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Abstract. The set of equations for magnetohydrodynamic (MHD) waves in a shear flow is consec-
utively derived. This investigation is devoted on the wave heating of space plasmas. The proposed
scenario involves the presence of a self-sustained turbulence and magnetic field. In the framework of
Langevin—Burgers approach the influence of the turbulence is described by an additional external ran-
dom force in the MHD system. Kinetic equation for the spectral density of the slow magnetosonic
(Alfvénic) mode is derived in the short wavelength (WKB) approximation. The results show a pressing
need for conduction of numerical Monte Carlo (MC) simulations with a random driver to take into
account the influence of the long wavelength modes and to give a more precise analytical assessment
of the short ones. Realistic MC calculations for the heating rate and shear stress tensor should give
an answer to the perplexing problem for the missing viscosity in accretion disks and reveal why the
quasars are the most powerful sources of light in the universe. It is supposed that the heating mech-
anism by Alfvén waves absorption is common for many kinds of space plasmas from solar corona to
active galactic nuclei and the solution of these longstanding puzzles deserves active interdisciplinary
research. The work is illustrated by typical solutions of MHD equations and their spectral densities
obtained by numerical calculations or by analytical solutions with the help of Heun functions. The
amplification coeflicient of slow magnetosonic wave in shear flow is analytically calculated. Pictorially
speaking, if in WKB approximation we treat Alfvén waves as particles — this amplification is effect of
“lasing of alfvons.”

Key words: MHD waves, shear flow, magnetosonic waves, wave amplification, accretion disks, heating
of quasars, Heun function

KbM Teopusita Ha MArHUTOXUAPOAMHAMUYHUTE BbJIHU B CPs3Balll IIOTOK HA
3aMarHuTeHa TypOyJleHTHa mJja3Ma

Tonop M. Mumionos, fua I'. Manesa, 3siaran 1. JTumurpos, Tuxomup C. Xpucros

TlocnenoBarenno e m3BeneHa cucremara OT ypaBHeHus 3a MarmeroxuapoamHavuaau (MXJ1) Bbanun
B Cps3Ball IOTOK. 10Ba m3c/ieBaHe € IIOCBETEHO HA BBHJIHOBOTO HArpsiBaHe HAa KOCMHYECKa ILIa3Ma.
IIpemyraranusaT crieHapuil BKJIIOYBA CAMOIIOAbPIKAINA Ce TypPOy/IEHTHOCT ¥ MarHuTHO noje. B pamkure
na Jlamxkser-Bioprepcosus 1oaxo/1 BAUSHIETO HA TYPOYIEHTHOCTTA Ce OIIMCBA IPe3 €IHA JOIIb/IHITEIHA,
BBbHINHA ciaydaitna cuina B MX/I-maTa cucrema ypaBHeHud. KuHeTHYHOTO ypaBHEHHE 32 CIEKTPAHATA
wrbTHOCT Ha 6aBHaTa MarneTo3sykosa (Asndsenosa) Bbiana e u3seneno B Kbcosbianoso (BKB) npubim-
xkenme. Pesynrature nokassar Heobxomumocrra or wuciaenu Monre Kapno (MK) cumynanmm cbe ciy-
4gaifHo Bbp30yrKJaHe, KOUTO 13 OTYeTaT BINSHUETO HA JbJIINTE BbJIHA U 13 JAJAT 10 IPEenu3HO aHAJI-
THUYHO OTYMTAaHe Ha KbCuTe BbjHU. Peammcrumanun MK npecmsaramus 3a HarpeBaTeHATa MOIIHOCT U
CPSI3BAINMS TEH30D HA HAIPEXKEHHUSTA IIe JAJAT OTTOBOD HA CJIOKHUS IPOOJIEM 33 JIUICBAIIMS BU3SKO3M-
TeT B aKPEIMOHHIUTE IUCKOBE U II[e PA3KPUST 3a1[0 KBA3aPUTE CA HAN-MOIIHNTE U3TOYHNUNN HA CBETIINHA
BbB BeesieHara. [Lnanupanure MK npecmsaranusa Ha 0a3ara Ha aHAJIU3UPAHATA B CTATAATA CACTEMA
MX/I ypaBuenus mMorar na ObaaT BKJIIOYEHH B IUIOOAHU MOME/IM 33 aKPEIMOHHHU IUCKOBE & ChIIO
TaKa U HABCAKDb/E, KbIETO MMaMe CPsA3Ball IIOTOK B 3aMarHuTeHa TypOysiaeHTHa Ima3dMma. lI3kazamna
€ XUIOTe3a Y€ IUIA3MEHOTO HAarpsiBaHe MPEeIU3BUKAHO OT 3aTHXBaHEeTO Ha AJ(BEHOBH BbJIHU € OO0
MeXaHM3bM 334 HArpsBaHe B MHOrO Ciaydaum Ha acTtpodusmunHa mrazma or CirbHUeBaTa KOPOHA 0
AKTHUBHUTE TAJIAKTUYIHHU SIIPA M PA3PENIaBaHETO HA TE3W IBJINOCTOSIIN 3araJKM 3aC/Iy’KaBa aKTHBHO
MHTEPANCIUIIINHAPTHO u3cjeasane. Paborara e mmocrpupana ¢ tunmanau pentenus va MX/] ypaBaerus
M TeXHHUTE CIEKTPAJIHA IUTHTHOCTH, IIOJIy9€HU KAKTO IPe3 UUC/IeHU IIPECMATAHUS, TaKa U IPe3 aHAJIH-
THYHU PelleHus ¢ MoMOoITa Ha GyHKIuATe Ha XOHH. AHAJIMTUYHO € IPecMeTHAT ¥ KOeDHUIEHTHT Ha
ycusiBaHe HA 6aBHATA MArHUTO3BYKOBA BbJIHA OT Cps3Bainust HoToK. O6pa3HO Ka3aHO, AKO B K'bCOBBJIHOBO
BKB npubimxenue Tperupamve A eHoBuTe BbJIHA KAaTO YaCTUI, TOBA, ycuaBane e edexT Ha '"ja3epy-
Bame Ha Andonure." Tlpu anamuTUIHAS U3BO, Ce U3TOI3Ba (opMaIHOTO peaynupane Ha MX ]I ypesHe-
Hus 10 edekTuBHO ypasHenue Ha Lllpbomumrep.
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1 Introduction

The purpose of the present work is to give a detailed derivation of the stochastic mag-
netohydrodynamic (MHD) set of equations for a shear flow in a magnetized turbulent
plasma. The meticulously performed analysis of the MHD system sets the basis for fur-
ther Monte Carlo (MC) calculations devoted to reveal the basic physical phenomena in
accretion disk plasmas: their heating and the origin of a large effective viscosity signifi-
cantly exceeding the bare plasma one. The paper is organized as follows: short historical
remarks introducing to the readers the motivation for the current work are presented
in Sec. 2. Basic wave kinematics in a shear flow with a transition from Eulerian to La-
grangian coordinates is given in Sec. 3. Derivation and linearization of the full stochastic
MHD set of equations with external random forcing by turbulence is described in Sec. 4.
Plane waves anzatz in a shear flow is included for separation of variables and subse-
quent reduction from partial to ordinary differential equations is performed in Sec. 5.
The illustrative 2D case is analyzed in Sec. 6. Secular equation for the Alfvén waves
amplitudes is solved and the corresponding damping rate is obtained. Auxiliary problem
for the period averaged energy of an effective oscillator under a white noise is consid-
ered. Short wavelength (WKB) approximation is applied to the Alfvén waves amplitude
in Sec. 7 and is it shown that the Alfvén spectral density obeys an effective Boltzmann
equation. Sec. 8 treats the Langevin-Burgers MHD, modeling the influence of the tur-
bulence as a random external force in the momentum equation. Heating rate and shear
stress tensor calculated in the framework of WKB approximation are given in Sec. 9.
Further on, speculations on the origin of a large effective viscosity are proposed. Con-
clusive remarks and future perspectives are briefly discussed in Sec. 10. It is debated on
the kind of numerical analysis which has to be done in order to reveal the origin of the
huge effective viscosity, observed in the accreting magnetized turbulent plasma.

All the analytical calculations utilized in the current work, as well as some gen-
eral concepts for heating, related to the stochasticity of the investigated turbulent sys-
tem, are laid out in five separate appendices. Matrix presentation for Lagrange-Euler
transformations in the presence of a shear flow is reproduced in appendix A. Lineariza-
tion of the dynamic equations is performed in Appendix B. Detailed derivation of the
complete MHD set of equations for a magnetized plasma in a shear flow under the influ-
ence of a random noise is provided in appendix C. Test examples of MHD waves with a
restricted wave-vector orientation K, = 0, short wavelengths and small attenuation are
presented. The shear rate dependent damping of Alfvén waves propagating along the
magnetic field lines is calculated in appendix D. Several illustrative examples for the
power rate due to stochastic heating of a Brownian particle, oscillator under a white
noise and a free particle are applied in E to support the general consideration for a
white-noise driven heating, introduced in sec. 8.

2 Motivation

Matter accreting onto a compact object redistributes radially its angular momentum,
dissipates gravitational energy and forms a powerful source of radiation through physical
processes that still cannot be regarded as understood. Accreting plasma’s temperature
and pressure predict a molecular viscosity that is orders of magnitude too small to ac-
count for the observed radiation intensity. Thus the origin of a large effective viscosity in
the magnetized turbulent plasma of the accretion disks is a significant and yet unsolved
problem. We know how a laser emits light, how the luminescent lamp works, we know
how flash a fire-fly in the summer nights, but we do not know yet what is the mechanism
of glowing of the most luminous sources of light in the universe — we plan to reveal this
long-standing problem.

