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Nonlinear convective pulsation models

One of the advantages of nonlinear convective models is the possibility
to directly compare observed and predicted hght radial Veloc1ty, radlus variations
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Many applications to both Cepheids and RR Lyrae in different Galactic and

extragalactic environments followed ( e.g. Marconi & Clementini 2005, AJ 129, 2257, Natale+2009
ApJL 674,93, Marconi+2013 ApJL,768,6, Marconi+2013 MNRAS,428, 2185, Marconi+2017
MNRAS,466,3206, Ragosta+2019,MNRAS,490,4975; Paxton+2019 ApJSS,243,10)



New perspectives for model fitting

Pulsation model computation is Time consuming!!!

i) Processing capacity of modern computers allows us to sample the
structural parameter space more uniformly and with denser grids of
pulsational models.

ii) Interpolation of pulsation model grids, based on artificial neural
network (Kumar+, MNRAS, 2023, 522, 1504)

In this context our project is mainly devoted to point i)
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- Combining i) ii) and iii), and applying the preliminary linear non
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Define the grid of models
- Ingredients:
i) Observational period P_, and the chemical composition (Z, Y)

ii) P=P(T _, L, M) relation from De Somma+ 2020-22

eff’

iii) Variable ML relation from canonical (Bono+2000) to canonical +0.6 dex in log(L/L )

- Combining i) ii) and iii), and applying the preliminary linear non
adiabatic analysis, we define the grid of all possible structural

parameters (M, L, T , alfa ), such that P is matched by models
eff ml obs
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Grid of models definition

- The non-linear analysis was used to identify, among the previously
selected linear models, the ones reaching a stable pulsational cycle.
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Fitting technique

i) Theoretical bolometric light curves were transformed into the observational curves by
considering the bolometric corrections from Chen+2019.

ii) Theoretical light curves were fitted to observational ones, by shifting the former along
the magnitude dimension, in order to match the mean observational magnitude.

iii) Theoretical pulsational velocity curves were fitted to observational radial velocities,
by shifting the former along the velocity dimension, in order to match the mean
observational velocity, and by stretching (through the p-factor) them in order to match the
observational peak-to-peak radial velocity amplitude.

iv) Points ii) and iii) were repeated for a sample (as large as possible) of bootstrap
simulations of the observational light and radial velocity curves.



Application to MW Classical Cepheids from Gaia DR3

Preliminary results for:

12 Fundamental mode Classical MW Cepheids with Period between 4 days and 45 days
i) Good Gaia G, BP, RP light curves

ii) Gaia radial velocity (for 8 sources)

iii) EDR3 parallaxes

iv) Near-infrared K light curves from the literature (for 6 sources)

v) RV data from the literature (for 4 sources)
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Preliminary results

£ L
L G
I G BP
- M G_RP
i ) = T
g = £ .
- S w | g
- o =
i g— ?o
_l 1 1 | 1 < LO I
0 o
3174
_— 7 Amplitude comparison
-
04 1 1 1 | | 1 | 1 1 I 1 1 1




Preliminary results
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Preliminary results

p=(1.2+0.09)+(-0.03+0.09)log(P), R*=0.01)

p=(1.32+0.07)+(—-0.15+0.06)log(P) , R® = 0.4 (weighted)

Pmedian = 1.1 51%%95

Projection factor
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Conclusions

1) Non-linear hydrodynamical convective models are able to predict light and radial
velocity curves of pulsating variables.

2) Traditional model fitting procedure is updated with Monte Carlo simulations
3) The method is applied to MW Classical Cepheids from the Gaia database

4) Preliminary results provide intrinsic stellar properties and good agreement with
independent evaluations.

5) The sample needs to be enlarged in order to provide more conclusive results
concerning the projection factor trend with period.
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