# Solar and space weather research at the Institute of Astronomy (BAS)

# Научни изследвания в областта на слънчевата физика и космическо време в Института по астрономия - БАН

Rositsa Miteva IANAO-BAS <u>rmiteva@nao-rozhen.org</u>



19 – 20 ОКТОМВРИ 2023 | СОФИЯ ТЕХ ПАРК

Национален форум за съвременни космически изследвания 2023

https://bulgarianspace.online/nafski2023/



# Institute of Astronomy with NAO - BAS

- BAS-Sofia <u>https://astro.bas.bg/</u>
- AO-Belogradchik
   <u>https://www.astro.bas.bg/AOBel/index.php</u>
- NAO-Rozhen (1981) <u>https://nao-rozhen.org/</u>







#### **Topics of research**

- Sun & Solar system
- Star & Stellar systems
- Galaxies & Cosmology



### History: Solar research in BG

#### Topics of research (1990s, 2000s)

• Solar activity:

filament/prominence eruptions

• Total solar eclipses

• Theoretical research (2D MHD models)





### Present: Sun & space weather group

#### Topics of research (2010 - now)

- Solar activity: solar flares, filaments, radio bursts

   multiwavelength analysis (focus on optical, EUV
   radio data)
  - Space weather
    - particles (data analyses, modeling & forecasting)
    - geomagnetic storms (statistics)
  - Machine learning in solar/space weather



SPREAdFAST Near-Realtime Monitor of Early-Stage SEP Events

SPREAdFAST webpage | SPREAdFAST historical events | SPREAdFAST Logger App (Log-in required

## Completed projects

• SPREADFAST

#### https://spreadfast.astro.bas.bg/synoptic/

Prototype of of a **forecasting** system, based on physics-based model for acceleration of solar energetic particles and their transport to Earth (ESA project); featured in SEP review

• STELLAR

https://stellar-h2020.eu/





#### Projects in progress

• MOSAIICS:

Modeling and Observational Integrated Investigations of Coronal Solar Eruptions

https://mosaiics.astro.bas.bg/



MOSAIICS is a 5-year research project, part of the National Science Program "VIHREN". It is hosted at the Institute of Astronomy and National Astronomical Observatory of the Bulgarian Academy of Sciences. The project PI is Assoc. Prof. Kamen Kozarev.

MOSAIICS aims to improve our understanding of the physics of solar eruptions by integrating modern computer vision, advanced solar radio imaging, and energetic particle modeling.

You can learn more about the project, or each topic link. Or let us know if you have any questions, on our Contact form.

### Projects in progress

New chromospheric telescope at NAO-Rozhen
 <u>https://helio.astro.bas.bg/observations</u>

- New radio station: LOFAR-BG <u>https://lofar.bg/bg/</u>
- New neutron monitor

https://helio.astro.bas.bg/observations



Credit: Petrov (2021)

### Infrastructure

NAO-Rozhen: Bulgarian center of astronomy, solar and space weather research

- 2-m & 1.5 m telescopes
- 30-cm solar telescope
- Radio station
- Neutron monitor
- Weather station, etc.



#### **Present: Bilateral collaborations**



Serbia (past & ongoing)

• Active events on the Sun, catalogs of proton events and electron Signatures...

India (past)

• Eruptions, flows and waves in the solar atmosphere and their influences on the space weather

Egypt (ongoing)

- relationship between major *space weather phenomena* in solar cycles 23 and 24
- **space weather effects** at near Earth environment from remote observations and in situ particle forecasting to impacts on satellites

Austria (past & ongoing)

- The origin of solar energetic particles: solar flares vs. coronal mass ejections
- solar chromospheric and *coronal activity*

http://edu-pro.astro.bas.bg/sun/?page\_id=368



Database of analysed events:

https://catalogs.astro.bas.bg/

- Protons
- Solar flares
- Radio bursts
- Geomagnetic storms

| CATA | LOGS OF SOL   | AR ENERGI  | ETIC PROTOR  | NS AND SPACE W     | EATHER EVEN    | IT |
|------|---------------|------------|--------------|--------------------|----------------|----|
| AIM  | PROTON EVENTS | SXR FLARES | RADIO BURSTS | GEOMAGNETIC STORMS | TYPE II BURSTS |    |

