PROJECT ON SOLAR AND CORONAL ACTIVITY

MOMCHIL DECHEV (1)
ROSITSA MITEVA (1)
WERNER POETZI(2)
KAMEN KOZAREV(1)
OLEG STEPANYUK(1)
PENCHO MARKISHKI (1)
GEORGI LATEV (1)

- (1) Institute Of Astronomy and NAO, BAS, Bulgaria
- (2) Univeristy of Graz and Kanzelhöhe Solar Observatory, Austria

Bulgarian-Austrian project

Joint Observations and Investigations of Solar Chromospheric and Coronal Activity

(2023-2025)

Bg-PI: R. Miteva At-PI: W. Poetzi

1

To set up the Rozhen Chromospheric Telescope (RCT), and develop standardized solar observing methodology and products, complementary to the Kanzelhohe Patrol Instrument (KPI) by means of strong technical cooperation between the team members.

2

To carry out combined solar observations with the two instrument suites and external (freely available space-based) resources, in order to study chromospheric signatures of quiet sun and pre-eruptive active regions and multi-wavelength manifestation of solar eruptive phenomena, their morphology and kinematics.

Aim 1: Technical & Instrumental 🛠

- To set up the Rozhen Chromospheric Telescope (RCT) and develop a standardized solar observing methodology and data products.
- Complementary Capability: The RCT data is designed to be complementary to the observations from the Kanzelhohe Patrol Instrument (KPI) in Austria, allowing for coordinated, dual-site observations.

Key Focus: Strong technical cooperation for telescope installation, data processing, and quality control.

Aim 2: Scientific Investigation 🔬

To carry out combined solar observations utilizing both ground-based (RCT, KPI) and freely available space-based resources.

- Research Focus 1: Study chromospheric signatures of the quiet Sun and pre-eruptive active regions.
- Research Focus 2: Conduct a multi-wavelength manifestation study of solar eruptive phenomena, focusing on their morphology and kinematics (how they move).

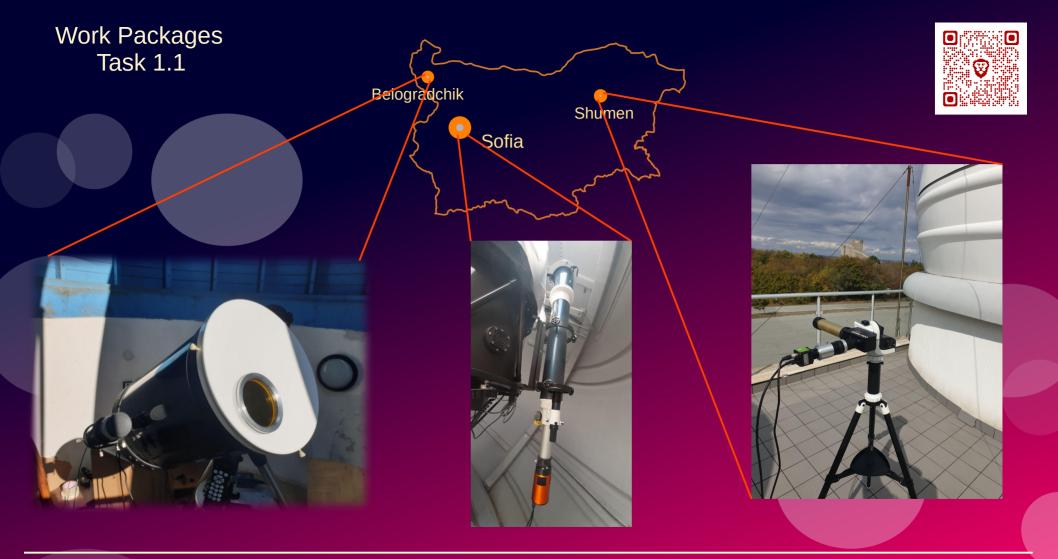
Work Packages

Work Package #1

Technical support of NAO-Rozhen Chromosphere Telescope and observation campaigns with KSO facilities

- Task 1.1: Telescope installation
- Task 1.2: Data processing
- Task 1.3: Observation Campaign
- Task 1.4: Image enhancement

Work Package #2


Joint investigations of solar chromospheric and coronal activity

- Task 2.1: Chromospheric
 Signatures of Quiet Sun and Pre-Eruptive Configurations
- Task 2.2: Multi-wavelength study of solar activity phenomena, their morphology and kinematics

Work Package #3

Dissemination of the project results

- Task 3.1: Project web-site
- Task 3.2: Scientific dissemination

Work Packages Task 1.2, 1.3, 1.4

Dr. Werner Pőtzi 1-6 November 2023, Bulgaria

Institute of Astronomy - Sofia and National Astronomical Observatory (NAO) – Rozhen

- presentation on the Austrian instruments for solar observations, data products and processing techniques
- inspection of the Bulgarian solar observational capabilities at NAO-Rozhen
- participation in several work discussions under the project with the Bulgarian team members

Dr. Oleg Stepanyuk 17-19 April 2024, Austria

PhD Christoph Schirninger 21-26.10.2024, Sofia

Dr. Rositsa Miteva & Dr. Momchil Dechev 16-22.06.2025, KSO. Austria

Dr. Werner Poetzi

13-17.05.2025 AO-Belogradchik

Work Packages Work package #2 Results

The 60 geo-effective active regions (ARs) were selected from SHARP data (http://jsoc.stanford.edu/doc/data/hmi/sharp/sharp.htm) with a 12 min time resolution is used to quantify the magnetic properties of the ARs. The SHARP parameters calculated over 4 time periods are used in the analyses. Namely, before the solar flare onset, during solar flare rise time, solar flare decline time, the entire solar flare duration.

