Supercomputer 'Bura' as a computing facility for timedomain astrophysics

Tomislav Jurkić

Faculty of Physics University of Rijeka

CPG@LSST | Vera C. Rubin observatory | MW-Gaia WG2 workshop | Sofia, Bulgaria, June 6-8 2023

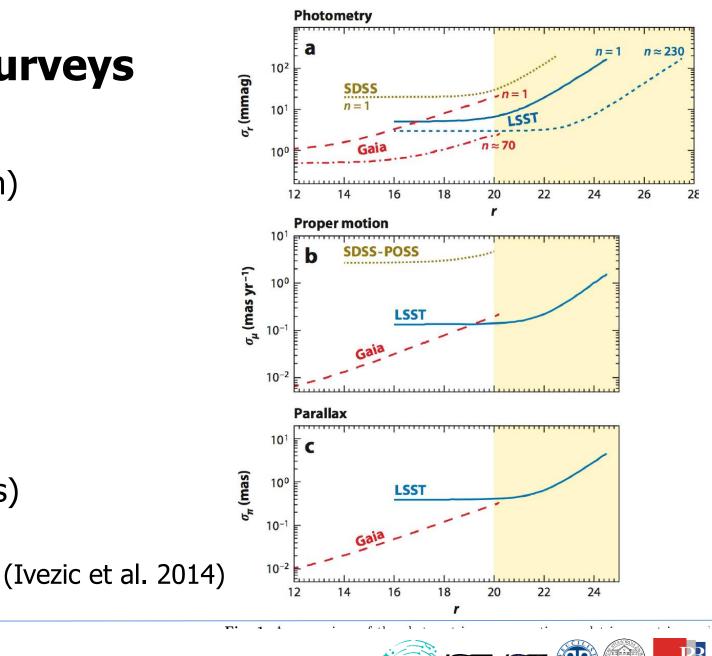
Vera C. Rubin Observatory

→ conduct 10-year Legacy Survey of Space and Time (LSST)

- 8.4 m telescope (Cerro Pachon, Chile)
- 3.2 Gpx camera
- Survey: 10 000 deg² every 3 nights (in avg)
- 6 bands: ugrizy, 300 1050 nm
- r ~ 27.5
- Big Data: $TB \rightarrow PB$

(Rubin Obs/NSF/AURA)

Synergy with other surveys


Gaia (parallax and proper motion)

Pan-STARRS

DES

WISE (infrared observations)

ZTF (light curves of variable stars)

International participation

- 1. Institutional members (37 institutions from USA, Chile, France, Italy, Japan, Germany, Czech Republic, UK)
- **2. International affiliates** \rightarrow In-kind contribution and Data rights holder

Croatian Participation Group @ LSST (CRO-RBI in-kind contribution)

- 1. Institute Ruđer Bošković, Zagreb (group leader Lovro Palaversa)
- 2. University of Zagreb (Hvar observatory)
- 3. University of Rijeka (Faculty of Physics)

Scientific collaborations

CPG is active in (but not exclusively focused to):

- **1. Transients and variable stars** (TVS)
- 2. Stars, Milky way and local volume (SMWLV)

Computer resources in-kind contribution

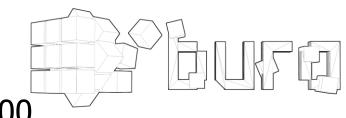
IDAC (International Data Access Centre) SPC (Software processing centre)

- Dedicated computer resources for CPU(GPU)-intensive analysis & processing
- Demands for CPU(GPU) power, lower disk storage → HPC (high-performance computing) facility

Software processing centre

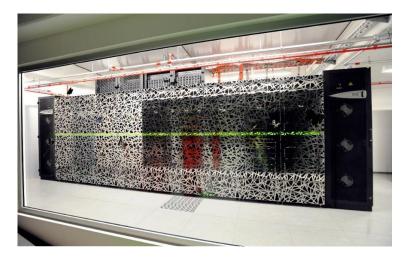
HPC 'Bura' at University of Rijeka as SPC:

