On the magnetic structure of solar active regions and their space weather impact

Rositsa Miteva (IANAO, Bulgaria) rmiteva@nao-rozhen.org

Mohamed Nedal (DIAS, Ireland)

Astrid Veronig & Werner Pötzi (Uni-Graz & KSO, Austria)

Acknowledgements:

Bilateral project: Bulgaria-Austria https://astro.bas.bg/project-sun/
'Joint observations and investigations of solar chromospheric and coronal activity'
(2023-2025) Bulgarian National Science Foundation project No. KP-06-Austria/5
(14-08-2023) and Austria's Agency for Education and Internationalisation (OeAD)
project No. BG 04/2023

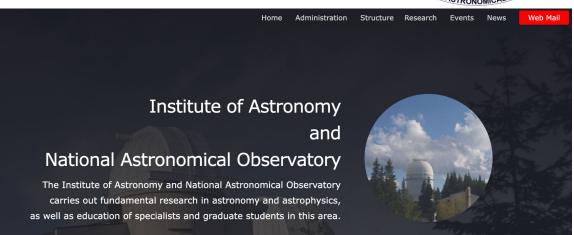
ПО ФИЗИЧЕСКИ НАУКИ СОФИЯ, 07.10.- 09.10.2024 Г., Интер Експо Център Атомна физика, ядрена физика и физика на елементарните частици Физика на кондензираното състояние, нови материали, криогенна физика Радиофизика, електроника и физика на плазмата НАЦИОНАЛЕН КОНГРЕС Физика на Земята, атмосферата и океаните Астрономия и астрофизика по физически Медицинска физика и биофизика НАУКИ C/5 Физикохимия и физика на живата Теоретична и математична физика МЕЛИЙНИ ПАРТНЬОРИ История на физиката

http://upb.phys.uni-sofia.bg/conference/4kongres

23. Гуки

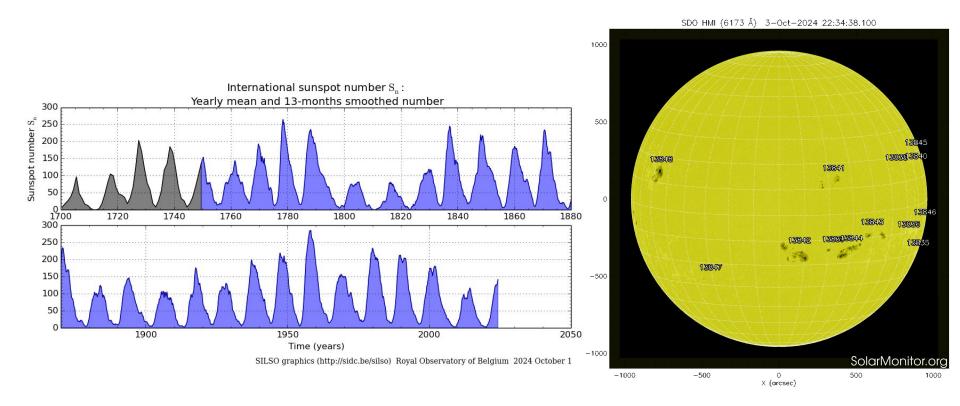
Физическите науки, иновациите и индустрията в България