#### Solar Cycle 23 - Protons

| Show   | 10     | ~      | entries  |                   |                 |             |              |                 |              |           |            |             |            |           |           |           |           |           |           | Searc      | :h:        |                 |
|--------|--------|--------|----------|-------------------|-----------------|-------------|--------------|-----------------|--------------|-----------|------------|-------------|------------|-----------|-----------|-----------|-----------|-----------|-----------|------------|------------|-----------------|
| Year   | • m •  | d \$   | Class \$ | flare<br>start \$ | flare<br>max \$ | latitude \$ | longitude \$ | CME<br>onset \$ | CME speed \$ | CME<br>AW | Channel \$ | onset<br>UT | peak<br>UT | Channel 4 | Channel 4 | Channel ¢ | Channel ¢ | Channel ¢ | Channel ¢ | Channel \$ | Channel \$ | Channel<br>10 € |
| 1996   | 7      | 9      | X2.6     | 09:05             | 09:11           | -10         | 30           | gap             | gap          | gap       | 0.004401   | 09:44       | 10:52      | 0.002427  | 0.001022  | 0.000979  | no        | no        | no        | no         | no         | no              |
| 1996   | 8      | 13     | u        | u                 | u               | u           | u            | 16:09           | 620          | 153       | 0.008504   | 18:15       | 22:03      | 0.005586  | 0.002268  | 0.001914  | 0.00121   | 0.000892  | no        | no         | no         | no              |
| 1996   | 11     | 26     | B9.0     | 20:48             | 24:32           | u           | u            | 21:36           | 548          | 78        | 0.001545   | 24:31       | 26:39      | 0.000702  | 0.000657  | no        | no        | no        | no        | no         | no         | no              |
| 1996   | 11     | 27     | u        | u                 | u               | u           | u            | u               | u            | u         | 0.001879   | 14:33       | 15:11      | 0.000916  | 0.000431  | no        | no        | no        | no        | no         | no         | no              |
| 1996   | 11     | 28     | C1.3     | 15:35             | 17:32           | u           | u            | 16:50           | 984          | 101       | 0.009031   | 19:38       | 22:12      | 0.005472  | 0.001592  | 0.00116   | 0.000721  | no        | no        | no         | no         | no              |
| 1996   | 11     | 29     | u        | u                 | u               | u           | u            | u               | u            | u         | 0.006815   | 05:30       | 13:49      | 0.002708  | 0.001147  | 0.000987  | no        | no        | no        | no         | no         | no              |
| 1996   | 11     | 30     | u        | u                 | u               | u           | u            | u               | u            | u         | 0.02436    | 06:22       | 07:13      | 0.013896  | 0.004013  | 0.003175  | 0.001388  | 0.000415  | no        | no         | no         | no              |
| 1996   | 11     | 30     | м1.0     | 20:16             | 20:44           | -6          | 47           | n               | n            | n         | 0.002383   | 23:29       | 28:38      | 0.00101   | 0.000519  | no        | no        | no        | no        | no         | no         | no              |
| 1996   | 12     | 24     | C2.1     | 13:03             | 13:11           | 5           | 95           | 13:29           | 325          | 69        | 0.010562   | 15:05       | 18:06      | 0.006228  | 0.003103  | 0.002215  | 0.001172  | 0.000794  | 0.000459  | no         | no         | no              |
| Showin | a 1 to | 9 of 9 | entries  |                   |                 |             |              |                 |              |           |            |             |            |           |           |           |           |           |           |            | / Pro      | vious Next      |

Note: Only a preview of the results during 1996 is shown. The channel selected for the proton event identification is Channel 2.

Abbreviations:

AW – angular width

- CME coronal mass ejection
- gap data gap
- no no proton event
- u uncertain

#### Notations:

- all times are in UT
- Channels (in MeV): 1: 14–17; 2: 17–22; 3: 21–28; 4: 26–32; 5: 32–40; 6: 40–51; 7: 51–67; 8: 64–80; 9: 80–101; 10: 101–131
- class: flare peak in GOES soft X-ray flux (W/m^2)
- CME speed: linear speed (km/s) from <u>https://cdaw.gsfc.nasa.gov/CME\_list/index.html</u>
- flare latitude: North (positive); South (negative)
- flare longitude: West (positive); East (negative)

S Previous Next >



Database of analysed events: https://catalogs.astro.bas.bg/

- Protons
- Solar flares
- Radio bursts
- Geomagnetic storms



#### Article

M-Class Solar Flares in Solar Cycles 23 and 24: Properties and Space Weather Relevance

