03 1.047 1,045 1.050 1.079 1.115
0.992 0.999 1.009 1.026 1,063 1.107
01 o 1.176 1.159 1.149 1.119 1.133
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Pigure Captions

o~
Fig.1 a-i .Dependence of the smoothed power TL(X) vs. the

infinite slit position. Thin solid lines: [y [o” = 0.15 ; thin

dashed lines:"R:/O" - 0.30 ; dotted limes: R /a‘: 0.50 ; dash-dotted

L]

lines:‘PL/O‘" = 0,70 3 thick solid lmes:FL/f = 1.00 ;crosses:

R./o" = 14.25 .

a-n=0.55:;05b - .= 0.60

o ¢ - n= 0.65 ; d - n.= 0,70 ;

e -n = 0,75

o f-ns= 0.80 ; g - n,= 0.85 ; h - m,= 0.90 ;

we

i-mn,=0.95. In each case the straight thick dashed line indica-
tes the corresponding unsmoothed comstant global wvalue of 'n'c

155



156



157



XXX RKAMHXXAX KRR XX XK N N XX XKXAX

S s . -

158



