The multiplicity fraction in 202 open clusters from *Gaia*

Judit Donada Oliu

Institut de Ciències del Cosmos UNIVERSITAT DE BARCELONA

MW-GAIA WG2 Workshop – Stellar Variability, Stellar Multiplicity: Periodicity in Time & Motion

Sofia (Bulgaria)

7th June 2023

Donada, J., Anders, F., Jordi, C., et al., *The multiplicity fraction in 202 open clusters from Gaia*, **2023**, *Astronomy & Astrophysics* (accepted for publication on 25th April 2023, now in press). arXiv:2301.11061.

Multiplicity fraction: $f_b = \frac{B + T + \dots}{S + B + T + \dots}$ Binary system mass ratio: $q = M_2/M_1$ ($0 < q \le 1$)

Multiple stellar systems in open clusters (OCs)

Most multiple systems are spatially unresolved, being located in the colour-magnitude diagram (CMD) above (and towards redder colours for q < 1) with respect to the main-sequence position of the primary component, by an amount which depends on q and M_1 .

Binary sequences for various mass-ratios -q = 0 [0.25 Gyr] - q = 0.6 - - - q = 1a = 0.5a = 0.7q = 0 locus: single-star sequence 2 q = 1 locus: equal-mass binary sequence (0.753 mag brighter than the equivalent single star) 4 β Jadhav, Vikrant V. et al., High Mass-Ratio Binary Population in Open Clusters: Segregation of Early Type Binaries and an Increasing Binary Fraction with Mass, 2021, AJ, 162.6, p. 264. 10 0.5 2.0 0.0 1.0 1.5 2.5 2 $G_{BP} - G_{RP}$

Selection of the sample of OCs and their main-sequence members

OCs' membership lists

Membership determinations of OCs in the extended solar neighbourhood (**closer than 1.5 kpc** from the Sun) from the *Gaia*-derived catalogues:

• Tarricq et al. 2022 (T22, EDR3-based), age > 50 Myr

Tarricq, Y. et al., *Structural parameters of 389 local open clusters*, **2022**, *A&A*, 659, A59. arXiv: 2111.05291.

• Cantat-Gaudin et al. 2020 (CGa20, DR2-based), selecting those of age < 50 Myr

Cantat-Gaudin, T. et al., *Painting a portrait of the Galactic disc with its stellar clusters*, **2020**, *A&A*, 640, A1. arXiv: 2004.07274.

Both are limited to G < 18, we further select those members with membership probability $\geq 70\%$.

Selection of the sample of OCs and their main-sequence members

OCs' membership lists

Membership determinations of OCs in the extended solar neighbourhood (**closer than 1.5 kpc** from the Sun) from the *Gaia*-derived catalogues:

• **Tarricq et al. 2022** (**T22**, EDR3-based), age > 50 Myr

Tarricq, Y. et al., *Structural parameters of 389 local open clusters*, **2022**, *A&A*, 659, A59. arXiv: 2111.05291.

• Cantat-Gaudin et al. 2020 (CGa20, DR2-based), selecting those of age < 50 Myr

Cantat-Gaudin, T. et al., *Painting a portrait of the Galactic disc with its stellar clusters*, **2020**, *A&A*, 640, A1. arXiv: 2004.07274.

Both are limited to G < 18, we further select those members with membership probability $\geq 70\%$.

OC's physical parameters: from CGa20.

Selection of OC's main-sequence (MS) members

We retain only those OCs having:

- at least 30 MS members
- $(BP RP)_0$ range of at least 1 mag

and obtain 377 OCs.

Two examples of the homogeneous selection of the main sequence members of the OCs.

Mixture model for the observed OC's Gaia CMD

The observed G vs. (BP-RP) Gaia CMD of selected MS members is modelled as a mixture distribution

of $\begin{bmatrix} \text{single stars} \\ \text{unresolved binaries} \end{bmatrix}$ arising from 2 Gaussian distributions: $\begin{bmatrix} \mathcal{N}(G; G_{SS}(M_1), \sigma_{SS}) & (\text{weight: } w_{SS}) \\ \mathcal{N}(G; G_{BS}(M_1), \sigma_{BS}) & (\text{weight: } w_{BS}) \end{bmatrix}$

Likelihood function (\mathcal{L}) depending on:

- *p*+1 parameters of p_{SS} polynomial (*p*=6)
- $\Delta G = G_{BS} G_{SS}$
- σ_{SS} (SS comprises $q \in [0, q_{\lim}(M_1))$)
- σ_{BS} (BS comprises $q \in (q_{\lim}(M_1), 1])$
- $f_b(q > q_{\lim}) = \frac{w_{BS}}{w_{SS} + w_{BS}} = w_{BS}$

Multiplicity fraction of high*q* unresolved systems integrated over the OC's MS mass range.

emcee is used for the MCMC sampling of the posterior probability distribution.

