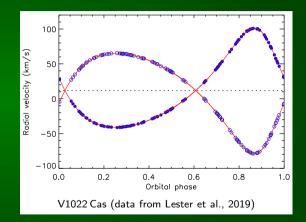

BINARY STARS: ECLIPSES, PULSATIONS, FUTURE

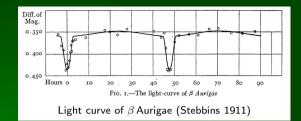
John Southworth

Binary stars: laboratories for stellar physics

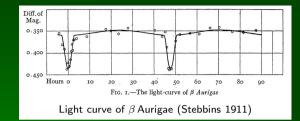
- Review of binary stars
 - astrometric binaries
 - spectroscopic binaries
 - eclipsing binaries
 - the DEBCat catalogue
 - impact of Gaia
- Pulsations in eclipsing binaries
 - history
 - new results from TESS
 - the SWIPE project
 - Worked example: KIC 9851944
- The future: PLATO

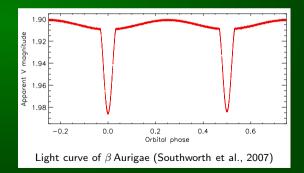

Astrometric binaries

- William Herschel (1802) christened the term "binary star"
- Félix Savary (in 1827) established the equations of an astrometric orbit
- What we get from an astrometric binary:
 - period P
 - eccentricity e
 - inclination i
 - semimajor axis a (in arcsec)
- If we know the distance:
 - semimajor axis *a* (in au)
 - sum of masses $M_1 + M_2$


Spectroscopic binaries

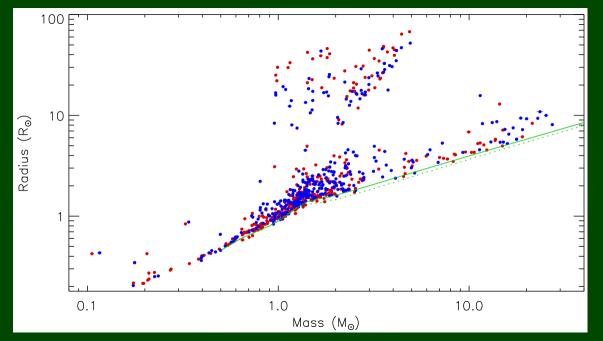
- Vogel (1890) observed the motion of spectral lines in β Persei
- Rambaut (1891) measured the first spectroscopic orbit, of β Aurigae
- What we get from a spectroscopic binary:
 - period *P*, eccentricity *e*
 - lower limit on semimajor axis: a sin i
 - lower limits on the masses: $M_1 \sin^3 i$ and $M_2 \sin^3 i$


Eclipsing binaries

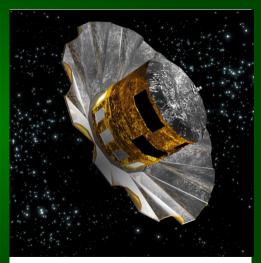

- John Goodricke (1783) suggested that β Persei underwent eclipses
- Stebbins (1911): measured mass and radius of β Aurigae
- What we get from an EB:
 - period *P*, eccentricity *e*
 - fractional radii: $r_{1,2} = \frac{R_{1,2}}{2}$
 - orbital inclination i

Eclipsing binaries

- John Goodricke (1783) suggested that β Persei underwent eclipses
- Stebbins (1911): measured mass and radius of β Aurigae
- What we get from an EB:
 - period *P*, eccentricity *e*
 - fractional radii: $r_{1,2} = \frac{R_{1,2}}{2}$
 - orbital inclination i
- Eclipses + spectroscopic orbit:
 - masses M_1 and M_2
 - radii R_1 and R_2
- Get $\mathcal{T}_{\rm eff}$ and metallicity from spectroscopy