Rositsa Miteva <sup>1,\*</sup> and Susan W. Samwel <sup>2</sup>

| Solar Event               | SCs23 + 24  |
|---------------------------|-------------|
| SFs                       | 2177 (100%) |
| CMEs                      | 889 (41%)   |
| β                         | 655 (30%)   |
| $\beta - \gamma$          | 481 (22%)   |
| $\beta - \gamma - \delta$ | 663 (30%)   |
| SEPs                      | 133 (6%)    |
| SEEs                      | 247 (11%)   |
| IP-III                    | 1078 (50%)  |
| IP-II                     | 148 (7%)    |







Database of analysed events:

https://catalogs.astro.bas.bg/

- Protons
- Solar flares
- Radio bursts
- Geomagnetic storms





#### Article

Solar Radio Bursts Associated with In Situ Detected Energetic Electrons in Solar Cycles 23 and 24

Rositsa Miteva <sup>1,\*</sup><sup>(0)</sup>, Susan W. Samwel <sup>2</sup><sup>(0)</sup> and Svetoslav Zabunov <sup>3</sup><sup>(0)</sup>





Database of analysed events:

https://catalogs.astro.bas.bg/

- Protons
- Solar flares
- Radio bursts
- Geomagnetic
   storms

| 5-2.55       | Advances in S               |
|--------------|-----------------------------|
| <u>e.S.L</u> | Volume 72, Issue 8, 15 Octo |
| ELSEVIER     |                             |

Advances in Space Research ume 72, Issue 8, 15 October 2023, Pages 3440-3453

Correlations between space weather parameters during intense geomagnetic storms: Analytical study

Susan Samwel a 🖉 🔯 , Rositsa Miteva <sup>b</sup> 🖾

Show more  $\,\,\checkmark\,$ 

+ Add to Mendeley 🗠 Share 🔊 Cite

https://doi.org/10.1016/j.asr.2023.07.053 🛪



 Completed
 In progress

 Dst ≤ -100 nT
 => ≤ -50 nT

 ~100 GSs
 => +~400 GSs

• strong correlation between |Dst| and both  $B_{total}$  and  $|B_z|$ ;

Get rights and content 7

- moderate correlation between |Dst| and solar wind parameters, except with solar wind density  $N_{SW}$  which shows almost no correlation;
- the |Dst| is highly correlated with  $|V_{SW}B_z|$  when compared with its correlation with  $V_{SW}$  and  $|B_z|$  separately;
- with the exception to  $V_{\text{ICME}}$  which shows high correlation with |Dst|, the solar activity parameters  $(V_{\text{CME}}, AW, \text{ and } I_{\text{SXR}})$  show weak/no correlation with |Dst|;
- poor correlations are found between the parameters (flux and fluences) of the solar energetic particles, whether protons or electrons, with |Dst|.



## Research: Space weather effects on satellites

**Orbit:** 210 km orbit (VLEO)

#### Facts:

2022-02-03 38/49 loss minor geo-storms: -66, -62 nT

# Possible causes on the failure:

(1) Increased atmosphericdrag - increased mass density(2) GSs in close succession



Although the majority of the previous research [57-62] concluded that the notable Starlink failure was due to the increased atmospheric drag, ranging from 20–30% up to 150% at the staging orbit of 210 km, some doubts are raised if that it is the sole cause [63]. Despite the fact that the latter also estimated an increased thermospheric mass density by 35%, these authors proposed that GSs occurring in close succession (within about one day) are accountable for more negative SW effects on spacecraft operation and stability. The effects of the atmospheric drag on LEO satellites has been the topic of intense research, e.g., [48,49] and the references therein. Although it is well known that GSs lead to a global increase in the thermospheric neutral density, Joule heating due to EUV flare emission, and particle precipitation cause additional expansion in the 100–200 km region (or VLEO) [62].

#### Research: Space weather effects on satellites

GS Dst

04/17/-72

27/16/-68

ICME

11/hh/100 -1

no

no

#### Focus:

solar (solar flares) & (near-Earth) IP contributions (protons, electrons) at the time of selected Starlink launches

Table 2. Starlink launches and accompanied magnetospheric and IP phenomena: date (vyvy-mm-dd) and time (hh:mm) of the Starlink launches; day (dd), nearest hour (hh), and value (in nT) of the Dst index of the GS; day/time/speed (in km s<sup>-1</sup>) of the ICME; day/time/speed (in km s<sup>-1</sup>) of the IP shock, density jump at the shock surface (in cm<sup>-3</sup>); day/time/value (in nT) for  $B_z$  component. All times are in UT. No reported events are denoted with 'no'.