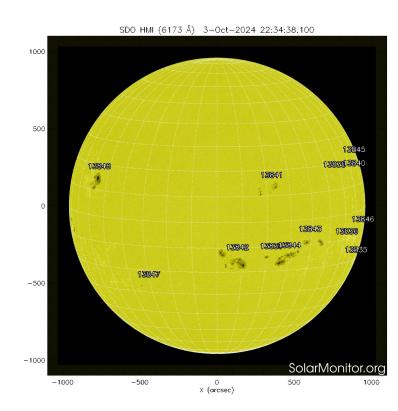
Образованието по физика


IV-ТИ НАЦИОНАЛЕН КОНГРЕС

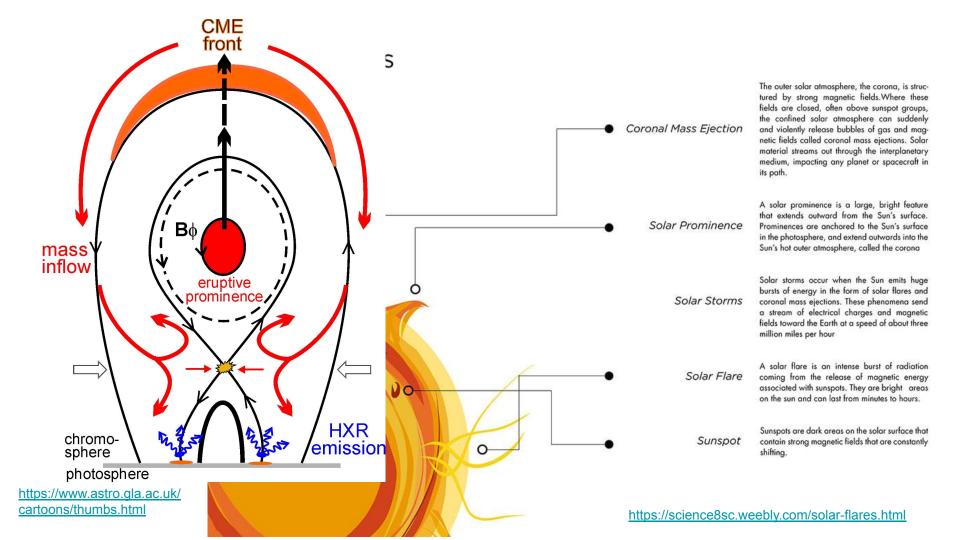
Contents

- Overview: Space weather@ IANAO-BAS
- BG-AT bilateral project
- Geoeffective active regions
- Results
- Outlook



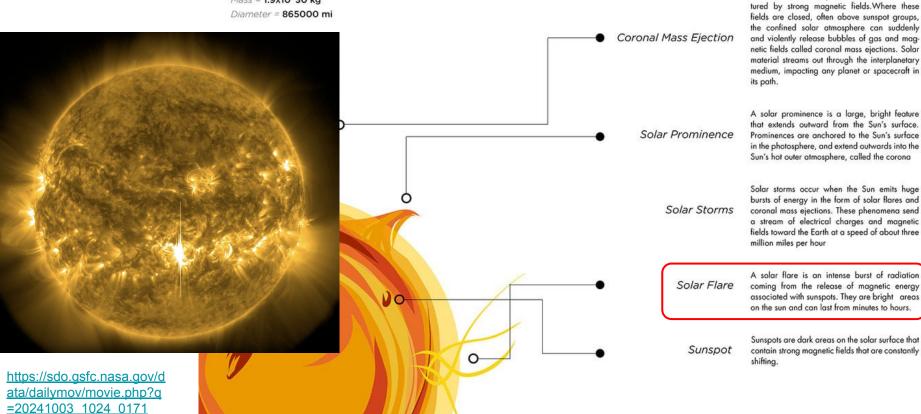

https://astro.bas.bq/

Sunspots: proxy for solar activity



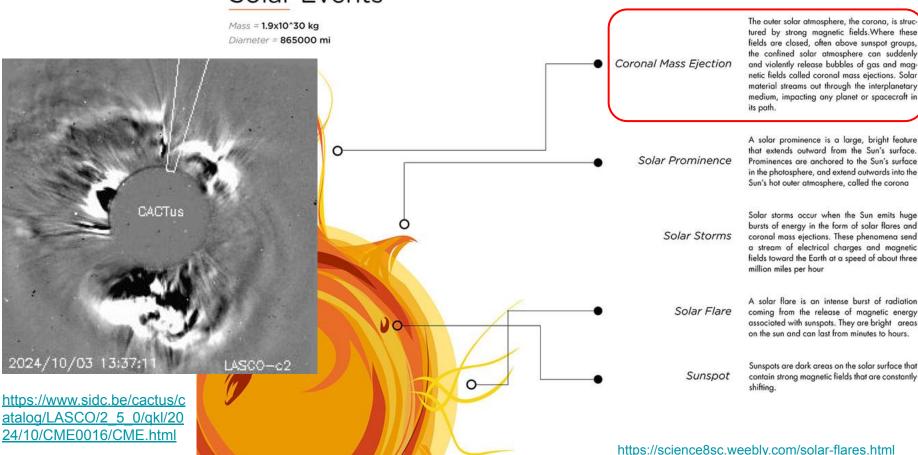
Active regions

"the totality of observable phenomena in a 3D volume represented by the extension of magnetic field from the photosphere to the corona. . ." [van Driel-Gesztelyi et al. 2015] including EM emissions and strong twisted magnetic field emergence.