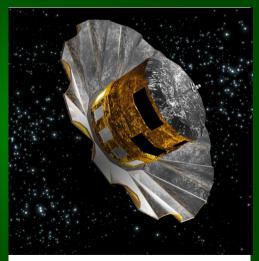


DEBCat: catalogue of well-studied eclipsing binaries

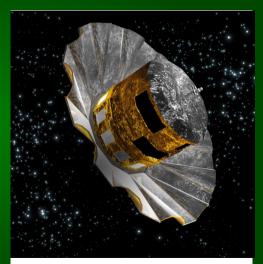

_							1				
	System	Period (days)	B-V				Surface gravity (cgs)		log (L/Lsun)	[M/H] (dex)	References and notes
-	V3903 Sgr	1.744	7.27 0.06	07_V 09_V	$\begin{array}{c} 27.27 \pm 0.55 \\ 19.01 \pm 0.44 \end{array}$	$\begin{array}{c} 8.088 \pm 0.086 \\ 6.125 \pm 0.060 \end{array}$	$\begin{array}{c} 4.058 \pm 0.016 \\ 4.143 \pm 0.013 \end{array}$	$\begin{array}{c} 4.580 \pm 0.021 \\ 4.531 \pm 0.021 \end{array}$	$\begin{array}{c} 5.087 \pm 0.029 \\ 4.658 \pm 0.032 \end{array}$		Vaz et al. (1997A&A327.1094V)
	V467 Vel	2.753	10.90 0.00	06_Vf B1_V	25.3 ± 0.7 8.25 ± 0.17	9.99 ± 0.09 3.49 ± 0.03	3.842 ± 0.016 4.268 ± 0.017	$\begin{array}{c} 4.559 \pm 0.031 \\ 4.402 \pm 0.046 \end{array}$	$\begin{array}{c} 5.187 \pm 0.126 \\ 3.649 \pm 0.110 \end{array}$		Michalska et al. (2013MNRAS.429.1354M)
0	CC Cas	3.366	7.08 0.48	08.5_III B0.5_V	23.49 ± 0.92 9.95 ± 0.34	$\begin{array}{c} 10.87 \pm 0.18 \\ 6.84 \pm 0.18 \end{array}$	3.736 ± 0.013 3.766 ± 0.022	$\begin{array}{c} 4.538 \pm 0.025 \\ 4.452 \pm 0.031 \end{array}$	$\begin{array}{c} 5.179 \pm 0.053 \\ 4.474 \pm 0.064 \end{array}$		Southworth & Bowman (2022MNRAS.513.3191S)
0	EM Car	3.414	8.38 -0.31	08_V 08_V	$\begin{array}{c} 22.89 \pm 0.32 \\ 21.43 \pm 0.33 \end{array}$	9.35 ± 0.17 8.34 ± 0.14	3.856 ± 0.017 3.926 ± 0.016	$\begin{array}{c} 4.531 \pm 0.026 \\ 4.531 \pm 0.026 \end{array}$	$\begin{array}{c} 5.02 \pm 0.10 \\ 4.92 \pm 0.10 \end{array}$		Andersen & Clausen (1989A&A213183A)
-	δ Cir	3.902	5.09 -0.06	07_IV 09.5_V	$\begin{array}{c} 20,00\pm 0.50\\ 11.41\pm 0.24 \end{array}$	$\begin{array}{c} 9.256 \pm 0.091 \\ 5.326 \pm 0.091 \end{array}$	$\begin{array}{c} 3.806 \pm 0.007 \\ 4.043 \pm 0.014 \end{array}$	$\begin{array}{c} 4.574 \pm 0.010 \\ 4.519 \pm 0.013 \end{array}$	$\begin{array}{c} 5.184 \pm 0.070 \\ 4.339 \pm 0.090 \end{array}$		Southworth & Bowman (2022MNRAS.513.31918)
0	DN Cas	2.311	9.93 0.53	08_V B0.2_V	$\begin{array}{c} 19.04 \pm 0.07 \\ 13.73 \pm 0.05 \end{array}$	$\begin{array}{c} 7.22 \pm 0.06 \\ 5.79 \pm 0.06 \end{array}$	$\begin{array}{c} 4.000 \pm 0.009 \\ 4.270 \pm 0.010 \end{array}$	$\begin{array}{c} 4.507 \pm 0.014 \\ 4.447 \pm 0.017 \end{array}$	$\begin{array}{c} 4.70 \pm 0.06 \\ 4.27 \pm 0.08 \end{array}$		Bakış et al. (2016PASA3346B)
-	V1292 Sco	4.240	7.57 0.14	09.5_III B1-2_IV	$\begin{array}{c} 18.64 \pm 0.47 \\ 7.70 \pm 0.12 \end{array}$	$\begin{array}{c} 9.40 \pm 0.15 \\ 3.69 \pm 0.06 \end{array}$	$\begin{array}{c} 3.762 \pm 0.018 \\ 4.190 \pm 0.016 \end{array}$	$\begin{array}{c} 4.490 \pm 0.014 \\ 4.336 \pm 0.020 \end{array}$			Rosu et al. (2022A&A604A98R)
\odot	Y Cyg	2.996	7.32	09.8_V 09.8_V	$17.72 \pm 0.35 \\ 17.73 \pm 0.30$	5.785 ± 0.091 5.816 ± 0.063	$\begin{array}{c} 4.161 \pm 0.014 \\ 4.157 \pm 0.010 \end{array}$	$\begin{array}{c} 4.521 \pm 0.003 \\ 4.525 \pm 0.003 \end{array}$		0.00 ± 0.00	Harmanec et al. (2014A&A563A.120H)
