
Synergy of Gaia with ZTF and other variability surveys

Ashish Mahabal Center for Data Driven Discovery, Caltech MW-GAIA WG2, Sofia, 2023-06-08

Outline

- Gaia observing card:
- Cadence, depth, filters, resolution, spectroscopy
 - Nominally 70 pointings on average in original
 5-year schedule
 - **BP/RP low res spectra**
- Strengths: Astrometry, spectra for "nearly" everything
- Limitations: 1D data sent down, not everything captured, epochs few for many purposes (which?)

Synergy considerations

Complementary depth

Complementary filters/wavelengths

Complementary cadence

Owing to its astrometry it has been incorporated into TESS pipelines for separating binary stars from exoplanet candidates (Nigraha)

FOV - GW counterparts

Here we are more concerned about stellar variability

Some other surveys

Pan-STARSS - deeper, many colors, few epochs

CSS/CRTS - no color info (but long time baseline)

ATLAS

ASAS-SN

Evryscope/Argus

TESS - transits; photometry for isolated stars. Some possibilities demonstrated in this meeting.

Plack Cor

Black Gem

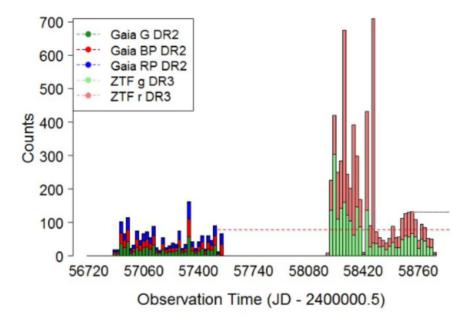
ZTF

LSST

Summary of Gaia/ZTF seminar series

Preliminary talk schedule

All talks are on Tuesdays at 5 pm (CET)


	start (CA)	start (Europe)		
March 16	9 am	5 pm	Laurent Eyer (University of Geneva)	General presentation on Gaia (recording)
March 30	8 am	5 pm	Matthew Graham (Caltech)	Overview of ZTF (capabilities, data products,)
April 13	8 am	5 pm	Laurent Eyer	Special focus on white dwarfs detected by Gaia
April 27	8 am	5 pm	Eric Bellm	ZTF surveys, past and present
May 11	8 am	5 pm	Nami Mowlawi	Large Amplitude variables with Gaia DR2 data (recording)
May 25	8 am	5 pm	Jan van Roestel, Ashish Mahabal	Classification of ZTF variable sources, current status and plans
June 8	8 am	5 pm	Marc Audard	Outliers in Gaia data and validation of the Gaia catalogue of variable sources
June 22	8 am	5 pm	Dan Perley	The ZTF Bright Transient Survey
			Yuhan Yao	Tidal disruption events with ZTF
September 7	8 am	5 pm	Krzysztof Nienartowicz	Data Handling of the Gaia data at the Geneva data processing center
September 21	8 am	5 pm	Kevin Burdge	White dwarf binaries from ZTF
October 5	8 am	5 pm	Panos Gavras (ESA)	Variability detection of the Gaia time series
October 19	8 am	5 pm	Ilaria Caiazzo	Massive, magnetized, fast rotating white dwarfs from ZTF
November 2	9 am	5 pm	Lorenzo Rimoldini	The classification of variable sources in the Gaia consortium
November 16	8 am	5 pm	Przemek Mróz, Antonio Rodriguez	Image difference photometry and the search for microlensing events
December 14	8 am	5 pm	Berry Holl	Features of the Gaia scanning law

ZTF - Gaia synergy

From Eyer Gaia DR2 DR3 ZTF

With Gaia DR3 close to start of ZTF (2018), and with ZTF DR17, far ahead in time

In a way, ZTF is look-ahead for unreleased Gaia data!

- 1.2m automated Telescope @ Palomar, CA
- 47 deg2 FOV
- mlim~20.5 in 30 sec exposures
- g, r, i filters
- 1.4 TB data nightly
- ~20000 sq deg every 2 nights in g and r

EXAMPLE 7 EXAMPLE 1 CONTRACT STREET FOR THE STREET FOR THE STREET FOR THE DESCRIPTION OF THE DYNAMIC SKY

Shri Kulkarni

PI:

Co-PI: Project Scientist: Survey Scientist: Project Manager: Lead Camera Engineer: P48 Operations: Data Archive Director: Science Data System Lead: Machine Learning Lead: Data Quality Scientist:

Thomas Prince, Mansi Kasliwal, Matthew Graham, Richard Dekany Matthew Graham Eric Bellm Richard Dekany Roger Smith Tom Barlow George Helou Ben Rusholme Ashish Mahabal Andrew Drake