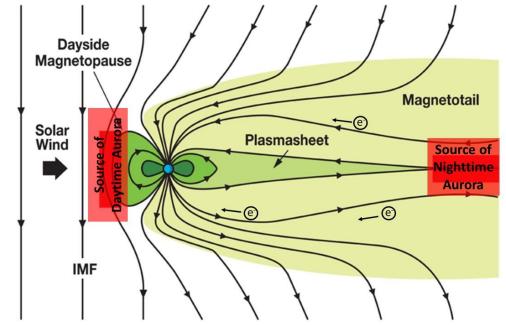


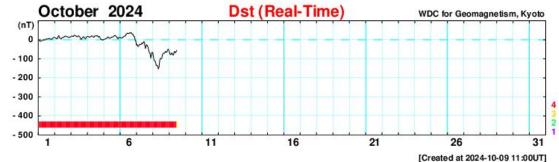
https://solarmonitor.org/

Solar Events


 $Mass = 1.9x10^30 kg$

The outer solar atmosphere, the corona, is struc-


https://science8sc.weebly.com/solar-flares.html


Solar Events

Geomagnetic storm (GS)

major disturbances in the terrestrial atmosphere caused by the reconnection process between the incoming plasma ejecta in the solar wind and the planetary magnetosphere

https://www.swpc.noaa.gov/content/aurora-tutorial

https://wdc.kugi.kyoto-u.ac.jp/dst_realtime/202410/index.html

Space weather (SW)

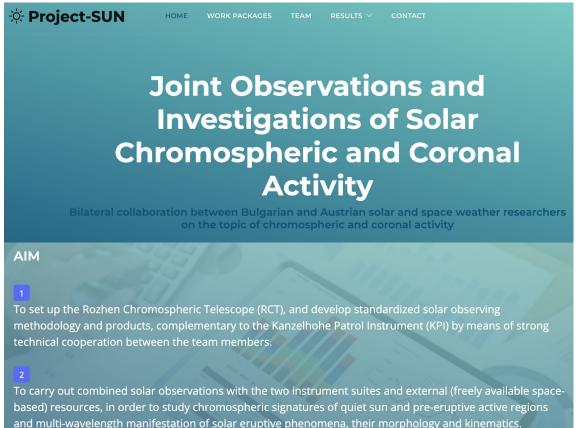
'conditions on the Sun and in the solar wind, magnetosphere, ionosphere and thermosphere that can influence the performance and reliability of space-borne and ground-based technological systems and can endanger human life or health' US National Space Weather Program, The Strategic Plan of Space Weather (1995)

Summary of SW effects

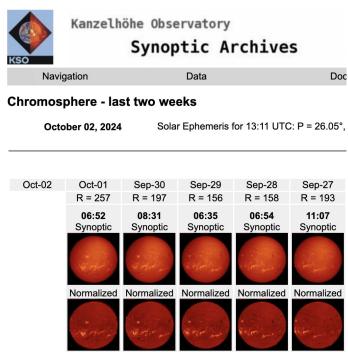
Flares (EM emission):

- Satellite signal degradation and loss;
- Radio blackouts;
- Increased atmospheric drag

CMEs (magnetized plasma, shock waves):


- Geomagnetic storms
- Induced currents

Energetic particles:


- Cumulative radiation effects (total ionizing dose and displacement damage dose);
- Single-event upsets/single-event effects;
- Surface discharges;
- Deep dielectric charging;
- Solar cell degradation, material aging/surface damage to materials

https://www.weather.gov/safety/space

Bulgarian-Austrian project

Collaboration with:

http://cesar.kso.ac.at/

Project structure

Work Packages

Work Package #1

Technical support of NAO-Rozhen Chromosphere Telescope and observation campaigns with KSO facilities

- Task 1.1: Telescope installation
- Task 1.2: Data processing
- Task 1.3: Observation Campaign
- Task 1.4: Image enhancement