0	V1034 Sco	2.441	8.47 -0.22	09.5_V B1_V	$\begin{array}{c} 17.01 \pm 0.14 \\ 9.573 \pm 0.053 \end{array}$	$\begin{array}{c} 7.513 \pm 0.075 \\ 4.328 \pm 0.051 \end{array}$	$3.917 \pm 0.009 \\ 4.147 \pm 0.010$	$\begin{array}{c} 4.508 \pm 0.007 \\ 4.412 \pm 0.005 \end{array}$	$\begin{array}{c} 4.738 \pm 0.028 \\ 3.874 \pm 0.028 \end{array}$		Pavlovski et al. (2023A&A671A.139K) Rosu et al. (2022A&A664A98R)
(ĝ)	AH Cep	1.775	6.81 0.30	B0.5_V B0.5_V	$\begin{array}{c} 16.14 \pm 0.26 \\ 13.69 \pm 0.21 \end{array}$	$\begin{array}{c} 6.51 \pm 0.10 \\ 5.64 \pm 0.11 \end{array}$	$\begin{array}{c} 4.019 \pm 0.012 \\ 4.073 \pm 0.018 \end{array}$	$\begin{array}{c} 4.487 \pm 0.008 \\ 4.459 \pm 0.008 \end{array}$	$\begin{array}{c} 4.53 \pm 0.03 \\ 4.30 \pm 0.04 \end{array}$		Pavlovski, Southworth & Tamajo (2018MNRAS.481.3129P) Holmgren et al. (1990A&A236409H)
	GL Car	2.422	9.70 0.17	B0.5_V B1_V	$\begin{array}{c} 15.86 \pm 0.31 \\ 14.95 \pm 0.30 \end{array}$	$\begin{array}{c} 5.242 \pm 0.048 \\ 4.968 \pm 0.051 \end{array}$	$\begin{array}{c} 4.199 \pm 0.007 \\ 4.220 \pm 0.008 \end{array}$	$\begin{array}{c} 4.491 \pm 0.007 \\ 4.483 \pm 0.007 \end{array}$	$\begin{array}{c} 4.357 \pm 0.029 \\ 4.278 \pm 0.030 \end{array}$		Pavlovski et al. (2023A&A671A,139K) Gimenez & Clausen (1986A&A161275G)
Ŷ	V478 Cyg	2.881	8.63 -0.29	09.5_V 09.5_V	$\begin{array}{c} 15.40 \pm 0.38 \\ 15.02 \pm 0.35 \end{array}$	$\begin{array}{c} 7.26 \pm 0.09 \\ 7.15 \pm 0.09 \end{array}$	$\begin{array}{c} 3.904 \pm 0.009 \\ 3.907 \pm 0.010 \end{array}$	$\begin{array}{c} 4.507 \pm 0.007 \\ 4.502 \pm 0.008 \end{array}$	$\begin{array}{c} 4.70 \pm 0.03 \\ 4.67 \pm 0.04 \end{array}$		Pavlovski, Southworth & Tamajo (2018MNRAS.481.3129P) Popper & Hill (1991AJ101600P)
	V573 Car	1.469	9.52 0.11	O9.5_V B0.3_IV	$\begin{array}{c} 15.11 \pm 0.13 \\ 12.37 \pm 0.10 \end{array}$	$\begin{array}{c} 5.429 \pm 0.043 \\ 4.528 \pm 0.049 \end{array}$	$\begin{array}{c} 4.148 \pm 0.007 \\ 4.218 \pm 0.009 \end{array}$	$\begin{array}{c} 4.504 \pm 0.005 \\ 4.458 \pm 0.005 \end{array}$	$\begin{array}{c} 4.439 \pm 0.023 \\ 4.098 \pm 0.023 \end{array}$		Pavlovski et al. (2023A&A671A.139K) Freyhammer et al. (2001AA&A369561F)
	V578 Mon	2.408	8.54 0.17	B1_V: early_B	14.54 ± 0.08 10.29 ± 0.06	5.41 ± 0.04 4.29 ± 0.05	$\begin{array}{c} 4.133 \pm 0.018 \\ 4.185 \pm 0.021 \end{array}$	$\begin{array}{c} 4.477 \pm 0.007 \\ 4.411 \pm 0.007 \end{array}$	$\begin{array}{c} 4.33 \pm 0.03 \\ 3.86 \pm 0.03 \end{array}$		Garcia et al. (2014AJ14839G) Pavlovski, Southworth & Tamajo (2018MNRAS.481.3129P)
	V453 Cyg	3.890	8.29 0.18	B0.4_IV B0.7_IV	$\begin{array}{c} 13.96 \pm 0.23 \\ 11.10 \pm 0.18 \end{array}$	$\begin{array}{c} 8.665 \pm 0.055 \\ 5.250 \pm 0.056 \end{array}$	3.708 ± 0.004 4.044 ± 0.009	4.459 ± 0.008 4.442 ± 0.009	$\begin{array}{c} 4.666 \pm 0.031 \\ 4.163 \pm 0.039 \end{array}$		Southworth et al. (2020MNRAS.497L.19S) Pavlovski, Southworth & Tamajo (2018MNRAS.481.3129P)
	OCLE LMC ECL 22270	5.414	14.03	none	13.21 ± 0.08	8.48 ± 0.10	3.702 ± 0.010	4.417 ± 0.027	4.478 ± 0.010		Taormina et al. (2020ApJ890137T)

