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A special non-parametric model - Cubic splines S(x) - a
reminder

S (x) is a piecewise cubic polynomial in every interval (xi , xi+1) ,
where a = x1 and b = xn, and the knots xj satisfy

a = x1 < x2 < · · · < xn = b

S ∈ C 2 on the whole interval [a, b]

some boundary conditions at a and b are added; e.g. Natural BC – in
this case the splines are called Natural.

THEOREM. For every set of interpolation data {fi}ni=1 defined at
{xi}ni=1 there exists a unique (Natural) spline S (x) with breaks at
{xi} s.t.

S (xi ) = fi for i = 1, 2, ..., n.

It is called interpolation spline to the data {fi} .

References: Sommerfeld (1903), de Boor (1978, 2001), Stoer-Bulirsch
(1998), Green-Silverman (1994).
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Why are polynomial splines good? An example - the sin
function
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Example - the circle
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Fast algorithms for computation of interpolation cubic
splines

Fast algorithms exist for large amount of data (cf. Wahba 1990,
Green-Silverman 1994 )
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The Smoothing cubic spline - Finding trends

Assume data values Y = {Yj} measured at xj ∈ [a, b], for j = 1, ...,N

We consider the penalized functional

S (g) =
N

∑
j=1

(g (xj )− Yj )
2 + λ

∫ b

a

∣∣g ′′ (t)∣∣2 dt
to avoid ”wiggling” typical also for polynomials!!!

THEOREM. The solution to problem

min
g

S (g) where g ∈ C 2 (a, b)

is a cubic spline, with knots {xj} and interpolation data

g = (I + λK )−1 Y

where K = QR−1QT .
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Examples of smoothing splines with different lambda; here
lambda = 0.95
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lambda is 0.5
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lambda is 0.25 - more wiggling
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lambda is 0.02 - very wiggling
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The fast (O(n) time) Reinsch algorithm (1971)

FACT: There exists a fast algorithm of Reinsch for the computation of the
smoothing splines. Reference: Stoer-Bulirsch, Numerical Analysis,
Springer, 2010.
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Cross Validation for finding parameter lambda

Let λ > 0 be fixed.

Let ĝ (−i) (t; λ) be a solution to the minimization problem

min
g

∑
j 6=i

(Yj − g (tj ))
2 + λ

∫ ∣∣g ′′ (t)∣∣2 dt
The cross-validation (leave-one-out) score function is

CV (λ) =
1

n

n

∑
i=1

(
Yi − ĝ (−i) (ti ; λ)

)2
We minimize CV (λ) to find λ.
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The representation of Cross-Validation and GCV

THEOREM: We have

CV (λ) =
1

n

n

∑
i=1

(
Yi − ĝ (ti ; λ)

1− Aii (λ)

)2

here the matrix

A (λ) =
(
I + λQR−1QT

)−1
and its diagonal elements Aii may be computed in a FAST way, for
details see G. Wahba (1990) and Green-Silverman (1994).

Similar formula for Generalized Cross Validation - see the same
references
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Spline model - nodes of spline differ from data points

This is a more complicated stuff - there may be gaps of the data

von Golitscheck - L. Schumaker
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Multidimensional case

Extremely large area of applications - Earth Observations (EO),
Meteorology, Medicine, Finance (Volatility Surface), etc.

What about Smoothing methods? error estimates, Conf. intervals,
etc. ?

Thin plate splines (TPS) in Wahba (1990) ;

Also, in Green-Silverman (1994):
with Thin plate splines ”some, but not all, of the attractive features
of spline smoothing in one dimension carry over.”

In Ramsay-Silverman (2005), chapter 22.2.3 Multidimensional
arguments:
”Although we have touched multivariate functions of a single
argument t, coping with more than one dimension in the domain of
our functions has been mainly beyond our scope.”

One may use also RBFs, Kriging, Minimum Curvature, Shepard’s
method, etc. And our approach - POLYSPLINES.
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Smoothed data - an example
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Example of Multidimensional Scattered data set

Importance for life problems even in dimension 2 – data of Earth
Observations,
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The generalized L-splines - the main bricks of the
Polysplines

Instead of 1D polynomials we use piecewise exponential functions
called L−splines. A special case: fix ξ, then the L−spline is defined
as a piecewise solution in every interval [xj , xj+1] of the equation:

Lξf (t) = 0 with Lξ =

(
∂2

∂t2
− ξ2

)2

which is C 2 at the knots xj ; the basis of solutions are
etξ , tetξ , e−tξ , te−tξ , while for the classical case are 1, t, t2, t3.

A much bigger generalization: Consider a polynomial L of degree 4
and the solutions of the related differential operator

L

(
∂

∂t

)
f (t) = 0

In the case of real coefficients of the polynomial L with four different
roots aj the basis of all solutions is given by the exponential functions
eaj t .
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The generalized L-splines - the main bricks of the
Polysplines

Instead of 1D polynomials we use piecewise exponential functions
called L−splines. A special case: fix ξ, then the L−spline is defined
as a piecewise solution in every interval [xj , xj+1] of the equation:

Lξf (t) = 0 with Lξ =

(
∂2

∂t2
− ξ2

)2

which is C 2 at the knots xj ; the basis of solutions are
etξ , tetξ , e−tξ , te−tξ , while for the classical case are 1, t, t2, t3.
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Examples of L-splines

Interpolation and smoothing L−splines of the special form depending
on ξ were considered exhaustively, with fast algorithms in a paper
”On a class of L-splines of order 4: fast algorithms for
interpolation and smoothing”, BIT Numerical Mathematics, 2020.
They have as basis the exponential functions eξt , teξt , e−ξt , te−ξt .

These 1D L−splines are important for the multidimensional
theory of polysplines.

The case of more general L−splines of order 4 is considered in a more
recent paper ”Fast algorithms for interpolation with L-splines for
differential operators L of order 4 with constant coefficients” ,
in ARXIV, submitted in J. Comp. and Applied Maths.
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Further motivating examples to study smoothing L-splines
(and exponential splines)

GDP for Sweden with seasonal variation (in Ramsay-Silverman, 2005)
– a cyclic effect superimposed on a linear development

the dashed line is Cubic smoothing (with GCV for λ), and the solid

line is a smoothing L−spline with L =
(
−γ d

dt +
d2

dt2

) (
ω2 + d2

dt2

)
.
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Examples of smoothing L-splines - S&P 500 data

Daily S&P500 prices for the period 24 October, 2017 – 24 October,
2018, total 253 days.
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Smoothing results for the operator L xi

for N = 10 knots; λ = 3, ξ = 0.01 (dash) and ξ = 0, 13 :
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Cont’d

for N = 10 knots; λ = 5, 30, 80, 150, and ξ = 0.13.
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Cont’d

for N = 30 knots; λ = 500, and ξ = 0.01 and ξ = 0.13 :
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The new L−splines on the S&P500 data
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The new L−splines - some subtleties

The splines in the Figure above are two different L−splines although
the same differential operators.

The first polynomial L has the 4 different zeros
(−0.01; 0.01; 0.20;−0.20) and is ”natural spline”

The second has the same set of zeros (−0.01; 0.20; 0.01;−0.20) but
is a different ”natural spline”

Polsyplines are just one step forth
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Polyspline interpolating 2D Titanium data at 70 points
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The end

THANK YOU !
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