+ real stars

Ashish Mahabal

DR16:

https://irsa.ipac.caltech.edu/data/ZTF/docs/releases/ztf_release_notes_latest

Filter(s)	#PSFcat- <i>sci</i> sources	#Aperturecat- <i>sci</i> sources	#PSFcat- <i>ref</i> sources	#Aperturecat- <i>ref</i> sources
g	179,661,606,131	114,144,715,027	2,527,614,585	794,988,671
r	506,885,000,022	315,778,300,845	3,393,409,691	1,153,239,938
i	58,976,476,111	33,687,367,330	1,414,109,235	455,279,857
g + r + i	745,523,082,264	463,610,383,202	7,335,133,511	2,403,508,466

Ashish Mahabal

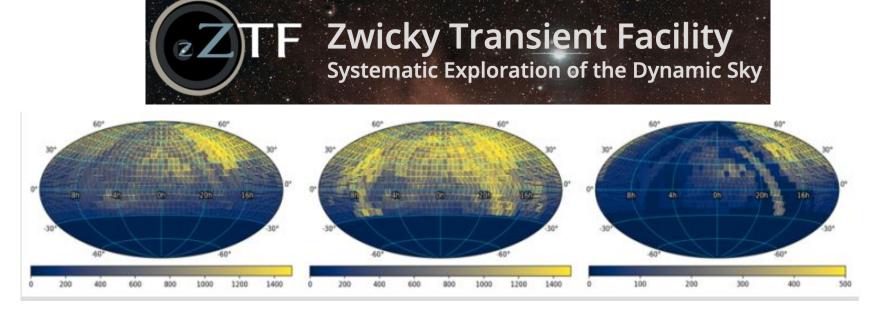
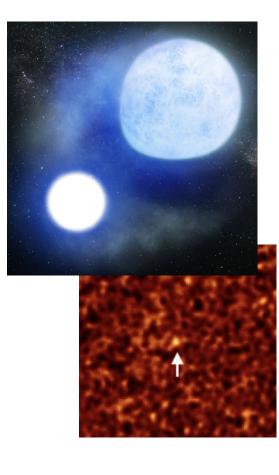


Figure 1 - Sky coverage and number of observation epochs in DR16 in g, r, i filters.

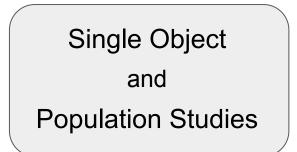
Example Query using the APIs


wget "https://irsa.ipac.caltech.edu/ibe/search/ztf/products/sci? POS=255.9302,11.8654&WHERE=obsjd>2458219.9678+AND+obsjd<2458228.8155+ AND+infobits<33554432" -O out.tbl

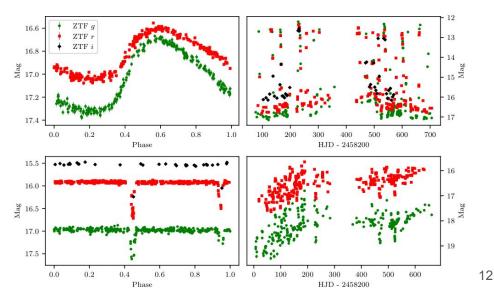
Main science drivers of ZTF

A fast, wide-area time-domain survey:

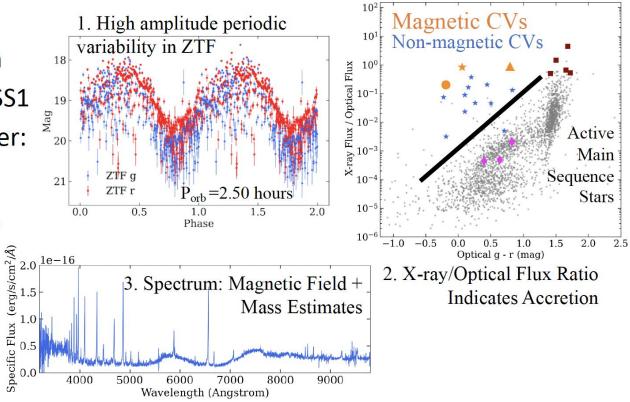
- Fast, young, and rare flux transients
- Counterparts to gravitational wave sources
- Low-z Type Ia SNe for cosmology
- Variable stars & eclipsing binaries
- Solar System objects


https://www.ztf.caltech.edu

Ashish Mahabal


Why and how do we use ZTF?

