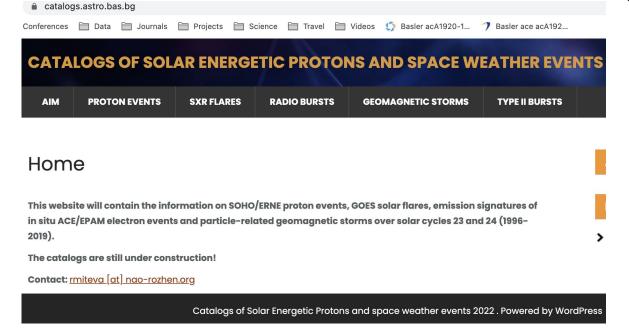
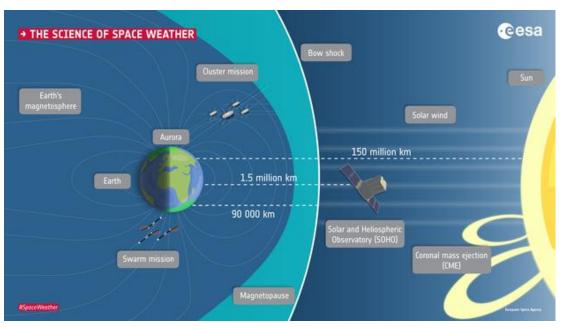
Space weather catalogs: energetic particles, radio emissions, flares and geomagnetic storms



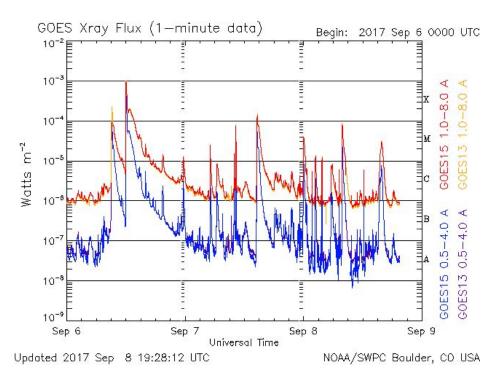
Rositsa Miteva (IANAO-BAS, <u>rmiteva@nao-rozhen.org</u>) Susan W. Samwel (NRIAG, Egypt) Momchil Dechev (IANAO-BAS)


Contents

Open access to a set of analysed space weather events (catalogs):

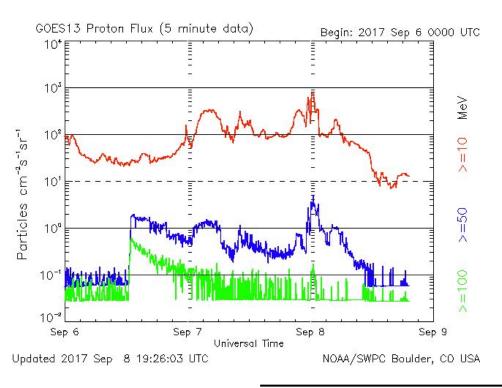
- Proton events
- X & M class flares
- Electron-related radio bursts
- Major geomagnetic storms
- Type II bursts

Space weather: overview

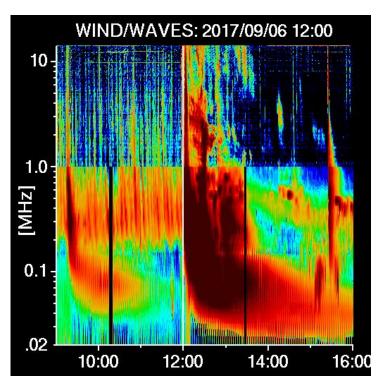


"Space weather" refers to conditions on the Sun and in the solar wind, magnetosphere, ionosphere, and thermosphere that can influence the performance and reliability of space-borne and ground-based technological systems and can endanger human life or health. [...] can cause disruption of satellite operations, communications, navigation, and electric power distribution grids, leading to a variety of socioeconomic losses.

National Space Weather Program Strategic Plan, 1995. Office of the Federal Coordinator for Meteorological Services and


Supporting Research, FCM-P30-1995, Washington, DC.