Work Package #2

Joint investigations of solar chromospheric and coronal activity

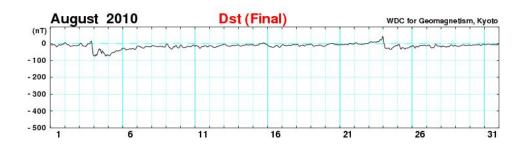
- Task 2.1: Chromospheric
 Signatures of Quiet Sun and Pre-Eruptive Configurations
- Task 2.2: Multi-wavelength study of solar activity phenomena, their morphology and kinematics

Work Package #3

Dissemination of the project results

- Task 3.1: Project web-site
- Task 3.2: Scientific dissemination

Solar observations in Bulgaria


Statistical analyses of historical events

Aim

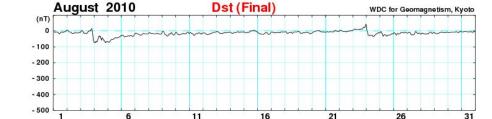
Which AR parameters are geo-effective?

IP space & (I)CMEs

AR

GS

Methodology


1. Selection: all geo-storms in SC24+ Association between GSs, CMEs, SFs, and ARs

2. Correlations

SF: SXR class

 CME: speed & angular width

GS: Dst

SDO/HMI (after 2009-present),

• AR: SHARP data product

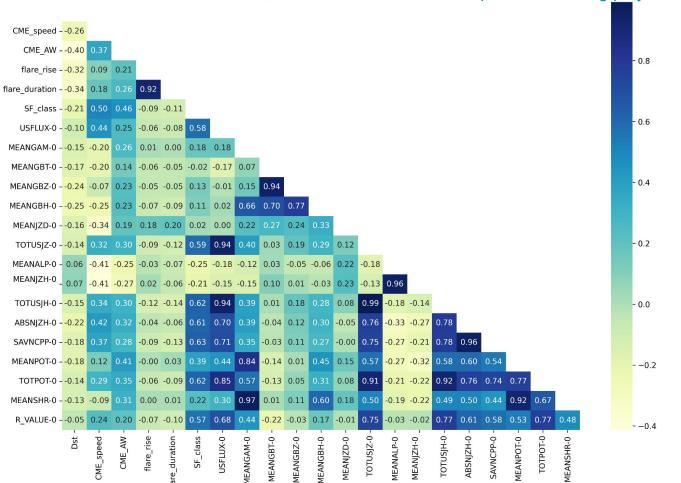
http://jsoc.stanford.edu/HMI/HARPS.html

SHARP parameters

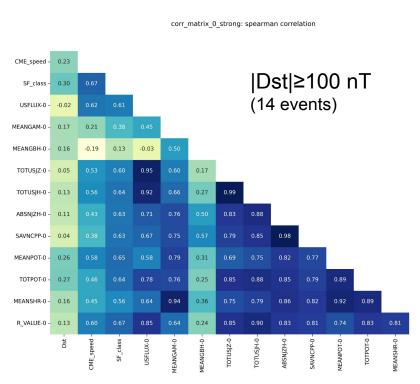
- 1. USFLUX (Maxwell): Total unsigned flux
- 2. MEANGAM (Degrees): Mean inclination angle, gamma
- 3. MEANGBT (Gauss/Mm): Mean value of the total field gradient
- 4. MEANGBZ (Gauss/Mm): Mean value of the vertical field gradient
- 5. MEANGBH Gauss/Mm Mean value of the horizontal field gradient
- 6. MEANJZD (mA/(m^2)): Mean vertical current density
- 7. TOTUSJZ (Amperes): Total unsigned vertical current
- 8. MEANALP (1/Mm): Mean twist parameter, alpha
- 9. MEANJZH (G²)/m: Mean current helicity
- 10. TOTUSJH (G^2)/m: Total unsigned current helicity
- 11. ABSNJZH (G^2)/m: Absolute value of the net current helicity
- 12. SAVNCPP (Amperes): Sum of the Absolute Value of the Net Currents ...
- 13. MEANPOT (Ergs/cm³): Mean photospheric excess magnetic energy density
- 14. TOTPOT (Ergs/cm³): Total photospheric magnetic energy density
- 15. MEANSHR (Degrees): Mean shear angle for B_total
- 16. R_VALUE (Maxwell): Unsigned Flux R (Schrijver, 2007)