1. Contribution with substantial amount of CPU-hours for (mainly) stellar astrophysics


- 2. Cooperation with Slovenian data access centre in Maribor
- 3. Astrophysicist domain support

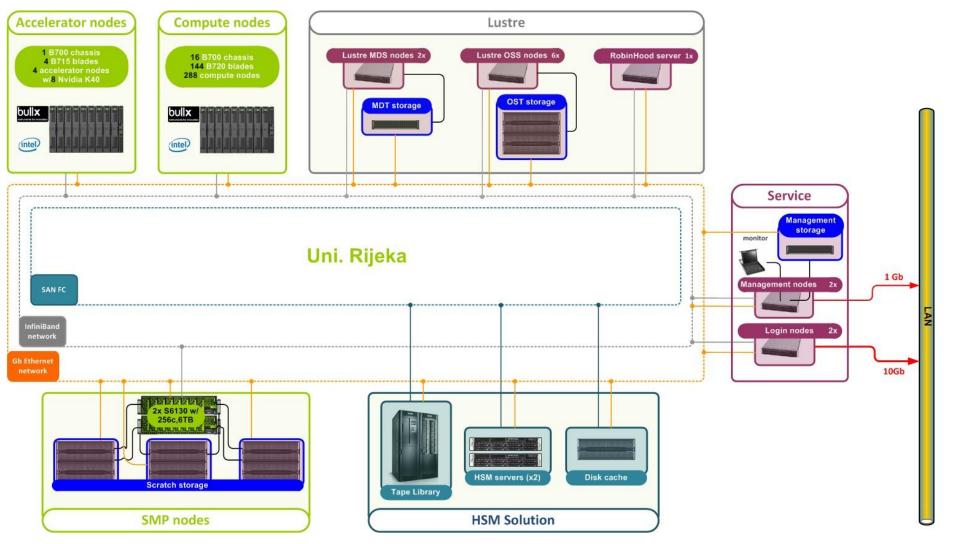
4. Analysis of large amount of data + small-scale computing of individual groups

5. Not suited for development (no Jupyter notebooks)


"Bura" supercomputer

High performance computing facility → top 500

Rmax:	233.565 TFlop/s
Rpeak:	287.539 TFlop/s
Peak Power (kW):	108.48
Processor:	Xeon E5-2690v3
	(12 cores @ 2.6 GHz)
Cores per Node:	24
Nodes:	288



HPCG 48

Schematic Architecture

HPC resources @ Bura

Cluster (compute nodes)

- 288 nodes, 2 x Xeon E5-2690 (12c 2.6 GHz)/node, 24 cores/node \rightarrow 6912 cores
- 64 GB memory/node, 320 GB disk space/node → 18 TB total memory, 95 TB total disk space

SMP (2 nodes)

16 x Xeon E7-8867 (16c 2.5 GHz)/node \rightarrow **512 cores, 12 TB total memory, 245 TB total disk space**

GPGPU (4 accelerator nodes)

Each node: 2 x Xeon E5-2650 CPUs (8c 2.6 GHz) + 2 x Nvidia TeslaK40, 64 GB memory, 320 GB disk space

<u>OS</u> Redhat Linux + Slurm Workload Manager

Data centre:

1 PB (Lustre scratch file system)

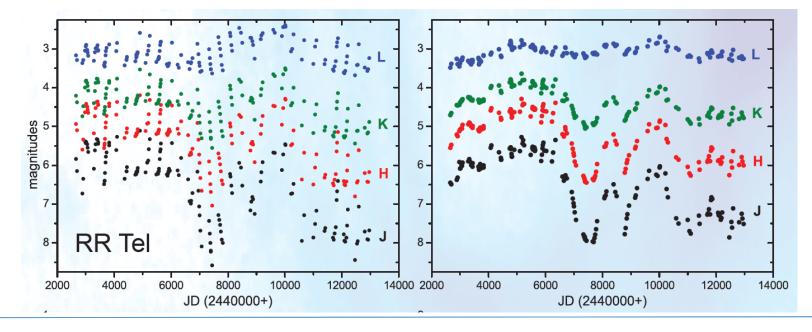
Archive: 2.5 PB (tape library)