Frictional release of angular momentum is believed to be an important element in
stars formation as well. In our solar system, for instance, the large mass concentrated
into the sun carries only two percents of the angular momentum, while all the rest is
associated with the planetary motion. Next to the Galileo assertion “Eppur si muove”
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(and yet it does move), for half a century we still face the question “why does the Sun
not move (rotate) faster”. Presumably, at an early stage of the system’s formation the
proto-planetary disk has acted as a brake which slowed down the rotation of most of
the disk’s mass, so it could cluster and “ignite” as a star. Broadly, such a mechanism of
angular momentum release appears responsible for the formation of compact astrophys-
ical objects and possibly determines the universe in the way that we observe it today. In
this context, there still exists a central open question of what physical process produce
the friction forces that facilitate the stars formation.

The purpose of the present work is to demonstrate a strong energy dissipation in
a shear flow of a magnetized plasma based on a simple model. Despite the process’s
interdisciplinary nature, we will pursue a description that is built on first-principles
physics. Our leading hypothesis is that in a shear flow of the almost inviscid plasma
the Alfvén waves get amplified [1] and later have their energy thermalized, i.e. “lasing”
of Alfvén waves is the basis of dissipation in accretion disks. We select an approach
which is statistical rather than fluid-mechanical, by employing a kinetic equation for
the spectral density (proportional to the square of their amplitude) of the Alfvén waves.
In the spirit of the quantum mechanics the square of the amplitude is proportional to the
number of particles, which we will call “alfvons”. Here the kinetic equation describes the
dynamics of the alfvons population. The lasing of the media, is analogous to the dynamics
of ecological systems where a fast population growth is followed by a resettlement and
high death-rate. Similarly here, the energy transferred from the shear flow first increases
the alfvons density and is later dissipated, thus effectively raising the plasma’s viscosity
and resistivity. Our goal is to deduce a kinetic equation for the spectral density of
the Alfvén waves, as well as its solution, and analyze the physical factors driving the
process. Standard methods of quantum mechanics (quasi-classical approximation for
short wave-lengths and perturbation theory to account for the small initial viscosity of
the plasma) will be considered as adequate. As an initial step, we employ a simplified
treatment of the turbulence in accretion disks — the Burgers approach and show that
the turbulence’s role in a model approximation may be reduced to the source term in
the kinetic equation. We also assume that it is the turbulence that triggers the Alfvén
waves, which are later amplified by the shear flow. There are many examples where
waves can be amplified but often conditionally one can mention lasers and in general
case lasing processes in some unstable medium.

The considered model problem involves convective instability and turbulence in the
heated disk’s plasma and describes a self-sustained scenario for heating in accretion
disks. The velocity fluctuations serve as a random force that initiates the Alfvén waves,
which are then subject to a large amplification. The energy carried by these alfvons is
then transformed into heat through the molecular viscosity and Ohmic resistivity, thus
also creating friction forces. As the heat generation is more intense in the middle of the
disk’s thickness, the consequent temperature difference drives the convective instability
and the turbulent convection. Thus the process sustains itself and the gravitational
energy transforms into heat.

3 Wave kinematics in shear flows

To describe locally the motion of the accreting fluid, we choose the z axis along the
velocity and the z axis in direction of the velocity’s gradient. Thus for the background
shear velocity field we have

U = Az, UV =U" =0. (1)

z

The superscript (0) refers to an equilibrium laminar shear flow whose perturbations will
be studied.
A selected small element of the fluid is carried by the flow so that its z coordinate
is a linear function of time
2at(t) = Azt + 24:(0). (2)
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Under such drift the coordinates x,y remain unchanged, i.e. x4 (t) = const, ya:(t) =
const. For a hydrodynamical description we will use flow-following (Lagrangian) coor-
dinates

T=z, y=vy, 2==z— Azt (3)

These tilde variables r are the Cartesian coordinates of the “tagged” atoms at the initial
moment 24¢(0) = zq¢(t) — Axt. They express the initial position of the fluid element. The
change of the variables (3), however, does not alter the projection in the xy plane. As
the initial position of the “tagged” atoms is fixed we can consider the tilde coordinates
as “frozen” in the fluid.

Let us now consider a plane wave in the shear flow with an amplitude o exp(ik - r).
The requirement of a phase invariance

k-r=k-r 4)
sets the transformation law
ke = ko + Atk,, ky =k, k., = k., (5)

which can be validated by a substitution of Eq. (3) into Eq. (4).
As the initial tilde coordinates are related to the frozen initial position of the atoms,

the wave vector in tilde coordinates is also “frozen”, k = const. This determines the
evolution of the wave-vector in Cartesian coordinates

ko(t) = ky — Atk ky = ky, k, = k.. (6)

This time dependence of the wave vector k(t) has purely kinematic origin and it is
not related to the dispersion of the waves. Such a phenomenon is well-known in the
acoustics of moving media, but it can affect even non-propagating spatial structures
with “tagged” atoms. Even in this static case with exactly zero frequency the general
formula for the wave-vector evolution Eq. (6) is applicable.

In the next section we will apply these kinematic relations to the Alfvén waves. We
consider the Alfvén velocity V4, defined by an external magnetic field By, the density
of the fluid p and magnetic pressure p,

B 1

— =0 _ = y2

and the shear parameter A with dimension of a frequency; in Gaussian system the
magnetic permeability of the vacuum is po = 4m. For a kinematic description it is
convenient to introduce dimensionless wave vectors K = (V4 /A )k, K = (V4/A)k, as
well as dimensionless time 7 = At; L4 = V4 /A is the unit for length. The connection

between the Eulerian components of the wave-vector and the components in the tilde
Lagrangian system Eq. (6) reads as

K. (1) = K;(0) — 7K, K,(1) = K,(0), K.(1) = K.(0). (8)

With an appropriate choice of the initial time we can further set K,(0) = 0. Here
we have used that the wave-vector in the Lagrangian (tilde in our notations) coordinate
system is constant, K(7) = const. Lagrangian coordinates are also known as flow-
following coordinates, which in this particular flow preserve the wave vector (similarly,

a plane of “tagged” atoms is moved but not deformed). For matrix presentation of the
considered relations see Appendix A.
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4 Linearized stochastic MHD

Consider the laminar component of the velocity field V(¢,r) of an incompressible flow
of an accreting plasma with a constant density p = const. In the presence of an ex-
ternal magnetic field B(t,r) the velocity V(¢,r) evolves according to the Navier-Stokes
equation with a Lorentz force

p(0i+V V)V =—Vp+nAV +jx B+F, (9)

where p is the pressure and 7 is the viscosity |[Landau and Lifshitz(1983)]. The term
F(t,r) phenomenologically describes the Reynolds and Maxwell stresses associated with
the turbulence. We will return to this term later, when we analyze the evolution of
perturbations in the shear flow.

The current j is given by Ohm’s law

j=o(E+VxB), (10)

where 0 = 1/p is the electrical conductivity and (E + V x B) expresses the effective
electric field acting on the fluid; the velocity V' < ¢ is nonrelativistic.
For low frequencies j > €¢|0;E|, so it is possible to use the magnetostatic approxi-
mation
rot B = poj . (11)

We substitute here the current from Eq. (10) and obtain
E=-V xB+rvp,rotB, (12)

where v, = goc?p is the magnetic viscosity; in Gaussian system g = 1/47.
Here we will remind some basic properties of the plasma. We suppose that the
frequency of ion-ion collisions v;; is much bigger than the ion cyclotron frequency wp,

Vii > wp,, wp, =eB/M, (13)

where M is the mass of the ion, see Ref. [Landau and Lifshitz(1989)], secs.: 41-43, 58.
For weak fields we can neglect the influence of the magnetic field over the viscosity and
resistivity; see Ref. [Landau and Lifshitz(1989)], eqgs. (43.8-43.10)

T5/2 6202m1/2£
= ArelNMZL UM T T e o

where m is the electron mass, q. is the electron charge, N is the number of electrons
per unit volume, £ is the Coulomb logarithm and rp is the Debye radius

For high enough temperatures 1" > Tk, where

Vk e® = ¢ [4meo, (14)

M
T, = 4rmc2eS NL | —, (16)

m m

the kinematic viscosity dominates vg > vpy,.
The evolution of the magnetic field is governed by the other Maxwell equation
rot E = —0;B, so that the induction equation reads

0B =rot (V x B) — vp,rot rot B. (17)



56 T.M. Mishonov et al.

For an incompressible flow div V=0, taking into account that div B=0, the equation

above takes the form
(y+V-V)B=(B-V)V +1,,AB, (18)

where we have used the general relation
rot(V x B) = VdivB+ (B-V)V —BdivV — (V- V)B.

We will use the dynamics equations Eqs. (9, 18) to analyze the propagation of MHD

waves in a shear flow. Let the velocity V be a sum of equilibrium shear velocity U© (r)
and a small perturbation u(¢,r), for which we are going to derive linearized wave equa-

tions
V=U"4u (19)

The same representation we suppose for the magnetic field and the pressure
B=By+B, p=po+p. (20)

As mentioned in section 3, the z-axis of the coordinate system we choose along the shear
velocity and z-axis along the velocity gradient

U® = (0,0, Az) = Aze., e, =(0,0,1). (21)
For this choice of the coordinates the vorticity
rot U® = (0,-4,0) = —4e,, e, =(0,1,0), (22)
is along y-axis.
The differential rotation in the accretion disks stretches the frozen-in magnetic field

lines and eliminates the cross-flow magnetic field. In the present work we will consider
the magnetic field in the plasma to be parallel to the shear flow in z-direction

B() = (0, 0, Bo) = Boez. (23)

We will consider a general perturbation case

!/

u(t,r) = (ug, uy,u.), B(t,r) = (B,,B,,B.). (24)

Neglecting the small quadratic terms (u-V)u and (u-V)B' in the substantial derivatives
in Eqgs. (9, 18) the linearized evolution equations read (see Appendix B)

/ d.B,, — 0, B,
\Y F B it B
(0 + Azdyu = —~2 — Auge. + — + —| 9.8 — 9,B. | +ndu,  (25)
p p - Hop Y0
(8; + Azd,)B' = Byd,u+ AB.e. + v, AB.  (26)

For the density of the random force that models the turbulence we assume a white noise
correlator - R
<F(t1, rl)F(tg, I'Q)> = F,O 5(t1 — t2)(5(r1 — 1'2)1, (27)

parameterized by the Burgers parameter I'.Tn such a way we derive in Eulerian coordi-
nates r = (z,y, z) a system of partial differential equations. The transition to Lagrangian
r = (Z,9, z) variables Eq. (3), however, reduces it to a system of ordinary differential
equations. To Eq. (3) we add also t =t and perform the change of variables

/ !, ~ ~

u(t,r) = u(i,¥), B'(t,r)=B'(i,¥), F(tr)=F(3F), (28)
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supposing that (£,%) are 4 independent variables as (¢,r) are. From Eq. (3) one can
easily derive the rules for the change of variables in the derivatives

Op = 0y — AZDs, 0, = 0z — AlD:, 0, = 0y, 0, = 0s. (29)

The main advantage of this transition to Lagrangian variables is that the substantial
time derivative 0; + Az0, = 0; in the MHD set of equations Eq. (25) no longer depends
on the spatial coordinates.