Mixture model for the observed OC's Gaia CMD

The observed G vs. (BP-RP) Gaia CMD of selected MS members is modelled as a mixture distribution

of $\begin{bmatrix} \text{single stars} \\ \text{unresolved binaries} \end{bmatrix}$ arising from 2 Gaussian distributions: $\begin{bmatrix} \mathcal{N}(G; G_{SS}(M_1), \sigma_{SS}) & (\text{weight: } w_{SS}) \\ \mathcal{N}(G; G_{BS}(M_1), \sigma_{BS}) & (\text{weight: } w_{BS}) \end{bmatrix}$

Likelihood function (\mathcal{L}) depending on:

- *p*+1 parameters of p_{SS} polynomial (*p*=6)
- $\Delta G = G_{BS} G_{SS}$
- σ_{SS} (SS comprises $q \in [0, q_{\lim}(M_1))$)
- σ_{BS} (BS comprises $q \in (q_{\lim}(M_1), 1])$
- $f_b(q > q_{\lim}) = \frac{w_{BS}}{w_{SS} + w_{BS}} = w_{BS}$

Multiplicity fraction of high*q* **unresolved systems** integrated over the OC's MS mass range.

emcee is used for the MCMC sampling of the posterior probability distribution.

Selection of OCs with an accurate CMD fit

We only retain the OCs having:

- 1. $\sigma_{SS} \leq 0.2$
- 2. $\sigma_{BS} \leq 0.25$
- 3. $|\Delta G + 0.75| \le 0.05$
- 4. $\sigma_{f_b} \leq 0.25$
- 5. Well-fit CMD (visual inspection)

We obtain a final sample of **202 OCs**:

- 146 from T22 (~ 72%)
- 56 from CGa20 (~ 28%)

Examples of selected OCs:

Simulated Gaia-like OCs

Gaia Object Generator (GOG; Luri, X., et al. 2014, A&A, 566, A119)

Multiple-star module (Arenou, F. 2011, in American Institute of Physics Conference Series, Vol. 1346, 107–121) of the Gaia Universe Model simulations (Robin, A. C., et al. 2012, A&A, 543, A100)

Simulated Gaia-like OCs

Gaia Object Generator (GOG; Luri, X., et al. 2014, A&A, 566, A119) Multiple-star module (Arenou, F. 2011, in American Institute of Physics Conference Series, Vol. 1346, 107–121) of the Gaia Universe Model simulations (Robin, A. C., et al. 2012, A&A, 543, A100)

A sample of **219 simulated OCs**, and **10 different CMD realisations each**, is used to:

1) Estimate the q_{\lim} which the unresolved multiplicity fraction $f_b(q > q_{\lim})$ takes into account

$$q_{\lim}$$
 is assumed to be the q_{min} for which $\overline{f_b^{sim, theo}}(q > q_{min})$ is the closest possible to $\overline{f_b^{sim}}$
 $q_{min} \in [0.2, 0.7]$ from MCMC fit to the CMD

We find:
$$q_{\lim} = 0.6^{+0.05}_{-0.15}$$

Simulated Gaia-like OCs

2) Use simulated OCs to estimate the OC's **total multiplicity fraction**

$$f_b^{tot}(q > q_{\lim} = 0.6^{+0.05}_{-0.15}) = \underbrace{f_{b, unres}^{MCMC}(q > q_{\lim})}_{From MCMC fit in the observed Gaia CMD} \cdot \begin{bmatrix} 1 + \frac{f_{b, res}^{sim, theo}(q > q_{\lim}; d)}{f_{b, unres}^{sim, theo}(q > q_{\lim}; d)} \end{bmatrix}$$
Estimated through a fit as a function of the OC's distance
$$\underbrace{\left[\begin{array}{c} 0.8 \\ 0.7 \\ 0.4 \\ 0.6 \\ 0.3 \\ 0.4 \\ 0.5 \\ 0.1 \\ 0.5 \\ 0.1 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.1 \\ 0.5 \\$$

Homogeneous catalogue accessible via CDS containing the estimated **unresolved and total multiplicity fractions** of main-sequence systems of $q > 0.6^{+0.05}_{-0.15}$ for 202 OCs closer than 1.5 kpc, having ages between 6.6 Myr and 3.0 Gyr.

 $f_b \in [5, 67]\%$, median: 15%. $f_b^{tot} \in [6, 80]\%$, median: 18%. For 89% of the OCs, $f_b^{tot} - f_b < 5\%$.