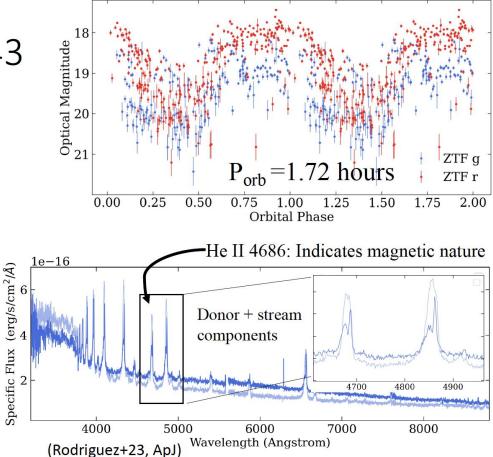
- 1. Stellar remnants
- 2. Binary star physics and evolution
- 3. Accretion processes
- 4. High energy astrophysics
- 5. Stellar structure
- 6. Extrasolar asteroids/comets
- 7. Age/luminosity/period relations


Zach Van der Bosch

- 1. Mostly **archival photometry** searches for (periodic) variability
 - a. Orbital periods
 - b. Rotations periods
 - c. Pulsations periods
 - d. Irregular dips/transits/eclipses
- 2. **Real-time (alert)** searches for outbursting stars

Discovery of Polars from SRG/eROSITA + ZTF

- ~120 polars known
- ~200—300 in eRASS1
- Questions to answer:
 - X-ray luminosity function
 - Mean mass of WD
 - Orbital period distribution


Tony Rodríguez (Caltech)

eFEDS/ZTFJ0850+0443

- One of 8 polars showing pre-eclipse absorption from accretion stream.
- M_{WD} = 0.81 ± 0.08 M_{sun}

Artist rendition, used with permission of M. Garlick

Spectroscopic Follow-up of NS and BH Candidates in Gaia DR3

Pranav Nagarajan, Kareem El-Badry, et al.

1.6

3456522854428709633

0.4

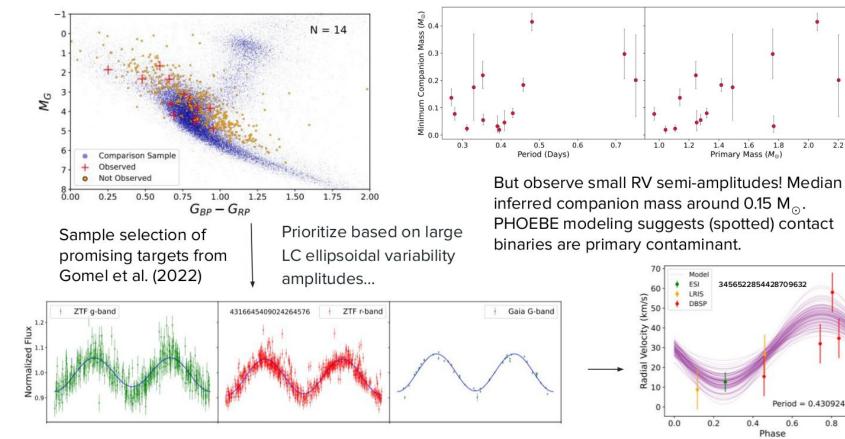
Primary Mass (Mo)