5 Separation of variables

For a system with constant (space independent) coefficients the solutions of the equa-
tions are plane waves. That is why using the phase invariance Eq. (4) one can seek a
solution in the form

(t) exp(ik - T) = ug(t) exp(ik(t) - 1), (30)
() exp(ik - F) = B () exp(ik(t) - 1), (31)

where u (f) = ug(¢) and B;E(f) = B;{(t) are the time dependent amplitudes of the plane
waves. For now we suppose that the variables are complex-valued.

For clarity we will perform the change of variables gradually and will analyze the re-
sult for each term individually. First we will change the variables only in the substantial
time derivatives so that the system Eq. (25) takes the form

/ d.B,, — 8,B.
F V) B 7 z
o+ Auge, — — = —2 4 20 5 B, — 0,B, |+ vAu, (32)
p p o Hop 0
0B =Byd.u+ AB,e. + v, AB/, (33)
8B, + 8,B, + 9.B. = 0, (34)
Optiy + Oyuy + Ozu, = 0. (35)

To emphasize the physical meaning we have used Lagrangian variables, however one
can start with the simple relation which both automatizes and ensures the separation
of variables

(0 + Az0.) (u(t) exp {i [ (ke — Ath=)z + kyy + k.2) })
= exp { [(k — Atk.)x + kyy + k 4 } deu(t). (36)

For the plane-wave in Eq. (30) the substantial derivatives

D=8, +V-V (37)

after linearization take the form
Dy [ug(t) exp(ik(t) - r)] ~ exp(ik(t) - r) [dguf((t) + uzjc(t)ez} , (38)
D [B(t) exp(ik(t) - 1) | ~ exp(ik(t) - )diB(t). (39)

As mentioned earlier, in Eqgs. (38, 39) we have neglected the quadratic terms, which
describe a wave-wave interaction.
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Now we can substitute here the right-hand side of the supposed plane form of the
waves from Eq. (30), where they are presented in Eulerian coordinates. The latter are

more convenient to calculate the gradients V = ik(#) and Laplacians A = —k?(¢) but we

have to remember that according to Eq. (6) the wave-vectors k(f) = (A4/Va)K (7= At)
are time dependent

k(f) = (ko — Atk., ky, k), K(f) =k +k] + k2. (40)

Additionally, to obtain a system of ordinary differential equations for the amplitudes
of the MHD waves, one can eliminate the pressure as it is done in Appendix C. We
suppose plane waves for the velocity and the magnetic field

u(t,r) = ug(t) exp(ik(t) - r), (41)
B'(t,r) = B_(t) exp(ik(t) ' 1), (42)
where we have introduced several notations that will be used later
g (t) = —iug(t) = —iVavg(7), (43)
BL(t) = Bobg(7). (44)

For the sake of brevity the Lagrange wave-vector indices k will be further suppressed;
for example, taking the real part from Eqs. (41, 42) we have

u(t,r) = Vau(r)sin(k(t) - r), (45)
B'(t,r) = Bob(7) cos(k(t) - r). (46)

For the real dimensionless amplitudes v and b after some algebra given in the
Appendix C we derive the system of equations:

2K, K
dyu, = Tzvx — K. by — . K0, + gfe, (47)
2K K,
d,v, = #vx — Kby — v, K?vy + hfy, (48)
d b, = K,v; — I/;nK2(T)bx, (49)
d-by = K,vy — v, K*(7)by, (50)
K K
vy = —évx - szy, (51)
K
b, = —Tp, Y 2
o= 1, (52)
where

- G+ K2 hr) VEZ() + K2 (53)

T) = "—"7"— T)=—7T77—

! K() K@)
K, =-7K,, K,=const, K, = const, (54)
K(r) = /K2 + K2+ K2 = /K2 + (1 + 72 K2, (55)

A A r

7/]/{: = vjyk, 7/7,n = Vigym, I'= m, (56)
VEUp+ U, V =u+0, (57)

(fu(m1) fo(m2)) = (fy(T1) fy(12)) = ['0(T1 — T2), (58)
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and V is the volume of the system. In the simplest case of zero shear A = 0 and
dissipation v = v, = 0 we have a system with constant coefficients which gives in
dimensionless form the dispersion of Alfvén waves [Landau and Lifshitz(1983)], sec. 69,
problem

VA 1 2 BO
walk) = =1k -Bgo| — -vk*, Vx= , 99
) = i Bol - i, V= (59)
. awA(k) . . Bo
Vgr<k) = Ok = VA Slgn(k : BO) Bio (60)

The wave-wave interaction is small and negligible only if the dimensionless wave com-
ponents of the velocity and magnetic fields are sufficiently small v?, b? < 1.

6 Two dimensional waves

To investigate the influence of the shear flow on the evolution of the MHD waves, here we
will concentrate on the two-dimensional case by, = 0 which gives a complete separation
of the variables. For this special case K, = 0 the dynamic equations take the form

d;v, = a(t)v, — K, by

—ul K2 (T)vg + g(7) fo(7), (61)
drvy = —K.by — v K*(T)vy + f,(7), (62)
drby = K v, — v, K*(7)by, (63)
d,b, = K,v, — v, K*(1)by, (64)
K,
v, = _K%’ (65)
K,
bz - _7(71:7
K, (66)
where
K, (1)K, 2T
=2 = —
o(7) K2(1) + K? 1472’ (67)
1
K*(r)=(1+7m)K2, g(1)= —— (68)

V1+72

We will start our analysis with the case of short wavelengths in a dissipationless
and a fluctuation-free regime. For a highly conducting plasma v, = 0 with a negligible
kinematic viscosity v, &~ 0 (conditionally, we may say superfluid and superconducting
plasma) the system above yields

drvy = a(1) vy — Kby, (69)
d, by = K,vs. (70)

We differentiate Eq. (69) with respect to time, neglect (for |K,| > 1) the d,;« term,
and substitute d;b, from Eq. (70) which implies

b — a(r)v + K2v ~ 0, (71)



60 T.M. Mishonov et al.

where v = v, and the dot stands for the dimensionless time 7 derivative. In the original
variables this equation reads

d?u%f{ + is(t)dtu%f{ + wiuxi( ~ 0, (72)

where the frequency of the Alfvén waves

wa(k) = Valk,| = Vak|cos p|, (73)
depends on the angle
ky(t
©(t) = arccos 0 — arctan ®) = —arctant (74)
0 z

between the external magnetic field and the wave-vector. In such a way we find the
geometrical meaning of the dimensionless time.

The effective friction coefficient 7,(¢) in the oscillator equation Eq. (72) is presented
by the dimensionless function a(7)

Vs(t) = Avs(7), (75)

2T .
= m = S1n 2@ (76)

vs(T) = —a(T)
Without any restrictions we have considered k, = 0 and K, = 0 because it is related only
to the choice of the initial time Eq. (40). Our next step is to determine the conditions
that ensure small dissipation rate. Ohmic resistivity and viscosity produce an additional
friction coefficient in the effective oscillator equation Eq. (72); see Ref. [Landau and
Lifshitz(1983)], sec. 69, problem

Ty = (v + vm)K(8) = Ay, (77)
W(r)=10+71%)a= e (78)
a=vVEK?= (v 4 vm)k2/A. (79)

The upper formulae are meticulously obtained in Appendix D. Taking into account
the small dissipation in the oscillator equation (72) we have to substitute the shear
attenuation with the total attenuation

¥ =s(p) +7, = Ay = A(vs + ). (80)

The dimensionless attenuations s and 7, are more convenient for further analysis of
the kinetics of Alfvén waves.

From Eq. (72) we derive an equation for the attenuation of the averaged effective
energy for a fictitious particle with a coordinate u,

= Lo 2 2

a(t) = 5 (@2 +whu?y) (81)
of the oscillator [Landau and Lifshitz(1989)], Eq. (25.5), ibid. [Landau and Lifshitz(1989)],
sec. 51, problem 2

&

dtEeg = —7(p) Eeg. (82)

Here the time dependence is implicitly included by the dependence of the attenuation
on the angle ¢, Eq. (74).
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To derive the approximate oscillator equation Eq. (71) we assumed that the al-
teration of the wave vector components K (7) and respectively the variation of «(r)
(or vs(t) in Eq. (72)) is negligible compared to the change of the velocity v and its
derivatives and therefore all terms containing K,(7) and &(7) have been omitted. Such
approximation corresponds to the WKB approximation in quantum mechanics where
we have fast-oscillating amplitude and slowly changing coefficients. The approximate
equation Eq. (72) will be the starting point for our further analysis.

