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Main goal

 We try to make use of powerful tools of the classical thermodynamics
in order to investigate dynamical states of an hydrodynamical isothermal
turbulent self-gravitating system.

 Our main assumption, inspired by the paper of Keto et al (2020), is that
turbulent kinetic energy can be substituted for the macro-temperature of
chaotic motion of fluid elements.

 As a proper sample for our system we use a model of turbulent
self-gravitating isothermal molecular cloud which is at final stages of its
life-cycle, when the dynamics is nearly in steady state.



Molecular Clouds – the birth places of stars 
Self-gravitating turbulent fluids

  We can explain IMF, SFR, SFE
                                          and  the evolution of Galaxy 

  How much is it important to understand
    the star-formation process?



Molecular Clouds – Physical parameters and classification
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Our model – the MC physics

  Turbulence – fully developed and saturated; there exists
     an inertial range of scales: 

 Gravity – self-gravity and gravity from the surrounding medium

  Thermodynamics – isothermal equilibrium

  Magnetic fields and feedback from young stars are neglected

The turbulence locally is homogeneous and isotropic 
 the motion of fluid elements is purely chaotic
This local motion can be modeled
    as a perfect gas of fluid elements
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Our main idea

  Turbulent kinetic energy  Macro temperature of
     the chaotic motion of fluid elements (Keto et al. 2020)
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Our model

  The gravitational potential in this volume

  We regard at every scale
     a physically small (homogeneous) volume
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Model – the internal energy of the small volume
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Equations – the entropy 1
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Equations – the entropy 2
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Equations – the free energy
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Equations – the Gibbs energy
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Stability analysis of the system 

  Boundary conditions for the cloud – 
    fixed macro-temperature, pressure,
    and number of fluid elements

  The small physical volume is set at the same conditions
     in regard to its surrounding medium 
     hence it is a grand canonical ensemble
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Stability analysis of the system 

  Starting from the Gibbs energy set in a non-equilibrium form
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  We take the partial derivatives in regard to macro-temperature
     and volume and set them to zero to obtain the conditions
     for extremum



Stability analysis of the system 

  The kind of the extremum depends on the sign of the
    functuonal determinant D (which elements are the second
    partial derivatives calculated at the extremum point)
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  D is positive  hence the Gibbs energy has a minimum 
The system (small volume) resides at a stable dynamical state



Stability analysis of the system

  What can one conclude for the whole cloud?

-> We have obtained the cloud’s medium is locally
dynamically stable, and hence the macro-temperature and
pressure change continuously through the fluid, then
large parcels of the cloud will be stable.

-> For the whole cloud the latter conclusion will be valid if the
macro-temperature and pressure change through the cloud
boundary without jumps.



Conclusions

This novel approach, inspired by the work of Keto at al. (2020), shows the
ability of the classical thermodynamics to give a fiducial description of the
equilibrium dynamical states of one hydrodynamical isothermal turbulent
self-gravitating system, represented here by a molecular cloud model.

Despite of several approximations concerning the presented physical
picture we consider our attempt as a sensible step in this direction.
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