1.4

1.8

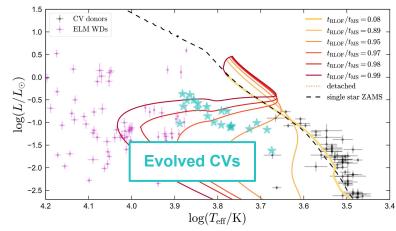
2.0

Period = 0.430924 days

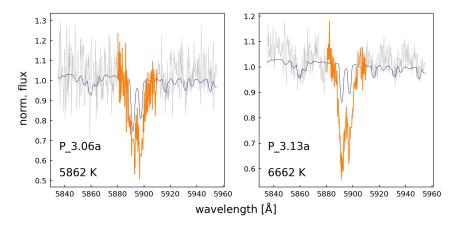

0.8

1.0

0.6


Phase

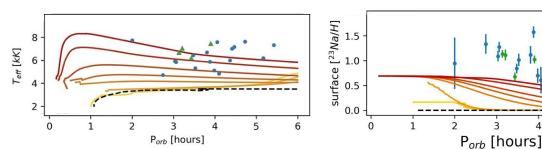
2.2



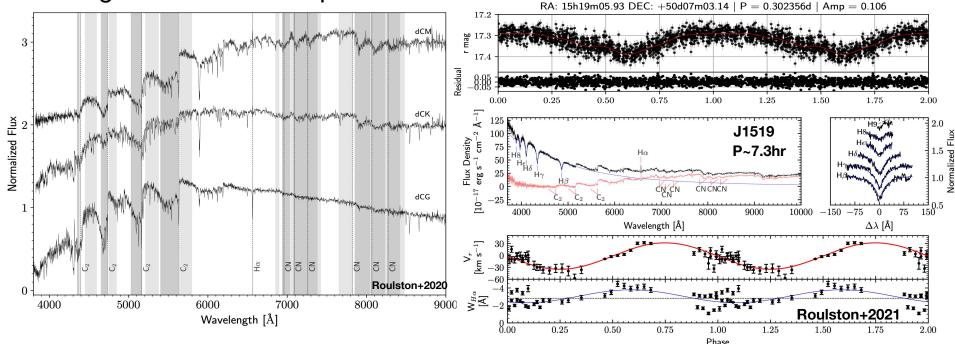
Sodium enhancement in Evolved Cataclysmic Variables

Natsuko Yamaguchi, Kareem El-Badry, Antonio C. Rodriguez, Maude Gull, Benjamin R. Roulston

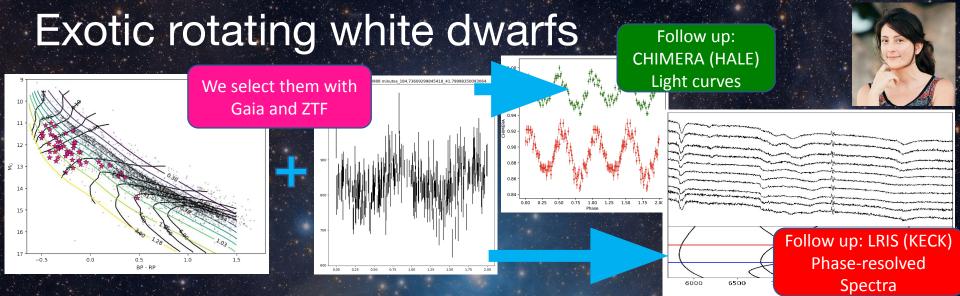
1) 21 evolved CVs found by the Birth of the ELMs survey, with the use of ZTF light curves.



2) Carried out follow-up high resolution spectroscopy and measured Na abundances using the 5900 AA doublet.

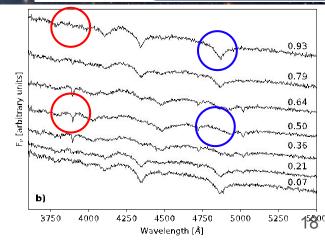

 \rightarrow find significant enhancements:

[Na/H] = 0.3 - 1.5 dex, with a median of 0.956 dex


 3) Ran MESA models of evolved CVs
 → predict significant Na enhancement not seen in normal CVs but underpredict them compared to observations

Probing Common-Envelope Evolution with **Dwarf** Carbon stars Ben Roulston (Caltech)

- Main-Sequence stars with C/O>1, enhanced by a binary companion. Show strong carbon molecular bands in optical spectra
- 34 periodic dCs in ZTF with P<2d (down to P~2hrs) —> Post common-envelope binaries
- Would like to expand sample of known dCs using Gaia+? (SEDMv2?) then search for periods in ZTF


A highly magnetized and rapidly rotating white dwarf as small as the Moon

Finding a population of rapidly rotating and highly magnetized WDs

- Candidates double white dwarf mergers
- Reveal the characteristics of mergers and constrain merger rates
- Allow to study magnetic WDs

Finding exotic white dwarfs

Janus: double-faced white dwarf

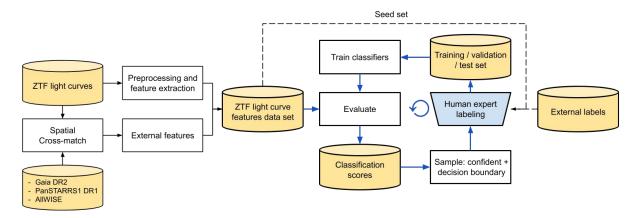
ZTF and Globular Clusters

Chow-Choong Ngeow (NCU-Taiwan), et al.

- Goal: calibrate various old population distance indicators in gr(i)-band, most of them for the *first time* \rightarrow can be applied in, e.g. LSST, HSC-SSP, etc surveys observed with gri filters
- Why G.C.? Good → well-determined (and homogeneous) distance, most with low or vanished extinction, some rich in variable stars; Bad → blending (need PSF photometry + small pixel scale)
- Why ZTF? ZTF out-number PS1 in terms of number of observations!

 Table 1. Comparison of optical time-domain surveys in the northern sky.

