

Stellar variability, stellar multiplicity: periodicity in time & motion - June 6-8th, Sofia, Bulgaria

0100000000 **

Massive binaries in the Gaia era

Laurent Mahy Royal Observatory of Belgium

1-0

Massive stars

Massive stars

Gravitational wave sources

First Stars & Galaxy formation and evolution

Supernova(progenitors), GRBs & compact objects

Nucleosynthesis & Feedback

Massive stars

- Massive stars: $M_{ini} > 8 M_{\odot}$
- Spectral types O and early B → Teff > 20,000K
- Very luminous $\rightarrow L > 10^{3}L_{\odot}$

O Stars:

- 70-90% of O-type stars are in binary or multiple systems in the MW (e.g., Sana et al. 2012; 2014; Vanbeveren et al. 1998, Barba et al 2017)
- ~50 % in the LMC (Sana et al. 2013)

B Stars:

 ~55% of B-type stars in young clusters are in binary or multiple systems (e.g., Dunstall et al. 2015, Banyard et al. 2022)

Mu B Stars:

 ~55% of B clusters ar systems (e Banyard et

B Stars:

- ~55% of B-type stars in young clusters are in binary or multiple systems (e.g., Dunstall et al. 2015, Banyard et al. 2022)
- ~35% of B-type stars in older clusters are found in binary systems (Bodensteiner et al. 2021, Wang et al. 2022)

B Supergiants:

 10-30% of B-supergiants are in binary systems (Simon-Diaz, priv. communication; Dunstall et al. 2015)

Red Supergiants:

- Only a dozen known in the Milky Way
- In the SMC, Patrick et al. (2020) obtained a binary fraction of 30±10 %
- In the LMC, Neugent et al. (2021a) derived a binary fraction of 20±7%
- In M31, Neugent et al. (2021b) also obtained a binary fraction of ~33%

Luminous Blue Variables:

- Extremely complicated to detect the binarity from spectroscopy
- Other techniques used:
 - 1.X-rays: 26-69% (Nazé et al. 2012)
 - 2.Imaging: **30%** (Martayan et al. 2016)
 - 3. Interferometry: 60-80% (Mahy et al 2022)

That shows the complexity to study the binarity for those objects

6.05.55.0 (L/L_{\odot}) 4.5**හ** 4.0 3.53.02.560000

Wolf-Rayet stars:

- Classical WRs:
 - <u>Type N:</u>
 - For WNE, 56 ± 20% (DSilva et al. 2022a)
 - For WNL: 42 ± 16% (DSilva et al. 2022b)
 - Type C: from 12 northern cWR,
 DSilva et al. (2020) found 72 ±
 20% of binary systems

If one wants to understand massive star evolution, one must understand binary (multiple) evolution

40M

32N

25M

20N

WNh

<u>MULTI-EPOCH</u> REMAINS A MUST !!!

50000 40000 30000 20000 $4M_{\odot}$ 10000 Effective temperature [K]

30-80%

10-30%

9*M*_☉

 $7M_{\odot}$

5M

YHG/

A SGs

Massive star evolution

Massive star evolution

Characterisation of OB+OB binaries

Interacting binaries

Binary evolution products / stripped stars

OB + BH systems

- calibration scales (e.g., Eker et al. 2018, Mova et al. 2018)

OB+OB binaries

Spectroscopy only provides measurements of the orbital parameters and minimum masses of the components BUT

When combined with Photometry or Interferometry

OB+OB binaries

Mahy et al. (2017, in prep.) Martins et al. (2017) Pavlovski et al. (2018, 2013) Raucq et al. (2016, 2017) Rauw et al. (2018) Rosu et al (2021, 2022)

Mahy et al (2020a,b)

Interacting binaries - contact phase

Abdul-Masih et al (2019, 2021, 2023)

Stripped stars

Spectral characteristics ranging from sdB- to Wolf-Rayet-like depending on the stripped star mass

- Hot (40+kK) and compact (~1Rsun or less)
- Different (pre-supernova) stellar core structure
 - Different yields
 - Different explodability
- Strong ionising flux
- Relatively frequency (several 10³-10⁵ in Milky-Way like SF rate)
- Dominate EUV of young starbursts