http://www.astro.keele.ac.uk/jkt/debcat/

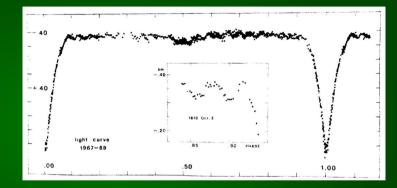
Gaia and binary stars


- *Gaia* epoch photometry useful for cataloguing binary stars
 - Mowlavi et al. (2022) found 2.2 million
 - sparse photometry bad for longer periods

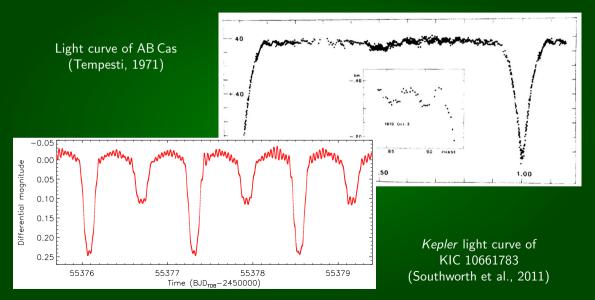
Gaia and binary stars


- *Gaia* epoch photometry useful for cataloguing binary stars
 - Mowlavi et al. (2022) found 2.2 million
 - sparse photometry bad for longer periods
- *Gaia* parallaxes useful for temperature measurement
 - Gaia parallax + known radii \Rightarrow $T_{
 m eff}$

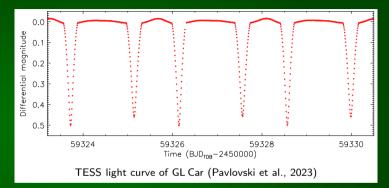
ESA / C. Carreau


Gaia and binary stars

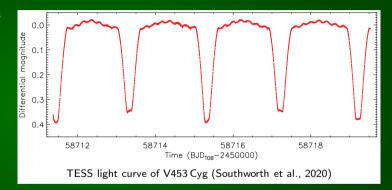
- *Gaia* epoch photometry useful for cataloguing binary stars
 - Mowlavi et al. (2022) found 2.2 million
 - sparse photometry bad for longer periods
- *Gaia* parallaxes useful for temperature measurement
 - Gaia parallax + known radii \Rightarrow ${\cal T}_{
 m eff}$
- Gaia RVS spectra useful for orbit determination
 - SB1 and SB2 orbits catalogued (TBOSB1 and TBOSB2)
 - reliability not yet demonstrated