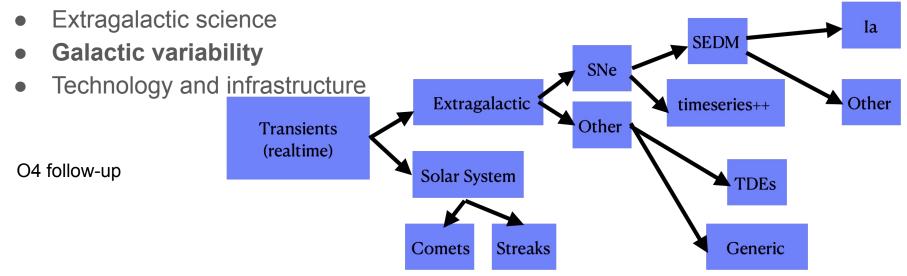
	Surveya	$_{\rm Filters}b$	Pixel Scale ^C	$_{\rm Photometry}d$	Depth
Best 📫	ZTF	gri	1.01	PSF & AP	$r\sim 20.6$
	PS1 3π	grizy	0.258	PSF & AP	$r\sim21.8$
	ATLAS	oc	1.86	PSF	$m\sim 19.5$
	ASAS-SN	gV	8.0	AP	$V \sim 17$
	CSS	2 <u></u>	1.5	AP	$V\sim 19.5$
	LINEAR		2.25	AP	$m\sim 18$
	SuperWASP		13.7	AP	$V \sim 15$


B

Distance Indicators	Publication	ZTF Data
Contact binaries	AJ 162:63 (2021)	DR 3 + private
RR Lyrae	AJ 163:239 (2022)	DR 7 + private
Type II Cepheids	AJ 164:154 (2022)	DR 10 + private
Yellow Post-AGB stars	AJ 164:166 (2022)	DR 10 + private
Anomalous Cepheids	AJ 164:191 (2022)	DR 11 + private
SX Phoenicis	AJ 165:190 (2023)	DR 13 + private
Miras	Work in-progress	DR16 + private
5 16 18 12 14 16 18 10 10	251.000000 days	ZTF II/III wish-list: ← more i-band data
K 12 14		← more i-band data
250 500 750 1000 <i>MJD</i> – 580	1250 1500 1750 20	

Our big challenge:

identify objects of interest from the 2 Billion sources

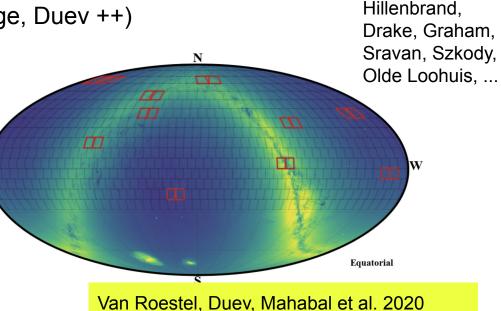

- External catalogues (Gaia, PS1, SRG, Fermi, SDSS-V, etc)
- ZTF alerts (positive and negative)
- Period searches & other **ZTF variability metrics**
- ZTF-SCoPe machine learning classification of persistent point sources

Highlights - exemplars rather than exhaustive

Also likely biased towards areas I work in, or am better versed in

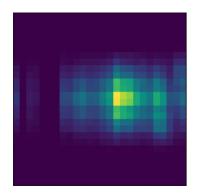
• Solar System

Source Classification Project (SCoPe)

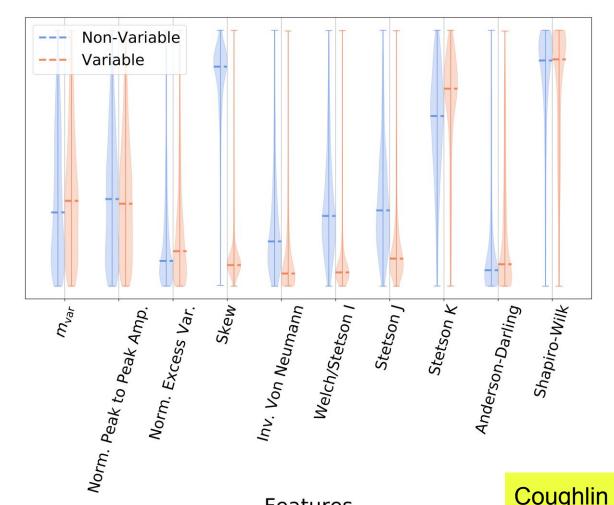


Van Roestel.