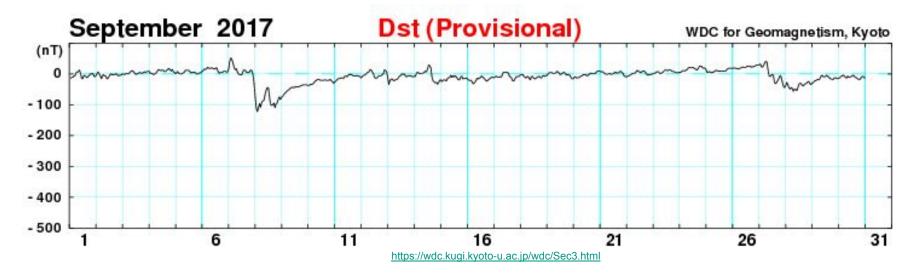
https://sci.esa.int/web/solar-system/-/60913-the-science-of-space-weather


Solar flare

- eruption in the solar atmosphere due to magnetic reconnection process
- released energy up to 10²⁷ J
- remotely observed emission from radio to gamma-rays
- occurs in active regions
- acceleration of electrons, protons
- association with mass motions

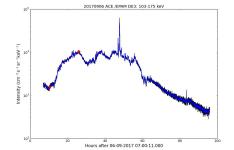
Solar energetic particles (SEPs)

- in situ observed electrons, protons and healy ions
- from keV to GeV
- transport in the interplanetary (IP) space along magnetic field lines
- profiles indicate the location of parent solar activity on the solar disk



Radio bursts

- remotely observed emission from accelerated electrons in the corona and IP space
- the shape of the features indicates the type of driver and magnetic field line configuration
 - Type II: shock wave
 - Type III: electron beams alsong open field lines


Geomagnetic storm

- disturbance in the Earth's magnetic field caused due to CME/shock wave impact on the magnetosphere
- can be given in negative values of the disturbance storm time (**Dst**) **index**: globally averaged change of the horizontal component of the Earth's magnetic field at the magnetic equator based on measurements from a few magnetometer stations

Electron event catalog

https://www.nriag.sci.eg/ace_electron_catalog/

The first electron catalog

- SC 23 & 24 (1997-2019)
- ACE/EPAM data 103-175 (175-315) keV
- 12 sec resolution
- 965 (800) events
- parent activity (64% flares, 74% CMEs, 14% none)
- associated protons ~32 (38) %
- Pearson & second-order partial log10-correlations

ACE/EPAM

Electron Event Catalog

Solar cycle 24: 2009-2019

@ NRIAG 2021

Last modified 25/05/202

Back to: Home Page

Solar Cycle 23: (1996-2008)

Date	Date		Electrons		103-175 keV		175-315 keV			GOES SXR Flare			SOHO/LASCO CME				19-28 MeV		28-72 MeV		Comments
yyy?	mm	dd	Onset time	Peak time	J _e	F _e	J _e	Fe	Onset time	Peak time	Class	Location	Time	Speed	AW	MPA	J _p	Fp	J _p	Fp	
200	11	3	03:48	05:38	319.953737	1652971	117.59	256431	u	и	u	u	19:36 ^{pd}	226	47	274	no	no	no	no	
200	11	5	01:11	02:10	86.370381	346789	no	no	u	u	u	u	u	u	u	u	no	no	no	no	
200	12	22	06:09	07:44	96.688211	567443	45.209	221560	04:50	04:56	C7.2	S26W46	05:54	318	47	270	no	no	no	no	
201	1	26	17:27	19:27	117.906222	688649	no	no	17:01	17:05	B3.2	N18W87	17:54	228	8	274	по	no	no	no	
201	2	7	02:56	06:30	200.897786	2002295	67.556	316618	02:20	02:34	M6.4	N21E10	03:54	421	360	113	no	no	no	no	
201	2	8	05:20	08:56	516.56869	2817255	117.34	701887	05:12	05:23	C8.6	N21W01	u	u	u	u	no	no	no	no	

Monthly Notices

ROYAL ASTRONOMICAL SOCIETY

MNRAS 508, 5217–5227 (2021)

https://doi.org/10.1093/mnras/stab156-6/dvance/Access/publication 2021 May 31

Catalogue of $in\ situ$ observed solar energetic electrons from ACE/EPAM instrument

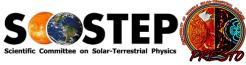
Susan W. Samwel^{®1}★ and Rositsa Miteva²★

¹ National Research Institute of Astronomy and Geophysics (NRIAG), EG-11421 Helwan, Cairo, Egypt
² Institute of Astronomy and National Astronomical Observatory (IANAO) - Bulgarian Academy of Sciences, BG-1784 Sofia, Bulgaria