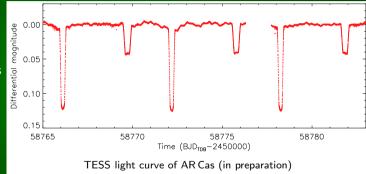

ESA / C. Carreau

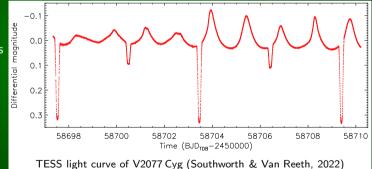
Pulsations in eclipsing binaries

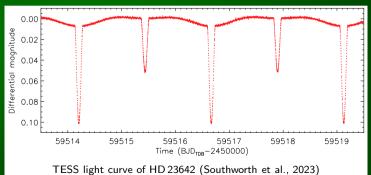


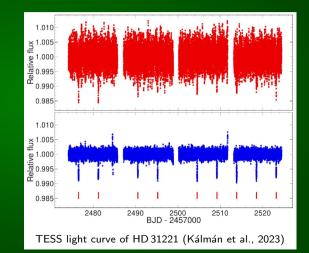
Light curve of AB Cas (Tempesti, 1971)


Pulsations in eclipsing binaries

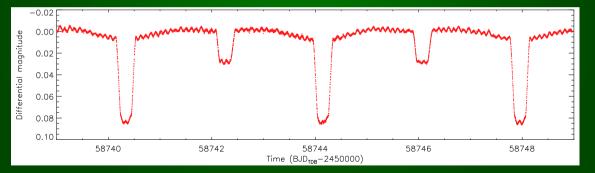

- Well-known eclipsing binaries
 - GL Car (P = 2.42 d)


- Well-known eclipsing binaries
 - GL Car (P = 2.42 d)
- β Cephei stars in EBs
 - V453 Cyg ($P = 3.89 \,\mathrm{d}$)

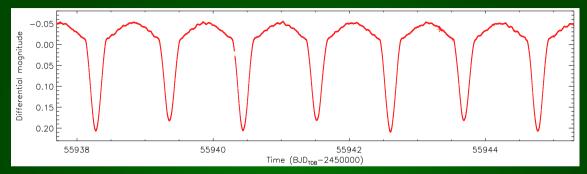

- Well-known eclipsing binaries
 - GL Car (P = 2.42 d)
- β Cephei stars in EBs
 - V453 Cyg ($P = 3.89 \,\mathrm{d}$)
- Slowly-pulsating B-stars in EBs
 AR Cas (P = 6.07 d)


- Well-known eclipsing binaries
 - GL Car (P = 2.42 d)
- β Cephei stars in EBs
 - V453 Cyg (P = 3.89 d)
- Slowly-pulsating B-stars in EBs
 AR Cas (P = 6.07 d)
- γ Doradus stars in EBs
 - V2077 Cyg (P = 5.94 d)

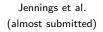
- Well-known eclipsing binaries
 - GL Car (P = 2.42 d)
- β Cephei stars in EBs
 - V453 Cyg (P = 3.89 d)
- Slowly-pulsating B-stars in EBs
 AR Cas (P = 6.07 d)
- γ Doradus stars in EBs
 - V2077 Cyg (P = 5.94 d)
- δ Scuti stars in EBs
 - HD 23642 ($P = 2.46 \, \text{d}$)



- Well-known eclipsing binaries
 - GL Car $(P = 2.42 \, d)$
- β Cephei stars in EBs
 - V453 Cyg ($P = 3.89 \,\mathrm{d}$)
- Slowly-pulsating B-stars in EBs
 - AR Cas $(P = 6.07 \, \text{d})$
- γ Doradus stars in EBs
 - V2077 Cyg ($P = 5.94 \, d$)
- δ Scuti stars in EBs
 - HD 23642 (P = 2.46 d)
- Substellar objects in EBs
 - HD 31221 (P = 4.67 d)

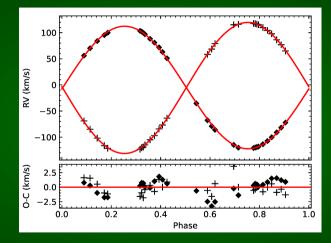

SWIPE: Stars With Pulsations and Eclipses

- Project to study eclipsing binaries also showing pulsations
- 9 collaborators (Keele, Leeuven, Zagreb, Queensland)
- 11 publications so far + 4 in progress