Duev, Coughlin,


Mahabal, Mroz,

- Software/labeling set up based on DR2
- 20 Fields paper (Van Roestel, Duev, Mahabal ++)
- Periods paper (Coughlin, Burdge, Duev ++)
- 34M+ objects
- Features
 - variability characteristics
 - dmdt
 - period searches
 - external data


Features

- Light-curves with 50+ epochs period-searched [GPUs + Kowalski]
 - Conditional Entropy (CE)
 - Lomb-Scargle (LS)
 - Analysis of Variance (AOV)
- Variability features (e.g.Sokolovsky+ 2016)
- Optimized dmdt's
- X-match: 10 catalogs

id: 10296001000057 ra: 19,556186750000002 dec: -19.040459849999998 period: 0.11717913349300235 significance: 9.32633052341019 pdot:0 n: 54 median: 15.3535 wmean: 15.353907407407405 chi2red: 1.7092470481841708 roms: 1.0754716981132069 wstd: 0.02201873656559632 norm peak to peak amp: 0.0023127789178800525 norm excess var: 8.306723761861014e-7 median_abs_dev: 0.014499999999999957 iar: 0.02875000000000497 f60: 0.034600000000001074 f70: 0.045099999999999696 f80: 0.0563000000000024 f90: 0.0680999999999976 skew: -0.24210490618175218 smallkurt: 5,6190133939968 inv vonneumannratio: 0.6095639426533307 welch i: 10.981297710846444 stetson j: 10.986989388536113

✤ SHOW 23 MORE FIELDS

Index	Statistic					
1	$N \over m_{ m median}$					
2						
3						
4	$m_{ m var}$					
5	χ^2					
6	RoMS					
7	Median absolute deviation					
8	Normalized Peak to Peak Amplitude					
9	Normalized Excess Variance					
10-14	Ranges					
15	Skew					
16	Kurtosis Inverse Von Neumann Statistic Welch/Stetson I					
17						
18						
19	Stetson J					
20	Stetson K Anderson-Darling test					
21						
22	Shapiro-Wilk test					
23-35	Fourier Decomposition					

Features

Coughlin et al. arXiv:2009.14071

Labels and classifiers

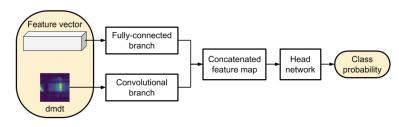
- Over 200,000 individual labeled light curves
 - Labels from CRTS, OGLE, ...
 - Unbalanced classes
 - Values quantized to [0, 0.25, 0.5, 0.75, 1] for label smoothing
- "Seed" classifiers, from subsets then active learning
 - Select and inspect <random | most confident | close to decision boundary | highest loss> predictions, label, add to training set, retrain, repeat

ZTF light curves

Spatial

Cross-match

Gaia DR2 PanSTARRS1 DR AllWISE Preprocessing and


feature extraction

External features

ZTF light curve

features data set

- Marching down the nomenclature tree
- Classifiers
 - DNNs (MLP+CNN)
 - XGBoost
 - Hyperparameter tuning