Black hole"

al. (2021), Frost et al. (2022), Simon-Diaz et al. (2020), among others

Stripped stars

Quest of quiescent BHs

Direct collapse (no mass loss) and no kick: Predicted 2% of OB binaries with BH Langer et al. (2020)

- ~1200 OB+BH in the Milky Way, handful within 3kpc
- ~ 15 OB+BH in 30 Doradus, Large Magellanic Cloud (LMC)

Quest of quiescent BHs

Milky way sample

Mahy et al. 2022 **32 SB1 systems**

- Archive + new Mercator & SALT data (Mercator, ESO, SALT, ...)
- High-Res, S/N > 100

17 identified stellar companions (news SB2s)

Tarantula sample (LMC)

- 51 SB1 systems Shenar et al. 2022a,b
- Tarantula Massive Binary Monitoring (32 epochs VLT/ FLAMES)
- Mid-Res, S/N ~ 70
- 33 identified stellar companions 10 doubtfull cases

• (very) Low mass stars

Stripped He-star

• Rapid rotator

nature astronomy

ARTICLES https://doi.org/10.1038/s41550-022-01730-

Check for updat

An X-ray-quiet black hole born with a negligible kick in a massive binary within the Large Magellanic Cloud

Tomer Shenar ^{1,2}^M, Hugues Sana ^{1,}, Laurent Mahy ^{1,3}, Kareem El-Badry^{4,5,6}, Pablo Marchant ^{1,} Norbert Langer^{7,8}, Calum Hawcroft¹, Matthias Fabry¹, Koushik Sen^{7,8}, Leonardo A. Almeida^{9,10}, Michael Abdul-Masih¹¹, Julia Bodensteiner¹², Paul A. Crowther¹³, Mark Gieles^{14,15}, Mariusz Gromadzki¹⁶, Vincent Hénault-Brunet¹⁷, Artemio Herrero^{18,19}, Alex de Koter^{1,2}, Patryk Iwanek¹⁶, Szymon Kozłowski¹⁶, Daniel J. Lennon^{18,19}, Jesús Maíz Apellániz¹⁰²⁰, Przemysław Mróz¹⁶, Anthony F. J. Moffat²¹, Annachiara Picco¹, Paweł Pietrukowicz¹⁶, Radosław Poleski¹⁶, Krzysztof Rybicki^{16,22}, Fabian R. N. Schneider^{23,24}, Dorota M. Skowron¹⁶, Jan Skowron¹⁶, Igor Soszyński¹⁶, Michał K. Szymański¹⁶, Silvia Toonen², Andrzej Udalski¹⁶, Krzysztof Ulaczyk²⁵, Jorick S. Vink²⁶ and Marcin Wrona¹⁶

Quest of quiescent BHs

 $M_{
m BH}$

HD130298: $O+BH: 25 + (>) 7M_{\odot}$ with P = 14.6 days and e = 0.46

Large kick + large mass ejecta (< 8 M_{\odot})

BH formation through fallback/with kick

VFTS 243: $O+BH: 25 + 10 M_{\odot}$ with P = 10.4 days and e < 0.03

No kick + Mass ejecta (< 1.1 M_{\odot})

BH formation through direct collapse

Marchant et al. (in prep.)

The Gaia revolution

Gaia, up to DR4, was not well suited for massive stars !

Discovery of more binary/triple/quadruple systems with photometry and astrometry

> Better characterisation of the Kozai-Lidov mechanism

Understand the way triples evolve

•eesa qaia

ass transfe initiated by

Primary star (~60-75%)

The Gaia revolution

eesa gaia

Found more nearby dark companions

Janssens et al. (2022), Gomel et al. (2021), Mazeh et al. (2022), El-Badry et al. (2022, 2023)

The Gala revolution

+Also check Jesus Maiz Apellaniz's paper (2022):

"The Gaia view on massive stars: EDR3 and what to expect from DR3"

Asteroseismology

gaia

2.5

Stellar variability, stellar multiplicity: periodicity in time & motion - June 6-8th, Sofia, Bulgaria

0100000000 ** - 0 0 0 - 000 0 001

Massive binaries in the Gaia era

Laurent Mahy Royal Observatory of Belgium

1-0

