Thermodynamics of fluid elements in the context of saturated isothermal turbulence in Molecular Clouds

Sava Donkov¹ Ivan Stefanov² Todor Veltchev³

- ¹Institute of Astronomy and NAO, Bulgarian Academy of Sciences, 72 Tzarigradsko Chausee Blvd., 1784 Sofia, Bulgaria
- ² Department of Applied Physics, Technical University-Sofia, 8 Kliment Ohridski Blvd., Sofia 1000, Bulgaria
 - ³ Faculty of Physics, University of Sofia, 5 James Bourchier Blvd., 1164 Sofia, Bulgaria

Main goal

We try to make use of powerful tools of the classical thermodynamics in order to investigate dynamical states of an hydrodynamical isothermal turbulent self-gravitating system.

 Our main assumption, inspired by the paper of Keto et al (2020), is that turbulent kinetic energy can be substituted for the macro-temperature of chaotic motion of fluid elements.

As a proper sample for our system we use a model of turbulent self-gravitating isothermal molecular cloud which is at final stages of its life-cycle, when the dynamics is nearly in steady state.

Molecular Clouds – the birth places of stars Self-gravitating turbulent fluids

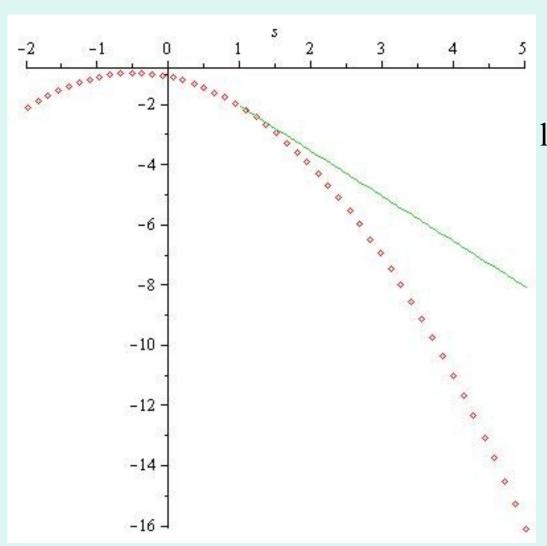
- How much is it important to understand the star-formation process?
- We can explain IMF, SFR, SFE and → the evolution of Galaxy

Molecular Clouds - Physical parameters and classification

	GIANT MOLE- CULAR CLOUD COMPLEX	MOLECULAR CLOUD	STAR- FORMING CLUMP	PROTO- STELLAR CORE ^d
Size (pc)	10 - 60	2 - 20	0.1 - 2	$\lesssim 0.1$
Density $(n(H_2)/cm^3)$	100 - 500	$10^2 - 10^4$	$10^3 - 10^5$	$> 10^5$
Mass (M _☉)	$10^4 - 10^6$	$10^2 - 10^4$	$10 - 10^3$	0.1 - 10
Line width (km s ⁻¹)	5 - 15	1 - 10	0.3 - 3	0.1 - 0.7
Temperature (K)	7 - 15	10 - 30	10 - 30	7 - 15
Examples	W51, W3, M17,	L1641, L1630,		see
	Orion-Monoceros,	W33, W3A,		Section 4.3
	Taurus-Auriga-	B227, L1495,		
	Perseus complex	L1529		

^{*} Protostellar cores in the "prestellar" phase, i.e. before the formation of the protostar in its interior.

PDF of mass-density Lognormal – turbulence (isothermal) PL-tail- turbulence and gravity

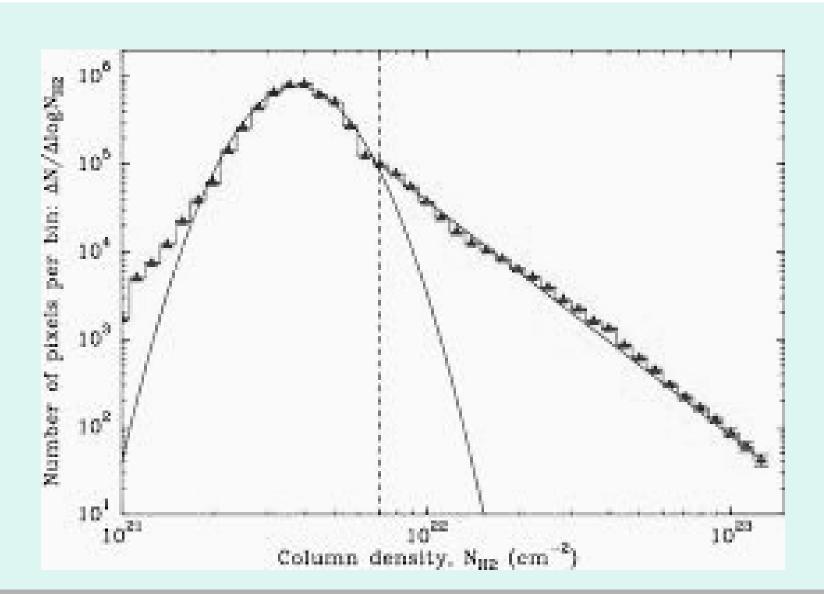


lognormal
$$\propto \exp\left(-\frac{\left(s-\frac{-}{s}\right)^2}{2\sigma^2}\right)$$

$$s = \ln(\rho/\rho_0)$$

PL-tail
$$\propto \exp(qs)$$
; $q < 0$

PDF of mass-density Lognormal – turbulence (isothermal) PL-tail- turbulence and gravity