Training / validation

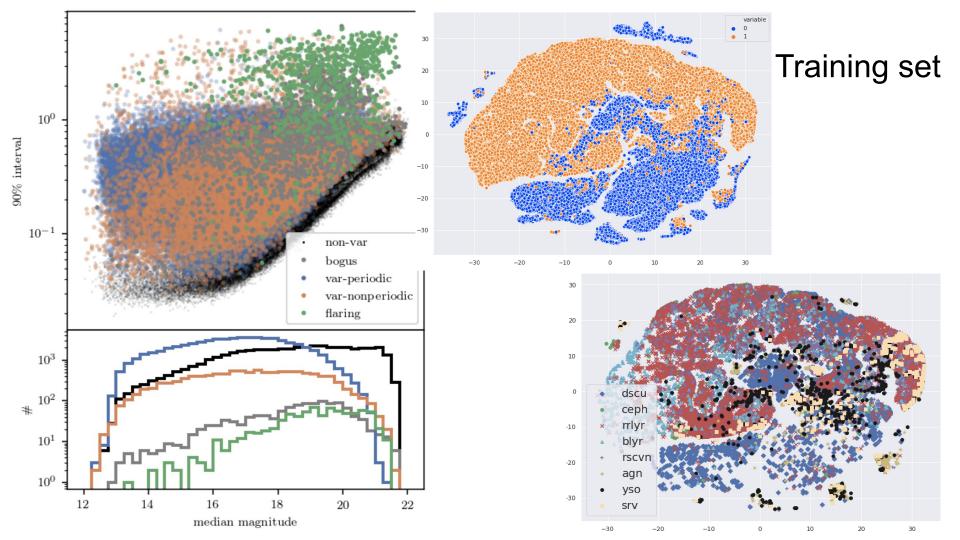
/ test set

Human expert

labeling

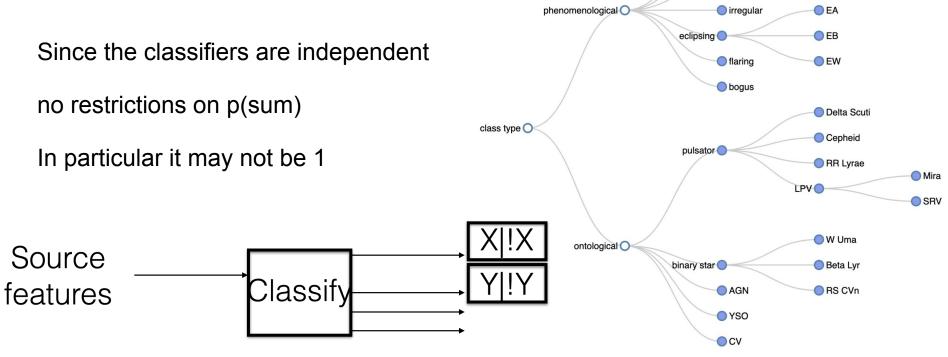
Sample: confident +

decision boundary


External labels

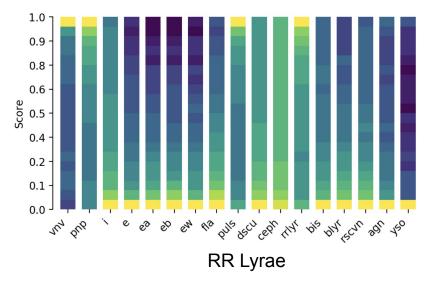
Train classifiers

Evaluate


Classification

scores

Hierarchical/stackable Classification Through Independent Binary Classifiers


- Phenomenological: based on just the ZTF data
- Ontological: based on not just the ZTF data

periodic

Iong timescale

Performance

Mahabal et al. 2017 http://arxiv.org/abs/1709.06257v1 Duev et al 2019 http://arxiv.org/abs/1904.05920v2 Duev et al. 2021 https://arxiv.org/abs/2102.13352 Coughlin et al. 2020 https://arxiv.org/abs/2009.14071 Van Roestel et al. 2021 https://arxiv.org/abs/2102.11304 Fremling 2021 https://arxiv.org/abs/2104.12980

Class	#	Accu	iracy	Prec	ision	Ree	call	F1 S	core
		DNN	XGB	DNN	XGB	DNN	XGB	DNN	XGB
е	44721	0.94	0.95	0.9	0.92	0.93	0.95	0.92	0.93
ea	819	0.94	1	0.91	1	0.87	0.02	0.89	0.03
eb	950	0.88	0.99	0.86		0.74	0	0.8	
ew	39079	0.94	0.95	0.91	0.92	0.89	0.93	0.9	0.92
fla	829	0.97	1	1	0.84	0.87	0.82	0.93	0.83
i	1842	0.93	0.99	0.92	0.79	0.84	0.28	0.88	0.42
longt	968	0.95	1	0.93	0.87	0.93	0.38	0.93	0.53
pnp	64910	0.95	0.95	0.95	0.95	0.96	0.96	0.96	0.95
vnv	78083	0.97	0.98	0.99	0.98	0.97	0.98	0.98	0.98
agn	608	0.98	1	0.94	0.94	0.98	0.71	0.96	0.81
bis	44532	0.95	0.96	0.92	0.93	0.93	0.96	0.93	0.94
blyr	836	0.89	0.99	0.8	0.46	0.81	0.9	0.81	0.61
ceph	1075	0.93	1	0.88	0.76	0.89	0.92	0.89	0.83
dscu	6118	0.96	1	0.92	0.96	0.93	0.97	0.93	0.96
puls	18664	0.96	0.99	0.94	0.94	0.93	0.98	0.94	0.96
lpv	968	0.99	1	0.97	0.88	0.99	0.79	0.98	0.84
rrlyr	10866	0.95	0.99	0.93	0.95	0.89	0.95	0.91	0.95
rscvn	1210	0.85	1	0.83	0.77	0.68	0.82	0.75	0.8
\mathbf{srv}	420	0.95	1	0.88	0.81	0.98	0.69	0.93	0.74
yso	849	0.99	1	0.99	0.92	0.99	0.99	0.99	0.95

Now classifying entire DR

- More classes
- Anomalies (hdbscan)

0

0

auc

group: r2g-500

150

200

250

Improvements (active learning)