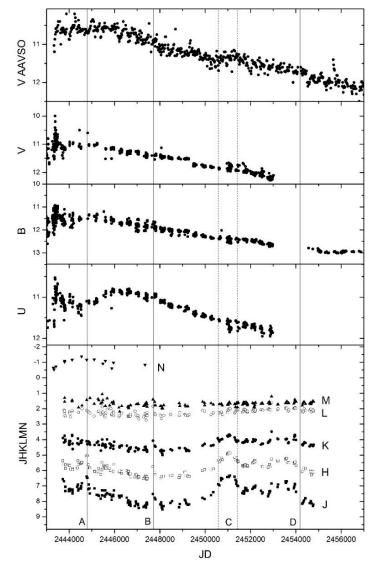
Disk storage extension through **regional LSST cooperation grant** (Heising-Simons Foundation, 'Preparing for Astrophysics with LSST Program')

Science cases (possible and running)

Reported computational needs for LSST-related science (2023 survey, only active members of science collaborations):

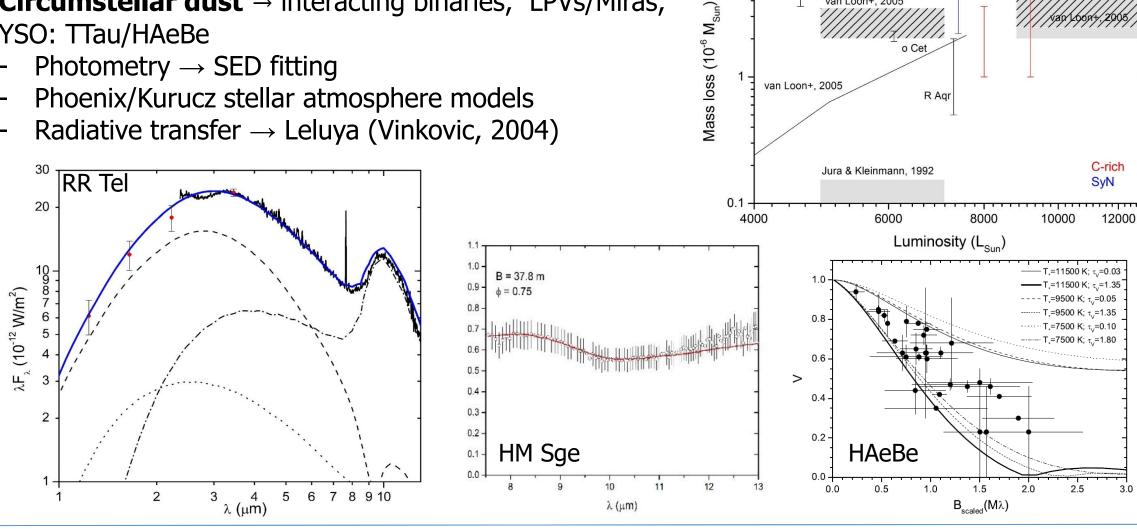
- 100 M CPU-hours in total
- 35 M CPU-hours for transients & variable stars
- 35 PB-years disk storage in total
- 12 PB-years disk storage for transients & variable stars
- expected to rise by an order of magnitude


HPC 'Bura' is planned to host **object table** (50-75 TB) and offer **2 M CPU-hours/year** for LSST related computations


- reduced to stellar catalogue (around 35 TB)

Variable stars \rightarrow

- Time-series analysis of light curves of variable stars (LPV, Miras)
- Circumstellar environment: dust in LPVs (Miras), giant stars, young stars; dust and gas in interacting binaries
- Interacting binaries (novae, symbiotic binaries...)