We will illustrate the WKB method for calculation of the attenuation on the simplest
possible example of the system Eq. (69) and Eq. (70) or equation Eq. (71). Substitution
in this equation of amplitudes o< exp(A7) gives the characteristic equation

D(\) =P\ +V(\) =0, (83)
PA) =X+ K2 dyP(\) =2\, V(A =\ (84)

Supposing s to be a small perturbative correction we have in the first Newtonian
iteration

P(X) =0, X =—iK,, (85)
V(o) , 1
AR A — = —iK, — —s.
0 P (o) ¢ 27 (86)
In such a way for the energy of the wave we obtain
E(7) o |exp(A7)[? = exp(—7s7) = exp(—7,t). (87)

This procedure applied to the more general system of equations Eqgs. (61, 63) leads to
the secular equation

75+V]/€K2<T)—|—A K,

K, v K2(1) 4+ A ’ =0 (88)
Thus the general expression for the eigenvalues is
N4\t K2+ |3 K3(7) + K ()| v, = 0. (89)

For high enough temperatures 7' > Tk, the last term is negligible (see Egs. (14, 14 and
16)). Then we may ignore the slight variation of the real part of the Alfven frequency
and account only for the imaginary correction

A~ —iK. — %% (90)
which after a time differentiation gives the kinetic equation for the averaged energy of
the MHD wave Eq. (82).

The damping of the waves can be calculated directly as a ratio of the dissipated
power divided by the energy. Initially, we have to take the real part of the wave variables
and then we have to average over the period of oscillations

G(t,r) - E(t,1)) + 358 (O + ki)

Y = ) (91)
g B2 (t,1)) + 1 (B2 (1)
where the numerator represents the volume density of the total dissipated power Qiot
and
0
8 =5 ’ 9 = s I . 92
k= S (21, 22, 3) = (2, Y, 2) (92)

Eq. (91) is an alternative way to derive Eq. (77) for the case of small shear as it is done
in Appendix D.
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7 Kinetics of Alfvén amplitudes in WKB approximation

In the spirit of quantum mechanics the number of particles is proportional to the square
of the amplitude. In this sense using the dimensionless amplitude of the velocity v one
can introduce the mean number of “alfvons”

(1) = ((Rev)?), (93)

where the time 7 average is taken over the dimensionless period of the Alfvén waves
2nAjwa =271 /|K,|. According to the definition Eqs. (45, 46) the variables v and b are
real, so the sign for a real part can be omitted.

The volume density of the wave energy is proportional to the square of the amplitude
and the number of “alfvons”

E =22(Reu,)? + (Rew.)?) = pV2(1 + ). (94)

[\

Here we have taken into account that the averaged kinetic energy of the fluid is equal
to the averaged energy of the magnetic field which plays the role of the “potential”
elastic energy of these transversal waves. We have also used the explicit form of the
wave-vectors Eqs. (54, 65). The influence of the y mode will be assessed later. In such
an interpretation the equation for the time derivative of the wave energy Eq. (82) can
be considered as a Boltzmann kinetic equation for the number of “alfvons”

d-n(7) = —y(7)n(r) + w(7), (95)
Y=Y + W, (96)
2T
Vs = ma (97)
Y = (1+7%)a. (98)

In order not to interrupt the explanation the derivation of the turbulence-induced source
term w will be given in a separate subsection 8.2, see Eq. (129).
One can easily check that the solution of the kinetic equation Eq. (95) reads

n(r) = /_ Toow(T’) exp [— / ffy(f")df”} dr’ (99)

Let us first analyze in Eq. (95) the dissipationless regime of v, = 0 and zero turbu-
lence power w = 0. Using the integral

T 1
_ " d //) — 2 - = 100
exp( /0 s (") dT cos” T2 (100)
for the solution of the homogeneous linear equation we obtain
n(7) = ng cos® p = 1_?_7(;2, (101)

where the integration constant ng determines the spectral density of the waves with
wave vector k parallel to the constant external magnetic field By.
Further, in the general solution Eq. (99) we have to substitute the integral

T 2 1—1—7'/2
. md //> _ COs™ _ ' 102
exp (= [ ulrar) = 258 - (102)
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The contribution of the dissipation is given by

T 1
/ Y (r)dr" = (7‘ + 37’3> a, (103)
0

or for the interval pointed above Eq. (99)

7 1
- // Y (7" dr" = a {—(1 + 72 u + Tu? — 3u3} , (104)

where for simplicity we have introduced a shifted time variable
u=T1—1 >0. (105)

Finally, the solution of the Boltzmann equation Eq. (99) takes the form

n) = o [ e - w0+ (- w?)
X exp {—a [(1 + 72 u — Tu® + zl)’u?’} } du. (106)

In order to evaluate this integral we will assume wave-vector independence of the ran-
dom turbulent noise w(K (7)) ~ const. For the real physics of accretion disks the bare
viscosity is evanescent and we have to analyze the above integral on the u variable for
very small values of a < 1. This means that for values of |7| of the order of 1 we have
to take into account very large values of the u > 1 variable. For large « in the integrant
we have to make the approximations

1+ (7 —u)? = u?, (107)
1 1
(1+72)u — Tu? + gu?’ R~ gu?’, (108)

and for the integral in the above Eq. (106) we derive according to Eq. (101) the 7-
independent evaluation

n

o

~
~

1
Nz 109
s (109)
In such a way for the low dissipation limit we derive an explicit expression for the
number of “alfvons” propagating along the magnetic field

Aw
" 2 .

The last term is expressed via the physical variables of the initial problem and this is
the central result of our analysis of the kinetics of slow magnetosonic (Alfvén) waves.
Later, we will perform statistical averaging of the dissipated power, but, before that, in
the next section, we will analyze in short the influence of weak turbulence on the MHD
equations.
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8 White noise turbulence

8.1 Langevin-Burgers noise for Alfvén waves

In Langevin-Burgers approach to the turbulence the random noise is described as a
white one for which the following correlation may be used

o~

(F(t1,r1)F(ta,r0)) = I'p*5(ty — t2)d(r; — 121, (111)

The dimension of I" shows that this correlation is convenient not for forces, but rather
for accelerations

[f] = (acceleration)? x (volume) x (time). (112)
We make a Fourier transform of the acceleration
ZFk exp(ik - r), (113)
A3z
/F r)exp(—ik-r)— v (114)

for which we apply periodic boundary conditions
F(t,z+ L) =F(t,x) (115)

where L is the characteristic length of the system V = L3. This sets the following
restrictions for the wave vectors

21

(kxa kya kza) = f(nxa ny> nz)a (116)

where the numbers can take only integer values
Ng, Ny, Nz =0, £1, £2, £3, ... (117)

In this case the difference between two wave vectors is Ak = 27/L and for great lengths
the sum turns into an integral

3
72 / o (118)

The correlation for the coefficients in the Fourier series is also a white noise

F 2
75(t1 - t2)6pk:7 (119)
where d,y, is the symbol of Kronecker. Taking into account the upper relation for the x
component of the acceleration we have

(Fy(t)Fi(t2)) =1

(Frx(t1) Fr o (t2)) = FV'OZf;(h — t2). (120)

In our work we are interested in the presence of a white noise in the MHD system
(61) - (63) causing the primary birth of the Alfvén waves. That is why we want to know
the correlation for the dimensionless density of the external force

(f*(m)f(r2)) = T'é(11 — ), (121)
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where

Fio(t) r
) , F -
pAV, VAV

and the parameter I is dimensionless.
This dimensionless random force has to be taken into account as an external force
in the right hand side of Eq. (69) which now takes the form

(122)

drv, = a(r) v, — Kby + f(7) (123)
and analogously Eq. (71) reads
b= a(r)o — K2+ f(7). (124)

Introducing the dimensionless displacement
-
x(1) = / o(r")dr’ (125)

we obtain
i = —7,(1)i — K2z + f(7). (126)

In such a way we arrived at the necessity to analyze the behavior of classical harmonic
oscillator with time-dependent friction and a white noise as an external random force.

8.2 General theorem for stochastic heating and income term in the
effective Boltzmann equation

The special cases considered in Appendix E for a Brownian particle Eq. (213), an
oscillator without friction Eq. (229) and a free particle Eq. (234) give us a hint that
there is a general formula for a white-noise stochastic heating. Let us apply this common
result to the effective oscillator equation Eq. (126) for the displacement of the plasma
x. In case of negligible v, Eq. (229) implies

1 1 r
d, { =3* + - K? 2>— 12
<2x 2KZJ: 5 (127)

where the dimensionless Burgers parameter I is defined in Eq. (122). At slow heating
the virial theorem <%l’2> = <%Kz2x2> gives that

I
2\ 4
d, (%) = 5 (128)
According to the determination Eq. (125) & = v and Eq. (93) reads n(r) = (#?). In
this way, in case of zero friction v = 0, we obtain

r_.r (129)
2 24V3V’

d:n(r) =w

which is the source term in the right hand side of the Boltzmann equation Eq. (95). The
turbulent random forces generate magnetosonic waves. Figuratively we may say that
“alfvong” are born from the turbulent sea foam. The other terms in the master equation
Eq. (95) describe the dissipative decay with rate v, and the “lasing” at 7y, < 0.
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9 Discussion on effective stress tensor. Background heating rate

When we apply the Boltzmann approach in calculation of the spectral densities we have
used a WKB approximation to estimate the influence of short wavelengths analytically.
We have concentrated our attention on the special occasion of small dissipation when we
may consider the attenuation of the Alfvén waves perturbatively Ay, (7) < wa. For a
negligible viscosity this approximation has a wide area of applicability for wave vectors
less than the maximum wave vector k < k. which corresponds to the Debye frequency
from the physics of phonons, for instance. The most rapidly growing modes unfortu-
nately are behind this approximation and definitely require numerical calculations. [1]
In the present work we will restrict ourselves with a model evaluation illustrating the
kinetic approach to the spectral density of the “alfvons”.