The abstract scale

$$l(s) \equiv l_c \left[\int_{s}^{\infty} p(s') ds' \right]^{1/3}$$

Our model – the MC physics

- Turbulence fully developed and saturated; there exists an inertial range of scales: $l_d \le l \le l_{uv}$
- Gravity self-gravity and gravity from the surrounding medium
- Thermodynamics isothermal equilibrium
- Magnetic fields and feedback from young stars are neglected
- The turbulence locally is homogeneous and isotropic \rightarrow the motion of fluid elements is purely chaotic
- → This local motion can be modeled as a perfect gas of fluid elements

Our main idea

■ Turbulent kinetic energy ← → Macro temperature of the chaotic motion of fluid elements (Keto et al. 2020)

$$\frac{1}{2}m\sigma(l)^2 \equiv \frac{3}{2}\kappa\theta(l)$$

m - the mass of a fluid element $\sigma(l)$ - the turbulent velocity dispersion

Our model

 We regard at every scale a physically small (homogeneous) volume

$$l_d \leq l \leq l_c$$
 , $V_0 << l^3$

The gravitational potential in this volume

$$\varphi(l) = \varphi_s(l) + \varphi_m$$

 $\varphi_s(l)$ - the self - gravity
 φ_m - the potential due to surrounding medium

Model – the internal energy of the small volume

$$\varepsilon(l) = \frac{3}{2}N(l)\kappa\theta(l) + \frac{3}{2}\frac{m}{m_0}N(l)\kappa T + mN(l)\varphi(l)$$

Equations – the entropy 1

$$d\varepsilon = \frac{3}{2}N\kappa d\theta + \left[\frac{3}{2}\kappa\theta + \frac{3}{2}\frac{m}{m_0}\kappa T + m\varphi\right]dN$$

 $d\varepsilon = \theta ds - P dV_0 + \mu dN - First Law$ V_0 and N are const.

$$\Rightarrow ds = \frac{3N\kappa}{2} \frac{N\kappa}{\theta} d\theta$$

Equations – the entropy 2

$$\Rightarrow s(\theta, N) = \frac{3}{2} N \kappa \ln \left(\theta / \theta_d \right)$$

 θ_d - the macro - temperature at disipation scale l_d Third Law:

 $s(\theta_d, N) = 0$ - the entropy at disipation scale l_d

Equations – the free energy

$$f(\theta,N) = \varepsilon(\theta,N) - \theta s(\theta,N)$$

$$\Rightarrow f(\theta, N) = \frac{3}{2} N \kappa \theta \left[1 - \ln(\theta/\theta_d) \right] +$$

$$+\frac{3}{2}\frac{m}{m_0}N\kappa T+mN\varphi$$

Equations – the Gibbs energy

$$g(\theta,N)=\varepsilon(\theta,N)-\theta s(\theta,N)+PV_0$$

$$\Rightarrow g(\theta, N) = \frac{3}{2} N \kappa \theta \left[\frac{5}{3} - \ln(\theta / \theta_d) \right] + \frac{3}{2} \frac{m}{m_0} N \kappa T + m N \varphi$$

 $PV_0 = N\kappa\theta$ - Clapeyron - Mendeleev equ. for the macro - gas

- Boundary conditions for the cloud fixed macro-temperature, pressure, and number of fluid elements
- The small physical volume is set at the same conditions in regard to its surrounding medium → hence it is a grand canonical ensemble
- Therefore the relevant potential is the Gibbs energy

$$g = g(\theta, N, V_0)$$

Starting from the Gibbs energy set in a non-equilibrium form

$$g(\theta, N, V_0) = \varepsilon(\theta, N) - \theta_0 s(\theta, N) + P_0 V_0$$

We take the partial derivatives in regard to macro-temperature and volume and set them to zero to obtain the conditions for extremum

$$\left(\frac{\partial g}{\partial \theta}\right)_{N,V_0} = 0 \rightarrow \theta = \theta_0 ; \left(\frac{\partial g}{\partial V_0}\right)_{\theta,N} = 0 \rightarrow P = P_0$$

 The kind of the extremum depends on the sign of the functuonal determinant D (which elements are the second partial derivatives calculated at the extremum point)

$$D = \frac{3}{2} \left(\frac{N\kappa}{V_0} \right)^2 > 0$$

■ D is positive → hence the Gibbs energy has a minimum → The system (small volume) resides at a stable dynamical state

What can one conclude for the whole cloud?

-> We have obtained the cloud's medium is locally dynamically stable, and hence the macro-temperature and pressure change continuously through the fluid, then large parcels of the cloud will be stable.

-> For the whole cloud the latter conclusion will be valid if the macro-temperature and pressure change through the cloud boundary without jumps.

Conclusions

This novel approach, inspired by the work of Keto at al. (2020), shows the ability of the classical thermodynamics to give a fiducial description of the equilibrium dynamical states of one hydrodynamical isothermal turbulent self-gravitating system, represented here by a molecular cloud model.

Despite of several approximations concerning the presented physical picture we consider our attempt as a sensible step in this direction.