Circumstellar dust \rightarrow interacting binaries, LPVs/Miras, YSO: TTau/HAeBe

- Photometry \rightarrow SED fitting
- Phoenix/Kurucz stellar atmosphere models
- -

10 -

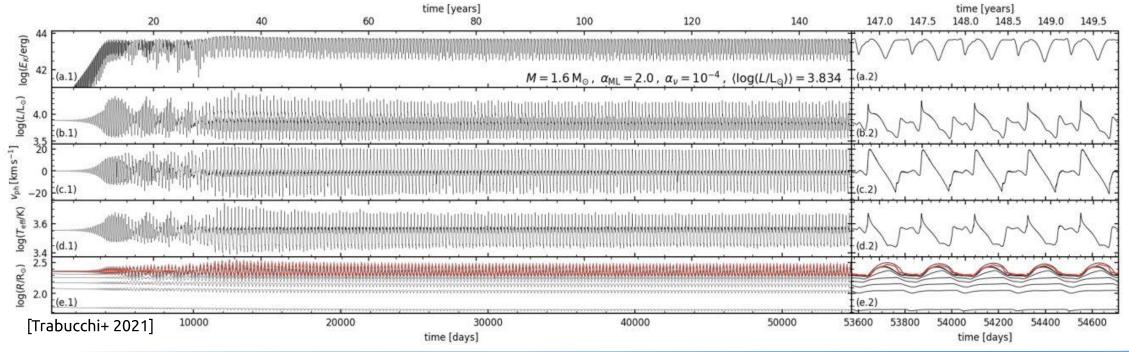
van Loon+, 2005

van Loon+, 2005

o Cet

Jura & Kleinman

1989


Periodicity mining pipeline (running) (A. Kovačević, D. Ilić, L. Popović, S. Simić, V. Radović et al.)

- Compiling short-period (<5yr) Supermassive Binary Black Hole (SMBBH) candidates
- Compiling stellar light curves catalogue
- Period determination, unsupervised clustering & classification
- 2DHybrid: (auto)correlation of time series (wavelet transform) + statistics and visualization (+ machine learning for gaps)
- Calculations on large amount of data
- Cross-correlation with other surveys (e.g. AXS)
- Different periodicity-finding techniques
- Testing on LSSTC AGN Data Challenge 2021 (Richards+21) and ZTF

Non-linear hydrodynamic pulsation models of LPVs (running) (Michele Trabucchi, Leo Girardi et al.)

- Grid of around 3 million simulations of AGB envelope models → time series describing the motion of envelope layers → extraction of pulsation periods and light curves in LSST filters
- Synthetic stellar population models used to simulate LSST stellar content

Microlensing events (in preparation) (M. Hundertmark et al.)

- Detect and characterize microlensing events across the sky
- Find compact objects and microlensing exoplanets
- Simulation to estimate microlensing optical depth & expected event categories for shorter events
- Testing on DECam & ZTF

TVS Dashboard/Portal: a data portal for preliminary investigation and analysis of LSST-based light curves (L. Palaversa & A. Razim)

- Front-end server for data access and visualisation
- HPC 'Bura' as back-end for more computer-intensive calculations (e.g. statistics, periodicity, classification ...)

Cross-matching (e.g. with AXS between LSST, Gaia, WISE, SDSS, 2MASS, etc.) **Interstellar reddening & stellar parameters**

Takeaway

- Present and upcoming surveys such as LSST will require substantial amount of computing power for TB(PB)-scale of data
- HPC 'Bura' can be used for computer-intensive calculations and analysis that require large CPU power

Thank you for your attention

Tomislav Jurkić

tjurkic@phy.uniri.hr University of Rijeka Croatia

CPG@LSST | Vera C. Rubin observatory | MW-Gaia WG2 workshop | Sofia, Bulgaria, June 6-8 2023