In this section we will treat the question for the total heating by dissipation of
Alfvén waves. That is to say that we will sum the effects of all slow magnetosonic
modes evaluating the influence of all wave vectors, including the case of nonzero K.
Approximately, we consider almost all values of the angle ¢ between the wave vectors
and the external magnetic field. In order to obtain the volume density of the total power

ngf}’f% in WKB approximation, first we have to set the boundaries for the wave vectors

determined from the condition for existence of Alfvén waves
Vo L wa, 7y = Aa(l+12). (130)

According to Eq. (8) the integration with respect to k, can be reduced to an integration

with respect to time
/dkw _ kz/dT. (131)

Then the critical wave-vector k. and respectfully the critical time 7. are fixed from these
frequencies for which inequality (130) turns into equality

k Va Va
2 = —C = 1 = — - .
Te W ok >1, k. o V=u+ Uy (132)

For greater times 7 > 7, there will be no waves as they would simply attenuate over
their period and for greater wave-vectors k, > k. there will be no media at all. The
average energy in our model evaluation (101) is given by

_ 2w
E=2(1+ TQ)H(T)pB = 7]93. (133)

The dissipated power is determined by the mean energy multiplied by the attenuation
coeflicient o
Q =7, FE = 2Aw(1 + 7%)p,,. (134)

To find the total mean power conducted into heat we have to sum over all permitted
wave-vectors. We shall do that consecutively, begging with an integration with respect
to time. For an evanescent viscosity the modulus of the critical time is a big number
|Te| > 1. Thus for the time integration we have

Te 1 1/ kN2
1 2 ~ — 3 = (C>
/TC( + 77)dr 57 =35 ) (135)

from where for the time integrated power we obtain

2k3
/Qdkm = 32 Awp,,. (136)
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As we pointed out the complete separation of the variables is possible only for the
special case of k;, = 0. However, in order to perform a model evaluation of the heating, we
will accept an axial symmetry approximation supposing that the influence of k,, is similar
to that of k. Formally this means that in the analytical expressions the argument k, has
to be substituted in the axial symmetric evaluation by a two dimensional wave vector

k. — k,, = (/kZ+4 k2. In this approximation we can easily integrate the dissipative

function in the whole wave-vector space. The integration with respect to k. and k, is
replaced with integration over the modulus of the two dimensional wave vector

dkydk. = d(nk2)) = 27k, dk,,. (137)
Analogously, in the expression for the produced power we have to make the substitution
Qkz) — Q(k,p) (138)
Thereby for the volume density of the total heating we have
d3k VAp wk? 1%
(tot) _ _ B e va
Qurp =V / (Qw)gQ e el B (139)

where we have integrated in the wave-vector domain for which waves still exist wqa > 7,,
or k < ke. Using the explicit form of w (refer to Eq. (129)) finally we obtain

. T'Vap 1%
QoY) = 712772;5 In (AV . (140)

This heating rate, derived in the WKB approximation, is just a background which does
not account for the strong MHD waves amplification, numerically observed in Ref. [1].
Let us discuss the WKB part of the dissipation. For a Newtonian laminar flow the total
produced heat is proportional to the square of the velocity gradient. This means that
we can introduce an effective viscosity 7y for which

Q\(;E(;:% - nWKBA2 = UWKBA' (141)
Thus for the shear stress tensor we find
I;VAln<K‘l‘2/>
UWKB = ].27T2AI/3 pB7 (142)

and analogously for the effective viscosity
~ V2
Val'ln (A*;)
1272423 PE°

In the same way we have to calculate the effective viscosity using complete MC calcula-
tions. For the present result in the WKB approximation we wish to point out that the
bare viscosity is in the denominator of the effective one. The total effective viscosity is
defined by the relation

Qtot(A) - Qtot(A - O) = neffAQ - USA: OzwaA, (144)

T}WKB -

(143)

where «, is analogous to the dimensionless Shakura-Sunyaev parameter. In the sub-
traction above the background WKB heating rate is cancelled.
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10 Perspectives and conclusions

The discussed mechanism requires simultaneous presence of both magnetic field and
turbulence — ingredients which are pointed out practically in all present works on the
problem. As we have analyzed MHD waves in an incompressible fluid the gas pressure
turned out to be irrelevant to the shear stress. Therefore we consider that in the Shakura-
Sunyaev phenomenology the gas pressure p should be replaced with the magnetic one
pp- Thus for the momentum transport we have

Opr = aupy for disk, 0., = ayp, for column, (145)

which is a rather small correction to the Shakura-Sunyaev hypotheses. [8,9] The detailed
calculation of the dimensionless parameter ¢, requires complete analysis of the kinetics
for all modes in the shear flow of the magnetized plasma. This is undoubtedly a very
complicated task and it is worth making a qualitative assessment for the origin of
the effective viscosity in a plasma with evanescent initial one. The most important
characteristic of the shear flow in a magnetized plasma is the “lasing” phase when the
wave draws energy from the shear flow. Without dissipation this increment reaches
gigantic scales. [1]

Complete analysis of the system, of course, requires detailed numerical integration.
Despite of this we can give a qualitative explanation that the plasma heating and
the arising of a huge effective viscosity is caused by the “laser” amplification of the
convective instability. This is a rather universal mechanism playing a significant role in
our solar system in the diminution of the angular momentum of our sun, but also it
is the mechanism responsible for the gigantic energy produced in quasars and AGNs.
In this way we offer a qualitative answer to the question why do the most powerful
sources of light in the universe shine - namely, because of the instability of the slow
magnetosonic waves in the shear flow. We wish to point out that our theory for heating
of accretion disks is a conventional one, which does not require additional hypotheses,
but only numerical calculations. The energy is produced in the bulk of the disk but
finally emitted to its sides.

The analyzed geometry B = (0,0, By) corresponds, for example, to an accretion
column above the magnetic poles of a neutron star. However, we suppose that the
convective instability of the slow magnetosonic waves is a general property of the mag-
netized plasma with a shear flow. We believe that an arbitrary orientation between the
shear flow and the magnetic field would lead only to a dimensionless multiplier of the
order of unity in our final result.

The used Langevin-Burgers’ approach is a first approximation for a self-consistent
treatment of the turbulence. We can modify it including, for example, a wave-vector
dependence of the noise functions I'(k) in order to simulate the spectral density of the
velocity pulsations. Some parameter related to the spectral density of the turbulence
will indispensably participate in the final result for the stress tensor. Moreover we have
to include the self-sustained turbulence in a realistic global model for the accretion disks
or accretion streams. In this direction we are not giving a pret-a-porter prescription.
The purpose of our work is only to give an idea how the turbulence, magnetic field,
and shear flow play together in the most powerful sources of light in the universe (for
the mechanism of this shining we do not know more than the girlfriend of H. Bete
on the energy source of stars, cf. the story told by Feynman in his famous lectures).
Simultaneously we can observe traces of a big viscosity of the protoplanetary disk in the
angular momentum distribution in our solar system. |?] We just wish to rise the corner
of the curtain and see the regally play by: 1) the turbulence 2) magnetic field and 3)
shear flow creating the most efficient engine in the universe.

The work of this engine is related to the kinetics of the spectral density of slow
magnetosonic waves in a magnetized turbulent plasma with a shear flow. The heating,
effective viscosity and stress tensors are statistical consequences of this spectral density.
We advocate that the “lasing” of “alfvons” is a key detail in the accretion of many
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compact astrophysical objects in order to observe the universe in its present form.
The last problem which we wish to speculate on is the applicability of the Burgers’
approach to magnetohydrodynamics. According to the Lighthill theory [6] the intensity
of the emitted sound is proportional to the ratio of the velocity pulsation and the sound
velocity to a high power (v/vs)?, see also Ref. [Landau and Lifshitz(1987)], sec. 75.
Qualitative considerations give that the velocity of sound vs has to be substituted by the
Alfvén velocity V4 < vy for small magnetic fields p, < p. This leads to the conclusion
that the transformation of the turbulent energy to Alfvén waves can be very effective
and those energies could be comparable. This qualitative property was pointed out for
the physics of solar plasma long time ago, see for example Refs. [10,11]. In such a way
in order to model the influence of the turbulence on MHD waves we have to use high
values of the noise intensity I'. This parameter can be determined in such a way that
the spectral density of the waves’ energy becomes equal to the spectral density of the
turbulent energy at a given cut-off wave-vector k.. For qualitative computer simulations
in the inertial regime we can use these typical cut-off values as initial conditions and solve
the MHD equations without the stochastic force. This could be useful for a numerical
calculation of the spectral density of Alfvén waves, i.e. “momentum” distribution of
alfvons in our conditional terminology.

We conclude that it is necessary to revise the theoretical models of disk accretion and
we might expect appearance of a new direction in the theoretical astrophysics, incorpo-
rating the methods of statistical physics as a key detail in global magnetohydrodynamic
models for formation of compact astrophysical objects.