no

no

| Aim:                   | Date                      | hh:mm  | dd/hh/nT  | $dd/hh/km s^{-1}$ | $dd/hh/km s^{-1}$ |
|------------------------|---------------------------|--------|-----------|-------------------|-------------------|
| in order to evaluate   | 2020-04-22                | 19:31  | 20/13/-59 | 20/09/330         | 20/01:33/336      |
| the additional impact  | 2020-10-06                | 11:30  | 05/22/-40 | 05/17/350         | no                |
| of the EM and          | 2020-10-24                | 15:32  | 24/07/-38 | no                | no                |
|                        | 2021-02-16                | 04:00  | 17/06/-54 | no                | no                |
| radiation environment  | 2021-03-04                | 08:25  | 03/05/-39 | no                | no                |
| on satellite stability | 2021-03-14                | 10:01  | 14/10/-43 | no                | no                |
| <b>y</b>               | 2021-05-26                | 18:59  | 27/09/-28 | 26/05/410         | 26/11:45/369      |
| Input                  | 2021-12-02                | 23:12  | 02/23/-25 | no                | no                |
|                        | 2022-01-19                | 02:03  | 19/04/-44 | 19/05/610         | 18/22:58/820      |
| Timing of all (~100)   | 2022-02-03                | 8:13   | 03/11/-66 | 02/16/460         | 01/22:27/543      |
| Starlink launches      | 2022-04- <mark>2</mark> 9 | 2.1:27 | 30/08/-37 | no                | no                |
| 2019-2022 => 15 with   | 2022-05-13                | 22:08  | 13/22/-39 | no                | no                |
|                        | 2022-07-07                | 13:11  | 07/23/-81 | 07/12/380         | no                |

02:10

09:34

Starlink Launch

2022-09-05

2022-12-28

#### https://doi.org/10.3390/astronomy2030012

 $cm^{-3}$ 

6.7

no

no

no

no

no

10.9

no

1.2

4.2

no

no

no

no

no

**IP Shock** 



 $B_{\tau}$ 

dd/hh:mm/nT

20/11:52/-1505/19:34/-9

23/20:16/-12

13/03:07/-12

01/04:05/-14

13/05:06/-13

27/06:15/-1102/15:02/-5

19/05:05/-6

03/09:37/-1927/13:01/-11

11/19:55/-10

07/12:48/-16

04/05:24/-10

26/12:24/-10

Dst <=-25 n l



### Research: Space weather effects on satellites

#### **Results:**

Minor to moderate effects due to solar flares, particle radiation & IP plasma density, B-field, velocity

#### Open ?s:

→ Double GSs as a possible cause for satellite failure **Table 3.** Starlink launches and accompanied solar/SW phenomena: date (yyyy-mm-dd) and time (hh:mm) of the Starlink launches; SF day/start/peak/end time/class; SEP day/peak time; SEE day/peak time. All times are in UT. Abbreviations: on: ongoing; pr: preceding; s: start time; su: succeeding.

|     | Starlink   | Launch | SFs                                      | SEPs                    | SEEs                                 |
|-----|------------|--------|------------------------------------------|-------------------------|--------------------------------------|
| J   | Date       | hh:mm  | dd/hh:mm/class                           | dd/hh:mm                | dd/hh:mm                             |
| , ג | 2020-04-22 | 19:31  | no                                       | no                      | no                                   |
|     | 2020-10-06 | 11:30  | no                                       | no                      | no                                   |
|     | 2020-10-24 | 15:32  | no                                       | no                      | no                                   |
|     | 2021-02-16 | 04:00  | no                                       | no                      | no                                   |
|     | 2021-03-04 | 08:25  | no                                       | no                      | no                                   |
|     | 2021-03-14 | 10:01  | no                                       | no                      | no                                   |
|     | 2021-05-26 | 18:59  | 26 <sup>on</sup> /18:51/18:58/19:47/B7.0 | no                      | no                                   |
|     | 2021-12-02 | 23:12  | no                                       | no                      | no                                   |
|     | 2022-01-19 | 02:03  | no                                       | no                      | 18 <sup>on</sup> /19:26 <sup>s</sup> |
|     | 2022-02-03 | 18:13  | 02 <sup>pr</sup> /17:42/17:47/17:59/C1.1 | no                      | 03 <sup>su</sup> /22:35              |
|     | 2022-04-29 | 21:27  | 29 <sup>su</sup> /22:42/22:56/23:14/C3.0 | 29 <sup>on</sup> /17:03 | 29 <sup>on</sup> /09:12              |
|     | 2022-05-13 | 22:08  | 13 <sup>on</sup> /22:07/22:26/22:34/C2.6 | no                      | no                                   |
|     | 2022-07-07 | 13:11  | no                                       | no                      | no                                   |
|     | 2022-09-05 | 02:10  | 05 <sup>on</sup> /01:53/02:05/02:19/C5.0 | no                      | no                                   |
|     | 2022-12-28 | 09:34  | 22 <sup>on</sup> /09:34/09:42/09:49/C2.4 | no                      | no                                   |