Completed

Support:

SCOSTEP/PRESTO 2020 grant 'On the relationship between major space weather phenomena in solar cycles 23 and 24'

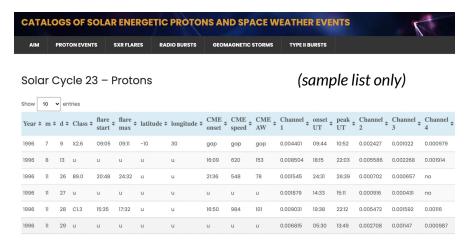


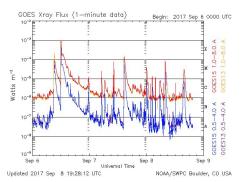
Proton event catalog

https://catalogs.astro.bas.bg/

In progress

Support: SCOSTEP/PRESTO 2020 grant STELLAR 2019-2022 LOFAR-BG National Science Fund of Bulgaria

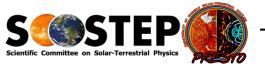




- SC 23 & 24 (1996-2016->2019)

- SOHO/ERNE HED, 10 energy channels (14-131 MeV)
- 1 min resolution
- 600+ events
- Solar origin, SEE, radio burst associations
- Energy dependent statistical analyses (Pearson & partial)

Preliminary version: Miteva et al. (2020) *BgAJ* (+online list)



Completed

Support:

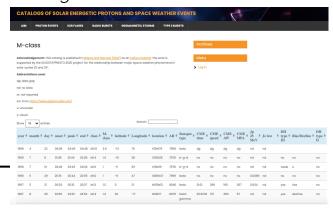
Bulgarian National Science Fund No. KP-06-H28(4), 8-Dec-2018

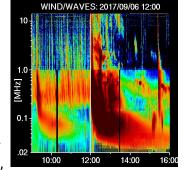
SCOSTEP/PRESTO 2020 grant 'On the relationship between major space weather phenomena in solar cycles 23 and 24'

X vs. M-class flares: space weather relevance

X-class flares

- SC 23 & 24: <u>175 flares</u>
- X vs. CMEs: 76%
- X vs. type IP IIs/IIIs: 55%/75%
- X vs. SEPs/SEEs: 38%/37%
- 14% β , 11% β - γ , 30% β - γ - δ


Miteva (2021), Bulgarian Astronomical Journal (+online catalog)

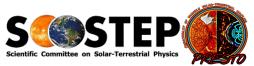


M-class flares

- SC 23 & 24: 2177 flares
- M vs. CMEs: 41%
- M vs. type IP IIs/IIIs: 25%/50%
- M vs. SEPs/SEEs: 6%/11%
- $-30\% \beta$, 22% β - γ , 30% β - γ - δ

Miteva & Samwel (2022), Universe (+online catalog)

Ranges:

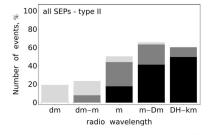

3-1 GHz.

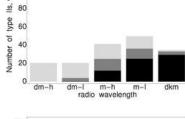
1000-300 MHz. 300-100 MHz. 100-30 MHz. 30 MHZ-20 kHz Black-->certain identification Dark gray ->uncertain or only observatory reports Light gray ->no dynamic spectral plots found

Completed

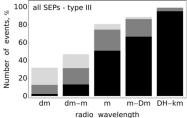
Support:

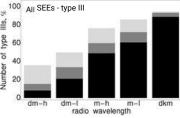
SCOSTEP/PRESTO 2020 grant 'On the relationship between major space weather phenomena in solar cycles 23 and 24'

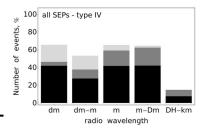

Electron vs. proton-associated radio

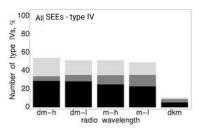

bursts of type II, III, IV

965 electron (SEE) events (Samwel & Miteva 2021. MNRAS): 832 radio bursts (86%)


- type IIIs are the most numerous burst type in corona/IP space
- Reduced SEE-type IIs in the IP space wrt SEP (Are IP shocks more proton-efficient?)
- Lower occurrence of SEE-type Ils IP range for E & W origin
- Clear decrease in IP space for SEE-type IIs in SC24 compared


to SEP-type II

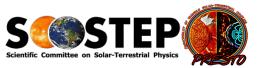




All SEEs - type II

Solar radio bursts associated with in situ detected energetic electrons in solar cycles 23 and 24 by R. Miteva et al.*