Acknowledgment: The authors are thankful to Prof. 1. Zhelyazkov for the critical
reading of the manuscript.
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A Matrix presentation for Lagrange—Euler transformations

The transition between Lagrange and Eulerian coordinates for the space- and wave-
vectors is essential for the present paper. For convenience of the reader we are giving
these relations in a transparent self-explainable matrix form:

KfE) = (klr), (k| = (ko ey k) (146)
(k| = (Fo by B2 ) = (ko by n(m), (147)
T 100
|f>=<zz>=<0 10)<xyz>, [r) = (y2), (148)
z —701
10 —7 i’%x
|k(t)):< 01 0) ky |, (149)
001 /)\%

=1. (151)

) =1, (150)
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B Dynamics equations

Let us consider the movement of incompressible magnetized homogeneous plasma. The
time evolution is given by the system [Landau and Lifshitz(1983)]

1
p(Ov +v-Vv) = =Vp — ,lT(B x B) +nAv +F, (152)
0
1
B+ (v-Vv) = (B-V)v+ —AB. (153)
oo

We presume small variations from the stable laminar current (v = Uy +u, B =By +

B, p=po+ p/). Then, using the assumptions for the direction of the external magnetic
field and the shear flow velocity (Bg = Bpe,, Uy = Axe,), we find

(v-V)v=(Up+u) -V(Uj+u)
= (Up-V)Up+ (u-V)Ug+ (Up - V)u = Augze, + Az, u. (154)

Analogously, for the mixed multipliers we obtain
(v-V)B=(Uy+u) V(Bg+B)
= (Up-V)Bg + (u-V)Bg + (Up - V)B' = Az20.B’, (155)
and

(B-V)v=(Bg+B')-V(Uj+u)
= (Bo-V)Ug + (B - V)Ug + (By - V)u = Byd,u + AB.e., (156)
Vp=Vp, AB=AB', Av = Au. (157)

The time derivative of both variables is expressed by their varying components
Ov =0, B =0,B . (158)

Having in mind the above mentioned assumptions the vector product of the magnetic
field and its rotation may be rewritten in the form

, (Bo)y(rotB )2 — (Bo). (rotB’l )y
B xrotB =By xrotB = | (Bg),(rotB ) — (Bg)z(rotB ),
(Bo)s (rotB )y — (Bo)y(rotB ),
—By(rotB'), 8xB — 9.B,
= | By(rotB'), o| 9,8, — 9.8, (159)
0 0
Consequently, Eqs. (152, 153) turn into
/ By [9:B; — 0B,
p(Oru + Azd.u+ Auze,) = —Vp + nAu+ m 0.8, —9,B, | +F, (160)
0
0

! / / 1 /
0B + Az0,B = Byo,u+ ABe,+ —AB. (161)
no
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C Derivation of the MHD set of equations with random noise

Substituting a plane anzatz waves in the linearized MHD Egs. (25)

(t,r) = —zVA v(7) exp(ik(t) - r),

B(t,r) = Bo b(7) exp(ik(t) - 1),

p(t,r) = pVA P(r) exp(ik(t) - r),
F(t,r) = —ipAVa f'(7) exp(ik(t) - ),

where according to Eqs. (34), (35), and (40)

u

K-b=0, K.-v=0, (166)

A .
k(t) = % —K(7), K(r) = (-TK,K,K.), K= K.e., (167)

A
we obtain a system of ordinary differential equations
K.b, — K b,
U =—-vze, + KP — (biy —Kybz> — Vv K?v 4+ f, (168)
0

b= K.,v + bye, — v, K’b. (169)

Here 7 = At, the dot operation stands for 7-differentiation d, and we have introduced
dimensionless notations for both kinematic and magnetic viscosities

A A
;QZVM Uy = vz (170)

All dimensionless variables in the upper system are expressed in specific units: for ve-
locity Vi, pressure pV3, magnetic field By, time 1/A, wave-vector A/V4, kinematic
viscosity V3/A, acceleration AVy, density of force pAVy4, and length V4 /A.

Time differentiation of Eq. (166) gives

The substitution here of © from Eq. (168) gives for the pressure

K,

1
= —b, +2K2 K2(

Kofy + Kyf, + K. f7), (172)

and back substitution of the dimensionless pressure in the x- and y-components of
Eq. (168) gives the final equations for the acceleration

K. K,

Ug U~ K.b, — V'K?v, + f — K2 S (Kofo + Kyf, + K.f2),  (173)
, K.K
vy =2 K;/vx — Kby — V' K?vy + f — K—Z(Kxf; + K f)+ K. f).  (174)

For the magnetic field we take the x- and y-components from Eq. (169)

by = K v, — v K?b,, (175)
by = K,vy — v}, K?b,. (176)
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The corresponding equations for the z-components
2
z

K? K2

b, = K.v, + b, — v K?b, (178)

K K,
B, = <_1 12 ) Uy — Kb — VK20, + L — (Ko fs + Ky fy + K. fL), (177)

are not necessary to be solved; the solutions are given by Eqs. (166)

Uy = _(Karvx + Kyvy)/Kza (179)
by = —(Kubg + K by)/ K. (180)

C.1 2D restriction with K, =0

In the special case of K, = 0 we have separation of variables and the y-component of
the acceleration is

Uy = —K.by — V'K?v, + f), (181)

where for the Langevin force we suppose a white noise correlator

r

<f/(7'1)f/(7'2)> = TF(S(Tl — 7'2), = m

(182)

In such a way we derive Egs. (61, 62).
In the present work we will use the K, = 0 case for a model evaluation of the
statistical properties of Alfvén waves.

C.2 Test example of short wavelengths and small attenuation

As a test example let us finally analyze the textbook’s case of a negligible viscosity and
big enough wave-vector K. The systems for v, b, and vy, b, have approximate time
dependent solution o exp (—i|K|7). This means that both x- and y-polarized modes
have dispersion of Alfvén waves w ~ A|K,| or more precisely

w(k) =wq = Valk:| - %VkQ, wa > A, vk?. (183)

This imaginary term may be obtained as the first Newton correction in the method
described above (see Eq. (86)). Let us mention that the attenuation given by the small
imaginary part of the frequency is an isotropic function of the wave vector, cf. Ref. [Lan-
dau and Lifshitz(1983)], sec. 69, problem.

We analyze an inviscid approximation and that is why for both MHD branches the
oscillations of the velocity u are transversal to the wave-vector k. For the y-mode the
velocity oscillation u is perpendicular to the k-Bg-plane; this is the true Alfvén wave.
For the x-mode, which we are analyzing in the current paper, the displacement of the
fluid and the magnetic force lines lies in the k-Bg-plane. For finite compressibility the
x-mode is hybridized with the sound, that is why it is often called slow magnetosonic
wave even if at low magnetic fields p, < p its dispersion is given by the Alfvén waves’
dispersion wa ~ Valk - Bg|/Bo.
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D Attenuation coefficient for Alfvén waves

In order to derive the dissipative function for Alfvén waves spreading in a highly con-
ducting plasma, we have to know the energy and its variation in time due to kinematic
and magnetic friction. In this section we are interested only in the average dissipation,
that is why it is convenient to work with averaged (with respect to the wave’s phase)
quantities. The density of electromagnetic energy is given by

B2
Eemm ~ —, 184

where we have used that for a highly conducting media the electromagnetic energy

E?/2e¢ o< 1/0? is negligible compared to the magnetic one.

We are interested in the wave part of both the magnetic and the velocity fields, as
the constant part does not play any role in the dynamics of the system. Rewritten in
terms of the dimensionless wave components (see Eq. (46)) the expression for the energy
density looks like

Eem ~ b2p37 (185)

where the magnetic pressure p, = B3/2u has already been introduced in the text
above (sec. 3, Eq. (7)). According to the equipartition (Alfvén) theorem the Alfvén
waves kinetic energy density equals the magnetic one

1
Exin = 5pVQ =v%p,. (186)

Then having in mind that

() =), ()= () w5

for the averaged volume density of the total energy we obtain

Eiot = 2D, {(1 +72) <v§,> + <U§>} . (188)

For an estimation of the attenuation coefficient one also needs to know the averaged
with respect to the waves’ period volume density of the total power Qiot, which is a
sum of the averaged kinetic and magnetic one

Qtot — <Qkin> + <Qem> . (189)

The kinetic power is simply the time derivative of the kinetic energy and since we are
interested in the wave component of the velocity it is given by

Qxin = puj(t) - dyug(t), (190)

where the separation of variables Eq. (30) and the linearization Eqgs. (36, 38) have been
used.

Rewritten in the dimensionless variables Eq. (43) with the incompressibility condi-
tion Eq. (51) applied this reads

K2\ [K.K
Qkin = —2ApB’U -dyv =0, (1 + I{fg) |: ;{2 ZU:(: - K.b, — V]{CKQU:C + gf:c:|
z

K\ [K,K
+ vy (1 + Kg) [ Iy{Q'zvm — Kby — v, K vy + hfy] . (191)
z
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When we take an average value of the upper expression only the quadratic terms remain

(vz) = (bz) = (vy) = (by) =0, (192)

therefore for the kinetic part of the average power we have

(1 + Kg) (K“"K Vi K2> (V) (1 - Kg) Vi K%ﬁ)] (193)
) Yk - 772 k :
K? K2 r K? Y

If we use the relation Eq. (54) for the special case when K, = 0 this yields

(Qxin) = —2A4p,

(Qun) = 24p, K2 (1 + 7w (v2) + (1 + 720k (0d)) + 24p,7(0d).  (194)

Now we have to calculate the Ohmic part of the power in the magnetostatic approxi-
mation Eq. (11)

) 2
/ t B
Om=j-E = I _ w = 2p, Um(rot b)2 = 2Ap v, (K x b)2, (195)
o o
where E’ is the effective electric field in the Ohm’s law Eq. (10), b is the dimensionless
magnetic field defined in Eq. (44) and v/, is the dimensionless magnetic viscosity given
in Eq. (56).
In the particular case when K, = 0 the upper expression in terms of the dimension-
less time 7 turns into

Qem = 24p, v K2(1+72) [(1+ 7202 + 2] . (196)

Therefore if we take into account Eqgs. (187, 189, 194) and the equation above for
the average density of the total power dissipated in the fluid we have

Qiot = 2Asz/K§(1 +72)((1 + 7‘2)1)9% + UZ) + 2ApB7'Ug, (197)

where v is the total viscosity defined in Eq. (57).
Now it can be easily shown that the attenuation coefficient takes the following form

7 _ Qtot
gtot

A
—A(l+ 2/ K2+ TTT? (198)

In this way we derived the approximative (in case of small dissipation) equation Eq. (80).