## Education

University courses

- Solar physics & solar activity; Radio astronomy (Master program, "Astronomy and Astrophysics" <u>https://www.phys.uni-sofia.bg/?page\_id=3443</u>)
- Introduction to Space weather (Master program "Aerospace Engineering and Communications" <u>https://www.phys.uni-sofia.bg/?page\_id=6373</u>)
   <u>https://astro.phys.uni-sofia.bg/p9/</u>

(New) Summer practice (start 2024: under development): students, PhDs, young scientists



## Knowledge transfer

Summer schools & practices

- Project-related <u>https://stellar-h2020.eu/</u>
- LOFAR-BG https://lofar.bg/
- Branch Cosmos <a href="https://bulgarianspace.online/archive-schools/">https://bulgarianspace.online/archive-schools/</a>

Workshops

- Radio Astronomy (external school 15-19 Apr 2024: <u>https://indico.astron.nl/event/315/</u> Deadline: 30 Nov 2023!)
- Astropy

(20-24 Nov 2023: https://astro.bas.bg/astropy2023/ Registration closes today!)

#### **Dissemination & outreach**

- News (<u>https://astro.bas.bg/</u>)
- http://195.96.236.171/news



Преследване на слънчевата корона до Западна Австралия Лекция на гл. ас. д-р Цветан Цветков в МГУ "Св. Иван Рилски"





#### **Dissemination & outreach**

• News

#### http://195.96.236.171/news

• exhibitions

Ongoing: New 1.5-m telescope (BAS)



Начало Администрация Академията Документи

понеделник, 9 октомври 2023 | Категории: Астрономия, космически изследвания и технологии | Етикети: ИА с НАО



в проекта, са 3,5 милиона лева.

Изложба на изображения на космически обекти, заснети с новия 1,5-м телескоп в Националната астрономическа обсерватория (HAO) Рожен, беше открита в Българската академия на науките. Телескопът работи в полуавтоматичен режим и може да бъде управляван дистанционно, каза директорът на Института по астрономия с HAO проф. Евгени Семков. Той представи автора на фотографиите – астрономът гл. ас. g-р Милен Минев.

В експозицията са включени снимки на планетата Юпитер и на звезди, мъглявини, галактики, звездни купове и образувания от междузвезден газ и прах като известните "Стълбове на сътворението" в мъглявината Орел на съзвездието Змия.

Телескопът е първата мащабна научна инфраструткура, която е изградена изцяло с българско финансиране, каза председателят на БАН акад. Юлиан Ревалски и допълни, че средствата, вложени

В зала "Проф. Марин Дринов" на БАН беше излъчен премиерно документален филм "Новият телескоп", с автори журналистът Димитър Сотиров и операторът Валентин Паскалев.

#### **Dissemination & outreach**

• News

#### http://195.96.236.171/news

• exhibitions

Ongoing: New 1.5-m telescope (BAS)





#### https://www.astro.bas.bg/reports/

social media: facebook, instagram, youtube

https://www.youtube.com/@instituteofastronomyandnao6152 https://www.instagram.com/instituteofastronomybas/

02 974 1910

организации", което се проведе 6 края на миналата седмица 6

Дома на културата "Средец" в София. Спечелилият проект,

https://www.facebook.com/ianaoban

### Acknowledgements

SCOSTEP/PRESTO 2020 grant <u>https://scostep.org/presto/</u> 'On the relationship between major space weather phenomena in solar cycles 23 and 24'

Interacademy bilateral project (BAS): Bulgaria-Egypt 'On space weather effects at near Earth environment - from remote observations and in situ particle forecasting to impacts on satellites' IC-EG/08/2022-2024'

Bulgarian National Science Fund: Bulgaria-Austria 'Joint observations and investigations of solar chromospheric and coronal activity' KP-06-Austria/5 (14-08-2023)

European Space Agency (ESA): <u>https://spreadfast.astro.bas.bg/</u>

EU-Horizon 2020 (twinning project): STELLAR (Scientific and Technological Excellence by Leveraging LOFAR Advancements in Radio Astronomy) <u>https://stellar-h2020.eu/</u>

Ministry of Education, Bulgaria: LOFAR-BG https://lofar.bg/