In addition, the correlation matrices for the subsets of strong (stronger than -100 nT) and weak GSs (with Dst index from -50 nT to -100 nT) were presented.

Work Packages Work package #2 Results

4 Publicataions:

- 1) Miteva et al., "New Bulgaria-Austrian project 'Joint observations and investigations of solar chromospheric and coronal activity", Proceedings of the SES-2023 conference, e-ISSN 2603-3321, pp. 63-66;
- 2) Rositsa Miteva, Mohamed Nedal, Astrid Veronig, Werner Poetzi, "Parameter Study of Geoeffective Active Regions", Atmosphere 2024, 15(8), 930, https://doi.org/10.3390/atmos15080930;
- 3) Miteva, R., Poetzi, W., "Confined vs. eruptive M-class flares in solar cycles 23 and 24", Bulgarian Astronomical Journal, 43, 2025, 34-44, https://astro.bas.bg/AIJ/issues/n43/RMiteva.pdf;
- 4) Markishki, P., Dechev, M., Poetzi, W., Miteva, R., Kozarev, K., "Hα Imaging of Solar Phenomena Using a Modified Schmidt-Cassegrain Telescope at Astronomical Observatory Belogradchik", Bulgarian Astronomical Journal, 43, 2025, 89-97.

https://astro.bas.bg/AIJ/issues/n43/Pmarkishki.pdf;

Oleg Stepanyuk Werner Poetzi Momchil Dechev Rositsa Miteva Kamen Kozarev, "Data-driven segmentation and tracking of solar filaments based on ground-based instrument data", Solar Phys.... – in preparation

Article

Parameter Study of Geoeffective Active Regions

Rositsa Miteva 1,*0, Mohamed Nedal 20, Astrid Veronig 30 and Werner Pötzi 30

- Institute of Astronomy and National Astronomical Observatory (IANAO), Bulgarian Academy of Sciences, 1784 Sofia, Bulgaria
- Astronomy & Astrophysics Section, Dublin Institute for Advanced Studies, Dunsink Observatory, D15 XR2R Dublin, Ireland; mohamed.nedal@dias.ie
- Institute of Physics, Kanzelhöhe Observatory for Solar and Environmental Research, University of Graz, 8010 Graz, Austria; astrid veronic@uni-graz.at (A-V): werner.noetzi@uni-graz.at (M-P)
- Correspondence: rm

Abstract: Geomagneti the reconnection proc magnetosphere. The si satellite and ground-b based on specific feat systems. In this stud HMI Active Region P. 64 active regions that present the statistical Spearman correlation.

Keywords: active reg mass ejections; statisti Solar Physics DOI: 10.1007/••••••••••••

Data-driven segmentation and tracking of solar filaments based on ground-based instrument data

Oleg Stepanyuk¹ · Werner Pötzi² · Momchil Dechev¹ · Rositsa Miteva¹ · Kamen Kozarev¹

© The author(s) ••••

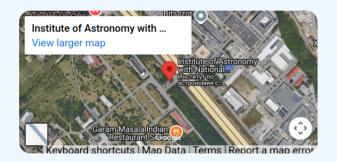
Abstract The dynamic behavior of solar prominences and filaments is a precursor to coronal mass ejections (CMEs), which can disrupt Earth's magnetosphere and affect satellite communications. Systematic ground-based solar observations, conducted with high temporal resolution, are instrumental in monitoring these structures. Analysis of the morphological changes and destabilization processes of filaments and prominences captured in datasets can help identify early warn-

National Space Forum, 27 – 29 October 2025, Sofia

Work Packages Work package #3

2

HOME


WORK PACKAGES

TEAM

RESULTS \

CONTAC

Get in touch

Bulgarian office

72, Tsarigradsko chaussee Blvd., Sofia, 1482, Bulgaria

Phone 359-2-9741910

Email office@astro.bas.bg

Austrian office

Universitätsplatz 3, Graz, 8010, Austria

Phone 000-000-0000 Email info@uni-graz.at

Resources

Home Work Packages Information

305-240-9671 office@astro.bas.bg

Copyright © Institute of Astronomy with NAO. All rights reserved.

Lofar-BG

LOFAR is a multi-functional, highly innovative, pan-European distributed low-frequency radio telescope, operating between 10 and 240 MHz. It was developed by the Dutch Institute for Radio Astronomy (ASTRON) with the goal of exploring the early, distant Universe, solar activity, and the terrestrial atmosphere.

Top left: the Superterp core of LOFAR. Top right: The Chilbolton UK LOFAR station. Bottom: a core station with schematics of the HBA and LBA antennas. Credit: ASTRON

Acknowledgements

'Joint observations and investigations of solar chromospheric and coronal activity' (2023-2025) Bulgarian National Science Foundation project No. KP-06-Austria/5 (14-08-2023) and Austria's Agency for Education and Internationalisation (OeAD) project No. BG 04/2023