E Stochastic heating

E.1 Kinetic equation for the kinetic energy of a Brownian particle

The Langevin [17] approach for a treatment of stochastic differential equations is prac-
tically unknown in astrophysics; most of the actively working in this field people even
have not heard about Langevin-Burgers’ approach to turbulence [22]. That is why in-
stead of referring to textbooks far away from our current problem [15] we will give a
pedestrian introduction of all the necessary basic notions. In the framework of the used
notations we will introduce the necessary mathematics. Our first illustration will be the
diffusion of a Brownian particle. The theory is analogous to the Nyquist [20] theory for
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the thermal noise in electric circuites. The literature on “Burgers turbulence” is really
huge http://google.com search gives 29, 000 items for 2007, or if we

Our goal in this subsection is to derive an explicit and physically grounded expression
for the random noise in the Boltzmann equation Eq. (95). We shall start our deduction
by consideration of the kinetic equation for a Brownian particle, moving with velocity
v under the influence of a random force f(¢) across a given medium with a “friction
coefficient” 4

mdyv = —mAv + £(¢). (199)
For the sake of simplicity from now on we shall examine the propagation of the particle
in x direction, so that we shall be interested only in the projections of the velocity and

the external force along this axis, which we shall designate with v and f . The upper
ordinary differential equation may be easily solved with the help of the Euler method

u(t) = C(t) exp(—At). (200)

We substitute the velocity from Eq. (199) with the given expression and obtain another
ordinary differential equation with separable variables for the unknown function C(t)

- F(t
exp(—4t)d;C(t) = f;), (201)
whose solution is A
_ PI)
C(t) =vo + exp(7t1)dt;. (202)
to M

The constant of integration vg here stands for the initial velocity. The explicit form of
the velocity becomes

t ()
m

to

v(t) = exp(—At) <v0 + exp(itl)dh) . (203)

Now let us average the square of this velocity. For this purpose we need to know the
correlation of the noise. Following the classical works by Langevin and Burgers [17,22]
we suppose that the external force correlator has the simplest possible form of a white

(F(t)f(t2)) = Loty —1a). (204)

We take into consideration that the random force has zero mean value < f (t)> =0 and
for the average of the square of the velocity we obtain

<v2(t)> = exp(—27t) x <Uo +/t /t Ll tl — ) exp(y(t1 + tg))dtldt2>

= exp(—27t) <U0 +/ exp(27t1)dt1>
(205)

This noise averaging is the most important ingredient in the present derivation. It
reduces the mechanical problems to a statistical problem solvable by the Boltzmann
equation. In the next subsection we apply this approach to a harmonic oscillator and
later on to the amplitude of magnetosonic waves.
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We are now ready to calculate the mean kinetic energy of the Brownian particle

2 ¢
ey = L2\ 2T ey L o .
(Eyin (1)) = 5 <U (t)> = exp(—27t) + 5 exp(—27t) /to exp(27t1)dtq
mu2 i

= ol exp(27t) + 7= {1 - exp(=2i(t — o))} (206

To rewrite this expression in a more convenient way we introduce the initial kinetic

energy FEo = Ekin(to) and the equilibrium one E = r /4m#. Thus the average kinetic
energy reads

(Exin(t)) = Eoexp (—t> +E{1 — exp (—(t_to))} : (207)

TE TE

where 7y = 1/2% corresponds to the relaxation time in the atomic physics and I is the
analogue to the width of the Lorentz function. Time differentiation of Eq. (207) gives
the kinetic equation for the kinetic energy

d¢ (Ekin(t)) = L (Eo exp (—Tt) + Eexp <—(t_to)>> ) (208)

TE E TE

In this way we came to the well-known Boltzmann equation for the variation of the
average kinetic energy

T (Ban(®) = —— ((Bn®) ~ E) (209)

The first term here is responsible for the energy expenditure and consequently is set by
the dissipation function, whereas the second stands for the energy income (i.e. a positive
power), caused by the effect of the random noise.

Now let us make a short analysis of the result. In the case of equilibrium (after
several relaxation times, ¢ — 00) the mean value of the kinetic energy equals half the
absolute temperature which we will designate with @

(Bin(t)) = % <v2> (210)
1 — T
=30=F=7 (211)

Hereby, we can deduce the connection between the dissipation coeflicient 5 and the
fluctuations I"

~

[ =2me7, (212)

which is a special case of the fluctuation-dissipation theorem.

Our idea is to apply notions from the equilibriumn statistics in the non-equilibrium
case, therefore we shall use © as a white noise parameter in stead of 7' (a non-equilibrium
analogue to the equilibrium temperature). In terms of the averaged power of energy
dissipation @, the fluctuation-dissipation theorem reads

E r

213
TR 2m ( )
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The first special case of the fluctuation dissipation theorem is the relation between
diffusion coefficient and the mobility of a Brownian particle. We will remind some details.
Let us consider the motion of a Brownian particle as a diffusion, for which the role of
the concentration is played by the probability to find the particle at a given place in
the volume of the fluid. The diffusion equation is

on(z,t) = DAn(x,t), (214)

where n(x, t) stands for the concentration. The square of the average distance, which the
particle passes for an interval of time ¢ is given by Ref. |[Landau and Lifshitz(1987)], sec. (60)

<x2> = /an(x,t)dw = 2Dt. (215)

According to the Sutherland-Einstein relation [16,18,19] the diffusion coefficient D is
proportional to the mobility p and the temperature in the equilibrium statistical physics,
which under our assumption may be expressed as

D = ue. (216)

The mobility may be derived from the equation of motion of the particle, roaming under
the influence of a time independent random force f

mdyv = —mAv + f. (217)

In the stationary case the driving force has to balance the friction

Var = pf- (218)
Hereby for the mobility we obtain
1
= 219
i (219)

and the diffusion coefficient takes the form
D=—. (220)

Our next step is to consider the equation of motion for a harmonic oscillator under a
random noise.

E.2 Oscillator under a white noise

In a self-consistent linearized approximation the problem for the wave propagation is
reduced to independent oscillator problems for all wave vectors. That is why the Brow-
nian motion of a harmonic oscillator is a key detail of our statistical theory for the
spectral density of magnetosonic waves. We are starting with the equation of motion
for a harmonic oscillator with an external white noise

mx = —mw?x + £(t). (221)

We assume classical oscillator (i.e. [x, p] = 0). It is convenient to examine the equation
of motion in the phase space. For that purpose we introduce complex variables

c = mwx +1p
" = mwx — ip, (222)
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where p = mx is the particle momentum.

The energy of the oscillator (proportional to the number of particles) can be ex-
pressed via these variables

1 p? 1
ch c o + 2mw T

We are interested in the explicit form of the mean power @ = d; (E(t)). That is why
we want to know the correlation between ¢ and c¢*. In order to find it first we have to
determine their explicit forms as functions of frequencies, random noises and time. The
time derivative of ¢ looks like

(223)

dic = mwx +ip = wp + i (—mwQX + f(t))
= —iw(ip + mwx) = —iwc(t) + if (). (224)

For this ordinary differential equation we seek a solution in the form of harmonic oscil-
lations

c(t) = <C’0 +i ttf(tl)exp(iwtl)dh) exp(—iwt)

") exp(iwtg)dt2> exp(—iwt). (225)

() = <co iy

to

Thus for the correlator we have
(c*(t)e(t)) = |Col*
topt o, X
—|—/t /t <f(t1)f(t2)> exp(iw(ty — ta))dt1dts. (226)

We consider a white noise for which <f(t1)f(t2)> = I'6(t; — t2). Then Eq. (226) turns
into

(" ()e(t)) = |Col* + I'(t — to). (227)

This averaging is one of the most important details of the present theory — it reduces
the wave problem to a statistical one solvable by the Boltzmann equation.
Finally for the averaged energy of the oscillator under the random noise we have

(B(0)) = Fo + 5 (i~ to), (229)

where the initial energy is Ey = ﬁ |Co[%. The produced power is the same as in Eq. (213)

r

Q " (229)
Here we wish to mention that analogous scenario of linear dependence of the energy of
ocean waves driven by turbulent fluctuations of the pressure was proposed by Jeffries,
Fillips, Feynman and Hibbs. This model, however, could be applicable only before the
creation of a system of parallel vortices which are the real intermediary between the
wind and waves [Hristov, Friehe and Miller(1998), Hristov, Friehe and Miller(2003)[; see
also the references therein.

The nature of the friction force and the external potential is irrelevant to this result
because by definition the white noise is a very fast process. In order to illustrate this
general theorem we will analyze in the next section the averaged power of a free particle
under a white noise.
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E.3 Stochastic heating of a free particle

This phenomenon is analogous to the Fermi model for acceleration of cosmic particles.
The equation of motion for a free particle reads

mo = f(t), (230)

where f(t) stands for the random (under our consideration white) noise. Hereby, after
integration, for the velocity vector we find

_ [0

to

v(t) dt1 + vo, (231)

where vg is the initial velocity. Using this explicit expression the average kinetic energy
reads as

m

(B®) =5 (v*(t)) = % /t: /t: (A®)f2(2)) dtrdts + % (v3). (232)

Here we apply the correlation of the white noise <f1 (t)f2(2)> = I'6(t; — tp) and
integrate with respect to time. Then the average kinetic energy becomes

(B(0) = By + (¢~ to). (233)

Finally a time differentiation gives the power of the white noise acting on the free
particle

~

r

Q=di(ER)) = 5 (234)
Again this is the same result as in Egs. (213) and (229). This constant power is applicable
if the typical relaxation times of the particle are much bigger than the characteristic
times of the noise and we can approximate it as a white one. When we apply this
result to the averaged amplitude of the magnetosonic waves this constant power gives
the constant income term w in the Boltzmann equation for the spectral density of the
MHD waves.
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F Numerical Analysis

F.1 Pure hydrodynamics

Our first step in the numerical analysis is to investigate the influence of the shear flow
for amplification of initial perturbation in framework of pure hydrodynamics at zero
magnetic field b = 0. For an ideal fluid v;, = 0 the equation Eq. (61) for K, = 0 case
takes the form

drvy = a(T)vy (235)
and have the solution
1
va(T) = 1 el (236)

which is depicted at Fig. 1. This time dependence is common for all K, for which the
dissipation is negligible.