O 2022-07-05 ▷ Solar Radio Science Highlights


https://www.astro.gla.ac.uk/users/eduard/cesra/?p=3350

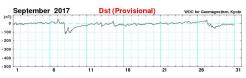
Protons (SEP)-radio bursts: Miteva et al. (2017) JSWSC (+online list) Electrons (SEE)-radio bursts: Miteva et al. (2022) Universe (+online catalog)

Completed

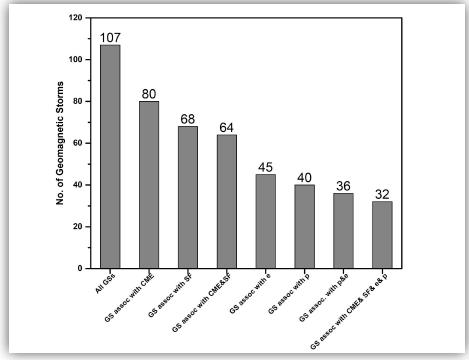
Support:

SCOSTEP/PRESTO 2020 grant 'On the relationship between major space weather phenomena in solar cycles 23 and 24'

Electron vs. proton-associated radio bursts of type II, III, IV



Solar cycle 23 - Radio


https://catalogs.astro.bas.bg/

Major geomagnetic storm

- SC 23 & 24: <u>107 geo-storms</u>
- Dst < -100 nT
- more GSs in SC23 wrt SC24
- more intense SGs in SC23 wrt SC24
- CME in SC23 are faster & narrower wrt CMEs in SC24
- SXR peak flux is similar for both SCs around X-class flares
- Correlations with electrons in SC23 are larger wrt SC24
- Correlations with low/high energy protons in SC23 are larger/lower wrt SC24.

In progress

Collaboration: Samwel & Miteva Support:

SCOSTEP/PRESTO 2020 grant 'On the relationship between major space weather phenomena in solar cycles 23

Credit: RSTN data

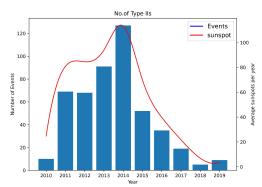
In progress

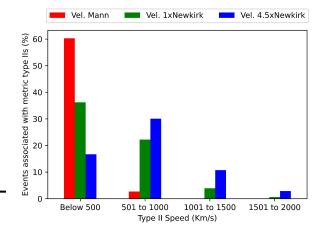
Collaboration: Lawrence, Devi, Chandra, Miteva, Koleva, Dechev Support:

Bulgarian-Indian Project KP-06-India/14 (19-Dec-2019)

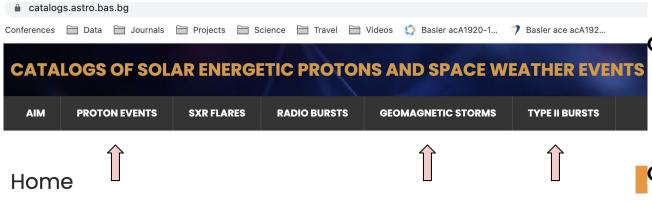
Type II radio bursts from RSTN data

SC 24 (2009-2019)


RSTN data: 25-180 MHz; 1-sec time resolution; observatory reports used


Total # type II bursts identified: 486 candidates

Majority of type IIs (~67%): 1-5 & 6-10 min


143/486 (or 29%) are newly identified by our team

In progress: associations with space weather events (in situ particles, IP shocks, ICMEs, geomagnetic storms, filaments)

Outlook

This website will contain the information on SOHO/ERNE proton events, GOES solar flares, emission signatures of in situ ACE/EPAM electron events and particle-related geomagnetic storms over solar cycles 23 and 24 (1996-2019).

The catalogs are still under construction!

Contact: rmiteva [at] nao-rozhen.org

Completed repositories:

- X & M class flares
- Electron-related radio bursts

Catalogs in progress:

- Proton events
- Major geomagnetic
- storms (list ready)
 - Type II bursts (list ready)

 ${\tt Catalogs\ of\ Solar\ Energetic\ Protons\ and\ space\ weather\ events\ 2022\ .\ Powered\ by\ WordPress}$