Optical spectroscopy and X-ray observations of the D-type symbiotic star EF Aql

K. A. Stoyanov¹

in collaboration with K. Iłkiewicz², G. J. M. Luna^{3,4,5}, J. Mikołajewska², K. Mukai^{6,7},

J. Martí⁸, G. Latev¹, S. Boeva¹, R. K. Zamanov¹

Symbiotic stars

S-type - normal red giant D-type - Mira variable D'-type - F or G giant

Reinmuth (1925) - variable star

Konigstuhl Observatory

Reinmuth (1925) - variable star

Le Bertre et al. (2003) - O-rich Mira-type variable

Reinmuth (1925) - variable star

Le Bertre et al. (2003) - O-rich Mira-type variable

Richwine et al. (2005) - P = 329.4 d

Reinmuth (1925) - variable star

Le Bertre et al. (2003) - O-rich Mira-type variable

Richwine et al. (2005) - P = 329.4 d

Margon et al. (2016) - bright UV flux, prominent Balmer emission lines and

[O III] λ 5007 emission $^{-1})$ 3 $^{\circ} \nabla$ $^{-2}$ cm \mathbf{s}^{-1} erg (10^{-13}) Flux 5500 6000 6500 4500 5000 4000 Wavelength (Å)

Reinmuth (1925) - variable star

Le Bertre et al. (2003) - O-rich Mira-type variable

Richwine et al. (2005) - P = 329.4 d

Margon et al. (2016) - bright UV flux, prominent Balmer emission lines and [O III] $\lambda 5007$ emission

Zamanov et al. (2017) - optical flickering

Optical photometry of EF Aql

Photometry of EF Aql: period of pulsations

Improved period - 320.4 d The period of pulsations and the amplitude are typical for Mira-type variables (Whitelock et al. 2003)

Optical spectroscopy of EF Aql: SALT + HRS

2019 June 7, July 9 and July 14: R \sim 40 000 and wavelength coverage 4000 - 8800 Å

Optical spectroscopy of EF Aql

Possible ionization-potential-dependent stratification?

The [O III] λ 5007 emission line is similar to that in PNe.

Distance and interstellar reddening

Using K = 4.78 \pm 0.58 (2MASS; DENIS) and M_K = - 7.69 (from Whitelock et al. 2008 using P = 320.4 d)

Interstellar + circumstellar extinction: $(J - K)_0 = 0.71 \log P - 0.39$ (Whitelock et al. 2000) J - K = 1.71 (2MASS; DENIS)

E (J - K) = 0.32 ± 0.10

EW(Na D1) = 0.31 - 0.45 Å

Temperature and luminosity of the WD

The minimum temperature is set by the maximum ionization potential observed in the spectrum that in EF Aql is 35.12 eV corresponding to the [O III] lines. This gives a temperature $T_{wp} \ge 35\ 000\ K$.

The lack of any traces of He II lines and the presence of strong He I lines means that $T_{wp} \leq 60\ 000\ K$.

The ratio $F(\text{He I 5876})/F(\text{H}_{B})$ indicates $T_{wp} \sim 55\ 000\ \text{K}$.

Using d = 3.1 kpc

L_{wp} ~ 5.3 L

 $T_{w\text{D}}$ in symbiotic systems - 35 000 - 500 000 K $L_{w\text{D}}$ in symbiotic systems - 0.3 - 37 000 L_{\odot}

The WD in EF Aql is with low luminosity

Mass-loss rate

Whitelock et al. (1994): a correlation between the mass-loss rate and the K - [12] colour:

```
Larger K - [12] means thicker shell
K - [12] = 2.89 (2MASS; IRAS)
```

mass-loss rate ~ 2.5 10⁻⁷ M_o yr⁻¹

Single O-rich Miras - 10^{-7} - 10^{-5} M_{\odot} yr⁻¹ Miras in Symbiotic systems - ~ 3.2 10^{-6} M_{\odot} yr⁻¹

supports the idea for a low-luminosity system

X-ray and UV observations of EF Aql

2019 Sep 12 ToO mode First ever pointed X-ray observations XRT - photon-counting mode UVOT - imaging mode using UVM2 filter centered at 2200 Å Total exposure of 3.8 ks

No detection of EF Aql in X-rays Assuming temperature of the plasma 10 KeV, upper limit of the flux is 10⁻¹² erg cm⁻² s⁻¹

> faintest ō-type symbiotic star detected so far

EF Aql was detected with UVOT - UVM2 mag is 14.05 Got 0.2 UVM2 mag fainter during the observations - maybe caused by a flickering from the accretion disc

Conclusions:

- + $T_{_{WD}} \sim$ 55 000 K and $L_{_{WD}} \sim$ 5.3 $L_{_{\odot}}$
- Possible ionization-potential-dependent stratification
- Improved period of pulsations 320.4 ± 0.3 d
- No detection in X-rays, faintest δ -type symbiotic star detected so far
- UVM2 = 14.05 mag
- d ~ 3.1 kpc
- Mass-loss rate ~ 2.5 $10^{\text{-7}}\,M_{\odot}\,yr^{\text{-1}}$

The optical and X-ray observations point that EF Aql is an accretion-powered symbiotic star without shell burning!!!