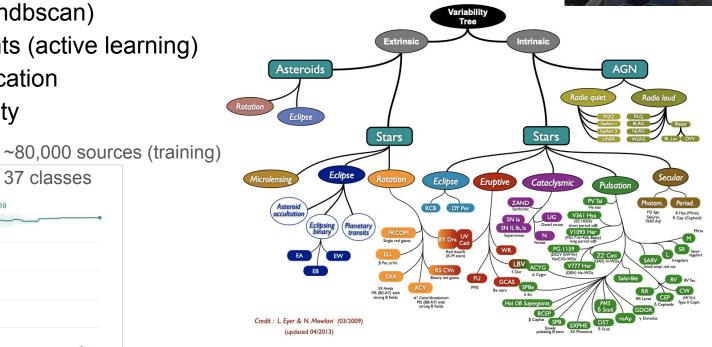
37 classes

Step

300

- Metaclassification
- Interpretability

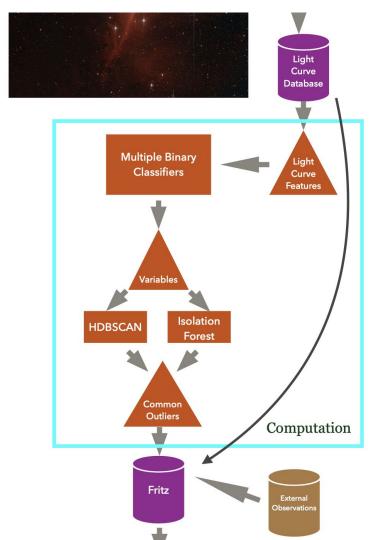
0.8

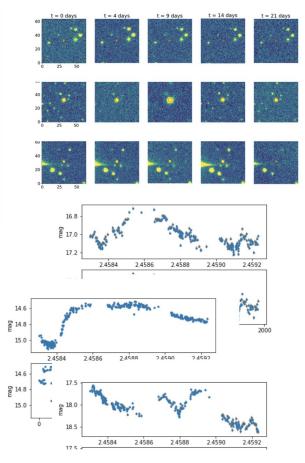

0.6

0.4

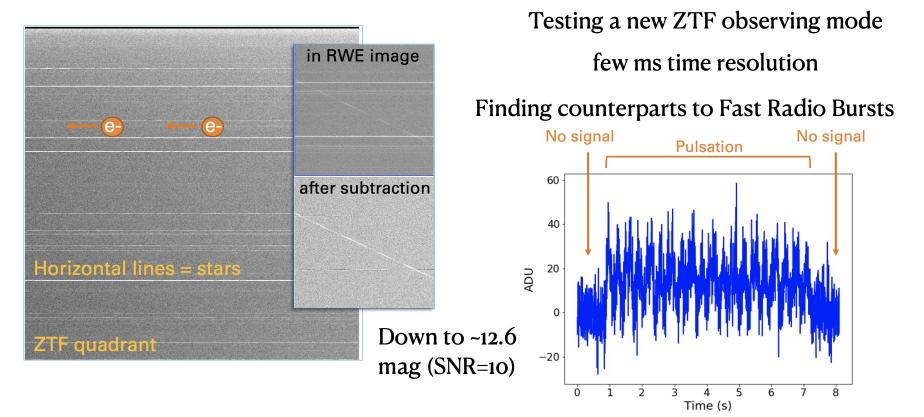
0.2

50


100


Brian Healy

UoMinnesota


No Anomaly Left Behind

With PPurohit, SParikh, YHassan, T Jegou Du Laz, ...

ZTF news

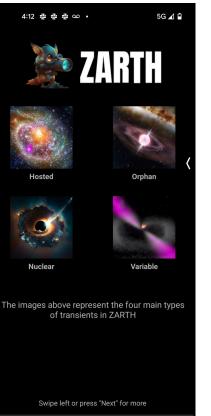
- Public part funded until end of O4 (Dec 2024)
- CMOS possibilities (one problem non-buttable)
- RWE mode

Read While Expose

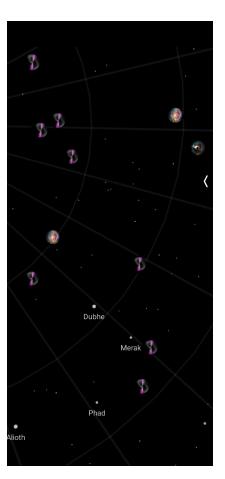
Rapidly spinning space debris The pulsating object was bright for ~6s

With Igor Andreoni, Roger Smith, ...

ZARTH - Pokemon GO for ZTF transients


Coming this month to androids

With D Pindawala, A Arora, D Thummar, A Bhavsar, I Kostadinova, ...



Made with midjourney

Ashish Mahabal

NEXT

Summary

- Combining archives generally underexplored
- Combined ZTF Gaia data have fantastic possibilities
- More ML and population level studies
- Move towards Rubin/LSST

Ashish Mahabal ashish at caltech.edu