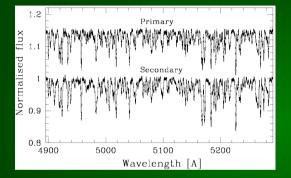


https://www.astro.keele.ac.uk/jkt/swipe/

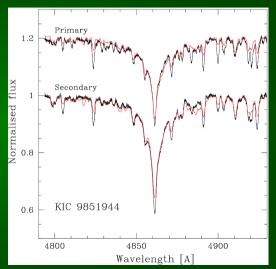
KIC 9851944: a case study



- Identified as an EB with γ Dor period spacings by Li et al. (2020)
- Already known as a nice EB from Kepler (Guo et al., 2016)
 - 4 years long cadence, 5 quarter short cadence
- 32 échelle spectra from Lick 3 m

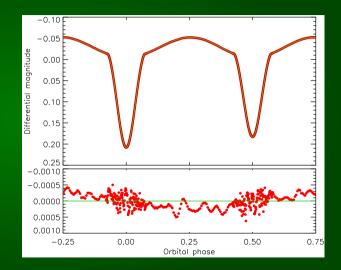


KIC 9851944: spectroscopic orbit

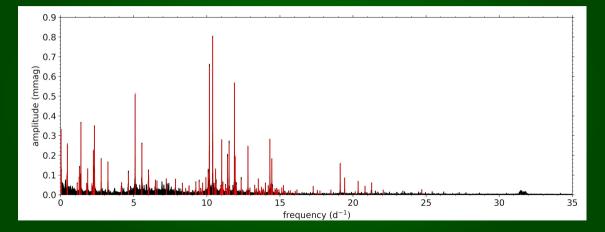


- Cross-correlation with TODCOR
- Masses 1.747 ± 0.010 and $1.867\pm0.010~{\rm M}_{\odot}$

KIC 9851944: spectral disentangling

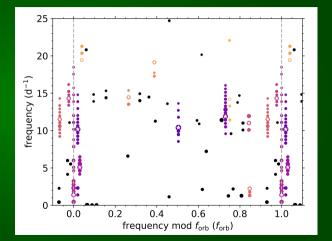


- Get spectra and orbits of the two stars from the set of composite spectra (Simon & Sturm 1994)
- Fit Balmer lines to synthetic spectra
- Temperatures: 6964 \pm 43 and 6840 \pm 37 K

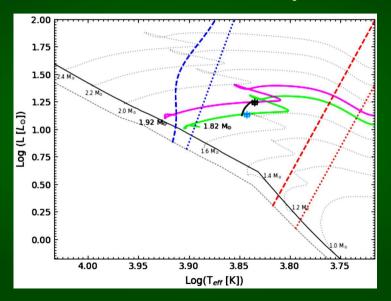


KIC 9851944: eclipse analysis

- Preliminary fit with JKTEBOP
- Phase-bin into 400 points
- Final fit with Wilson-Devinney code
- Radii: 2.532 ± 0.026 and $2.981\pm0.044~\mathrm{R}_{\odot}$



KIC 9851944: pulsation analysis



KIC 9851944: pulsation analysis

- 133 significant frequencies
- p-modes (δ Sct) and g-modes (γ Dor)
- Pulsations from both stars
- Tidal perturbation and excitation
- g-mode pulsations:
 - buoyancy radius: $\Pi_0 = 4370^{+690}_{-660}$ s
 - near-core rotation period $0.49^{+0.05}_{-0.06}$ d

KIC 9851944: evolutionary status

PLATO – PLAnetary Transits and Oscillations

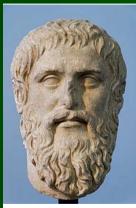
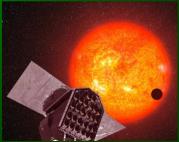



Image credits: M. Nguyen (Wikipedia) ESA/ATG Medialab ESA/L. Calčada

- 26-camera planet search mission
- ESA launch late 2026 (dhyb)
- EBs are part of Complementary Science
 - WP 161 000 Binary and multiple star systems (PI Southworth)
 - WP 125 500 PLATO Benchmark Stars (Pls Creevey & Maxted)
- "Binary Stars with Space Telescopes"
 - Conference at Keele University
 - June/July 2025