Homogeneous catalogue accessible via CDS containing the estimated **unresolved and total multiplicity fractions** of main-sequence systems of $q > 0.6^{+0.05}_{-0.15}$ for 202 OCs closer than 1.5 kpc, having ages between 6.6 Myr and 3.0 Gyr.

 $f_b \in [5, 67]\%$, median: 15%. $f_b^{tot} \in [6, 80]\%$, median: 18%. For 89% of the OCs, $f_b^{tot} - f_b < 5\%$.

1) <u>Comparison to other studies</u>

Large homogeneous studies are still rare.

Results of different studies are very seldom directly comparable:

- Different mass range of the OC is covered
- Different q_{\lim}
- Dependence on the applied model's assumptions
- Different OC membership determinations

Recent studies of multiplicity fraction in OCs:

- Li, L., Shao, Z., Li, Z.-Z., et al. 2020, ApJ, 901, 49
- Niu, H., Wang, J., & Fu, J. 2020, ApJ, 903, 93
- Jadhav, V. V., Roy, K., Joshi, N., & Subramaniam, A. **2021**, AJ, 162, 264
- Li, L. & Shao, Z. **2022**, ApJ, 930, 44

Comparison of the unresolved multiplicity fraction values for the 10 OCs our study has in common with Jadhav, V. V. et al. 2021.

2) Dependence of the multiplicity fraction on the distance and stellar mass

The OC's parameters of age, distance, and mean sampled mass are heavily entangled: **complex selection effects**.

 f_b^{tot} increases with distance because for more distant OCs we tend to see only the upper ends of their MSs, which have more massive stars.

 f_b^{tot} increases with the mass of the primary star, in agreement with observational evidence from field stars and OCs (Bouvier, J., et al. **1997**, A&A, 323, 139 and Deacon, N. R. & Kraus, A. L. **2020**, MNRAS, 496, 5176).

3) <u>Dependence of the multiplicity fraction on position</u>

There is no apparent correlation between f_b^{tot} and the position in or perpendicular to the Galactic plane.

3) <u>Dependence of the multiplicity fraction on position</u>

There is no apparent correlation between f_b^{tot} and the position in or perpendicular to the Galactic plane.

4) Dependence of the multiplicity fraction on the OC's age

 f_b^{tot} running median trend (decrease with age until ~ 100 Myr, and slight increase for older OCs) is reproduced by simulated OCs \Rightarrow mainly caused by the sample's complex selection effects.

5) Dependence of the multiplicity fraction on the number of cluster members

OCs with

- m_{min} < 0.6 M_{\odot} and
- highly elevated multiplicity fractions

could be candidates for being close to dissolution, in line with simulations (e.g. Hurley, J. R., Aarseth, S. J., & Shara, M. M. **2007**, ApJ, 665, 707).

5) Dependence of the multiplicity fraction on the number of cluster members

OCs with

- m_{min} < 0.6 M_{\odot} and
- highly elevated multiplicity fractions

could be candidates for being close to dissolution, in line with simulations (e.g. Hurley, J. R., Aarseth, S. J., & Shara, M. M. **2007**, ApJ, 665, 707).

6) Dependence of the multiplicity fraction on metallicity

Gaia DR3 GSP-Spec catalogue metallicities (Recio-Blanco, A., et al. 2022, A&A, in press, arXiv:2206.05541).

The **multiplicity fraction decreases with metallicity**, in line with recent studies using close binaries in the field (e.g. El-Badry, K. & Rix, H.-W. **2019**, MNRAS, 482, L139 and Moe, M., Kratter, K. M., & Badenes, C. **2019**, ApJ, 875, 61).

The same trend is found using Netopil, M., et al. **2022**, MNRSS, Volume 509, Issue 1, pp.421-439, but for much less OCs.

Conclusions

- ✓ CMD is a fundamental diagnostic tool for OCs.
- ✓ The multiplicity fraction estimation depends inevitably to some degree on **modelling**.
- Our approach does not rely on fitting theoretical isochrones to the CMD, nor it depends on any stellar model.

The mixture model fitting is performed directly in *Gaia*'s observed CMD.

Synthetic CMDs are only used to characterise the q range that f_b takes into account and to estimate the total multiplicity fraction.

Our f_b is integrated over the main-sequence mass range of the OC: the OC's q distribution is not determined.

Future work

Corroborate our results with revised and more complete membership lists: Apply our method to the recent *Gaia* DR3 OC catalogue from Hunt, E. L. & Reffert, S., **2023**, A&A, Volume 673, id.A114, 31 pp.