0.9 1

0.8 - 1

0.6 - 1

05 .

v, (T)

04t g

0.2 4

0.1 4

-15 -10 -5 0 5 10 15

Fig. 1. Time dependence of velocity in a shear flow at zero magnetic field; pure hydrodynamic solution.

F.2 Nonzero magnetic field. Analytical solutions

We will perform analysis of the model case for K, = 0. The y-system Eq. (62) and
Eq. (64) describes Alfvén waves for which the shear have negligible influence. The shear
flow is important for the slow magnetosonic waves for which the velocity oscillations and
variations of the magnetic field are in the plane of the wave-vector and the constant
external magnetic filed. Only for this waves we have significant amplification by the
shear flow which we will investigate in the beginning for an ideal fluid for which the
x-system Eq. (61) and Eq. (63) reads

d;u, = a(T)vy — Kby (237)
drby = K. vy (238)
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Fig. 2. Energy of an Alfvén wave as function of dimensionless time 7. An Alfvén wave even at slow
viscous damping attenuates heating the plasma and new one is generated by the turbulence. We the
born after billions years see the light of quasars created by amplification of MHD waves by shear flow.
Parameters of the example: K, = 0.7, v;,, = 0.00001, v;, = 0.00001, 7 € (—30,120), b(—30) = 0, and
v(—30) = 1.
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Fig. 3. “Lasing of alfvons” as at zero damping. Amplification of energy of the slow magnetosonic wave
by shear flow. Parameters: the same as Fig. 2 but without friction v}, = v;, = 0.
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The substitution of d;v, from Eq. (237) in time differentiated of Eq. (238) gives
d2b, + a(r)d by + K2b, = 0. (239)
With the help of the substitution
ba(r) = Y(T)V1+ 72 (240)
we arrive at the effective Schrédinger equation for the alfvon amplitude
d2y + <K2 -

(1+)>d’ dw+ P (E-0)y=0 (241)

For small enough effective energies K2 we have a classical forbidden region where the

W(m)

-150 -100 -50 0 50 100 150

Fig. 4. “Lasing of alfvons”: the time dependence of the fictitious Schrédinger equation amplitude ¥ (7) x

B (1)/V14 72 for: K, = /0.1, 1(—150) = 1, d,4(—150) = 0.

magnetosonic waves are amplified.
This equation has two linearly independent solutions even (g) and odd (u)

Ge(0) =1, drug(0) = (242)
$u(0) =0, drtiu(0) = (243)
2 2
= VTE R0, 5,0, 52, LIS ) (244
2 2
ha=TV1+ 72H(0, +;> Ii 1+4K ;—77), (245)



Fig. 5. Effective potential 1/(1 + 7%)? and effective energy K2 = 0.1 for the solution
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Fig. 6. Even wave eigenfunction:

10 20

wg(o) = 17 dﬂ/’g(()) =0.
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W(1)
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Fig. 7. Odd wave eigenfunction: ¥ (0) = 0, d-1.(0) = 1.

and the general solution we will represent by the linear combination
?P(T) = Ogﬂ)g(T) + Cu¢u(7)- (246)
The confluent Heun function Hc(2) obeys the differential equation

) ,  Apaz —o

)
y”+<4p+7+
z z-—1

with initial conditions

o
y(0)=0, ' (0)= 5 (248)
and close to z = 0 has the Taylor expansion
HC(p7 «, 7, 57 o3 Z) = Z anna (249)
n=0
where for the coeflicients we have the initial conditions C_; = 0 and Cy = 1 and
recursion
Cn+1 = —(9nCn + hnCp—1)/frn, n=0,1,2,... (250)
where
gn=nn—4p+~y+95—1)—o, (251)
hp =4p(n+ o — 1), (252)
fon=—=(M+1)(n+7). (253)

For large enough arguments we have the expansion

He(p, o, 7,0,072) = Y Oz, (254)
n=0
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where only the recursion functions are different

g =(a+n)(n—4p—y-35+1) -0, (255)
W) = —(a+n—1)(a+n—7), (256)
floo) = —4p(n + 1). (257)

F.3 Simple quantum mechanical problem

In order better to analyze the effective MHD equation Eq. (241) we will solve the cor-
responding quantum mechanical problem when we have tunneling trough the barrier

o2mU /h? = 1/(1 + 72)?, supposing that 1 is a complex function. We have falling wave
with unit amplitude, reflected wave with amplitude R and transmitted wave with am-
plitude T’

Y(T — —o0) ~exp(iK,7) + Rexp(—iK,T), (258)
Y(1T — 400) &~ T exp(+iK,T). (259)

Using the asymptotic of the eigenfunctions

| Dgcos(K,T — ¢g), forT— —o0,
thg & {Dg cos(K,7 + ¢g), for 7 — +oo, (260)

| —Dycos(K,T — ¢y), for T — —o0,
Yu ™ { Dy cos(K.T + ¢u), for 7 — 400 (261)

and solving the matrix problem we obtain

CWD, = exp(igy),  CYYDy = —exp(igy) (262)

u

Then for the tunneling coefficient we derive

D= ‘T|2 = Sﬁg’ Sug = Sin(¢u - ¢g) (263)
Let us introduct notation -
then Oy = ¢y — Qu.
F.4 MHD and real ¥
For the considered MHD problem 1 is a real variable with asymptotic

- cos(K,m — ¢i), for T — —o0,

Y {Df cos(K,T + ¢¢), for T — +o0. (265)

Solving analogous 2x2 matrix problem we derive
Si 54
c9Dy ==, CYD, =% (266)

Sgu Sgu
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Fig. 8. Coefficient of transmission through quantum barrier as function of wave-vector D = cos? O,,.
This coefficient parameterized amplification of alfvons A =2/D — 1.

and for the phase and amplification of the signal we have

SigSu + SiuSg

tan ¢f = , 267
i SigCu + SiuCg ( )
2 2 N
A(Qbi’Kz) = Df = 57 (268)
N = (sigSu + SiuSg)? + (SigCu + SiuCg)? (269)
where
Sig = sin(¢i — @g),  Siu = sin(¢i — du), (270)
Sg = sin(¢g), Sy = sin(¢y), (271)
Cg = Cos(g), Cy = cos(¢y). (272)
For large enough wave-vectors we have the asymptotic
(K2 >1) =0, ¢u(K2>1)=—7 (273)
F.5 Random phase approximation statistical problem
Finally simple angle averaging
T d¢i o 2
N(¢i)—2—sug—2—D (274)
.
gives
2 2
KH=Z-1=— —1. 275
Al =35 -1= 5 (275)

In such a way we analyzed the relation between quantum mechanical treatment and
MHD one for the effective Schrodinger equation.
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Fig. 10. Numerical solution of effective Schrédinger equation illustrated amplification of amplitude
for small values of wave-vector. Initial conditions are: K. = 0.05 (7 = —1000) = cos(K.7T — ¢o) ;
d-¢(T = —1000) = — K, sin(K.7T — ¢o), and pg = 7.
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Fig.11. Phase analysis of wave equation:the phases of odd ¢, and even ¢y function of Schrédinger
g — . parameterized reflection coefficient of quantum mechanical

equation. Phase difference Oy, =
problem and amplification coefficient of MHD problem.
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Fig.13. Amplification of Alfvén waves — keystone of the theory of heating of accretion disks; amplifi-
cation in Bell as function of logarithm of the dimensionless wave-vector; 1 Bell means 10 times energy
amplification. The dotted line is the J-like long wavelength approximation which is adequate when the
amplification is significant A > 1. This exact solution at K, = 0 is a test for Monte Carlo calculations
in the general case.

Longwavelength approximation For small wave-vectors K2 < 1 we have J-potential
approximation in the effective Schrodinger equation Eq. (241)

1 +oo dr T
The wave function is continuous at 7 = 0 i.e.
Y(=0) = ¢(+0), (277)
but the first derivative have a jump which can be calculated integrating Eq. (241) in a
small vicinity of 7 =0
d;9(+0) — dr9(=0) = Ap(0), (278)
we use obvious alleviation of the notations. For the wave function
(1 < 0) = cos(K,7 — ¢;), (1 >0)=Dycos(K,T+ ¢y) (279)
one can easily solve the equations Eq. (277) and Eq. (278) which gives
Dr = 11+ 2 cos(20) + 2y cos2(6) (280)
P = X, cos K2 cos ,
cos ¢j

¢¢ = arccos(

). (281)
f

The averaging of the amplification coefficient with respect of the initial phase gives

T 5do; A2 2 1/ mA\?
A /0 o T Tk YRR TR (ksz) > (282)
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In other words the Alfvén waves amplification can be significant for the long waves. For
the eigenfunctions in this approximation we have

1
g & _’7 sin(K;|1| —7g), K.>0, (283)
g
2K,
fyg Y T ( 8 )
T T 4K,
= — — = — — 2
bg 9 Ve 9 T ( 85)
1
hy ~ X sin( K, 1), (286)
T
Ou ~ _5 ¢ug =Yg — T, (287)
4K,

Sgu = Sin(d)g — ¢u) ~ Vg = (288)

—
The substitution of this approximate formula for sy, in the general formula for the
amplification Eq. (275) reproduces the long wavelength result Eq. (282).

Shortwavelength approximation The second Fermi golden rule applied to the quan-
tum theory of the above barrier reflection

o0 Uz) dz |?
—1_PD— 2ipx/h < \*)
R=1-D ’/_OO Py <1 (289)

gives that in the opposite short wavelength case we have a negligible reflection. The
general relation between the transmission coefficient of the effective quantum mechanical
problem and amplification of Alfvén waves Eq. (275)

A= % _1, (290)
gives exponential small amplification
—1=2 ‘/m 142:;7 2 = ”22(21@ 4 1)%e 4=, (291)
For large wave-vectors K2 >> 1 we have
sin KZT'

¢g(7-) ~ cos K, T, ¢u(7—) ~

i (292)