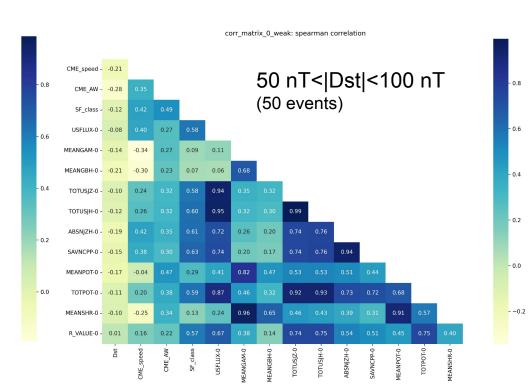
SHARP parameters

Keyword	Description	Unita	Formula ^b
USFLUX	Total unsigned flux		$\Phi = \sum B_z \mathrm{d}A$
MEANGAM	Mean angle of field from radial	Degree	$\overline{\gamma} = \frac{1}{N} \sum \arctan(\frac{B_h}{B_z})$
MEANGBT	Horizontal gradi- ent of total field	${ m GMm^{-1}}$	$\overline{ \nabla B_{\text{tot}} } = \frac{1}{N} \sum \sqrt{(\frac{\partial B}{\partial x})^2 + (\frac{\partial B}{\partial y})^2}$
MEANGBZ	Horizontal gradient of vertical field	${ m GMm^{-1}}$	$\overline{ \nabla B_z } = \frac{1}{N} \sum \sqrt{(\frac{\partial B_z}{\partial x})^2 + (\frac{\partial B_z}{\partial y})^2}$
MEANGBH	Horizontal gradient of horizontal field	GMm ⁻¹	$ \nabla B_h = \frac{1}{N} \sum \sqrt{(\frac{\partial B_h}{\partial x})^2 + (\frac{\partial B_h}{\partial y})^2}$
MEANJZD	Vertical current density	$\mathrm{mA}\mathrm{m}^{-2}$	$\overline{J_z} \propto \frac{1}{N} \sum (\frac{\partial B_y}{\partial x} - \frac{\partial B_x}{\partial y})$
TOTUSJZ	Total unsigned vertical current	A	$J_{z_{\text{total}}} = \sum J_z \mathrm{d}A$
MEANALP	Characteristic twist parameter, α	${\rm Mm^{-1}}$	$\alpha_{ m total} \propto rac{\sum J_z B_z}{\sum B_z^2}$
MEANJZH	Current helicity $(B_z \text{ contribution})$	$G^2 m^{-1}$	$\overline{H_c} \propto \frac{1}{N} \sum B_z J_z$
TOTUSJH	Total unsigned current helicity	$G^2 m^{-1}$	$H_{c_{ ext{total}}} \propto \sum B_z J_z $


ABSNJZH	Absolute value of the net current helicity	$\mathrm{G}^2\mathrm{m}^{-1}$	$H_{c_{ m abs}} \propto \sum B_z J_z $
SAVNCPP	Sum of the modu- lus of the net current per polarity	A	$J_{z_{\text{sum}}} \propto \sum_{z}^{B_z^+} J_z dA + \sum_{z}^{B_z^-} J_z dA $
MEANPOT	Proxy for mean photospheric excess magnetic energy density	${\rm erg}{\rm cm}^{-3}$	$\overline{ ho} \propto \frac{1}{N} \sum (\boldsymbol{B}^{\mathrm{Obs}} - \boldsymbol{B}^{\mathrm{Pot}})^2$
ТОТРОТ	Proxy for total photospheric magnetic free energy density	erg cm ⁻¹	$ \rho_{\rm tot} \propto \sum (B^{\rm Obs} - B^{\rm Pot})^2 \mathrm{d}A $
MEANSHR	Shear angle	Degree	$\overline{\Gamma} = \frac{1}{N} \sum \arccos(\frac{B^{\text{Obs}} \cdot B^{\text{Pot}}}{ B^{\text{Obs}} B^{\text{Pot}} })$

Results


⇒ 64 events semi-automatic code


The SHARP parameters for the total flux, current, current helicity, magnetic energy density, and shear angle show moderate-to-strong correlations also with the SF class and the CME parameters but not with the Dst index.

https://doi.org/10.3390/ atmos15080930

Results

https://doi.org/10.3390/ atmos15080930

Outlook

- Setting up an automatic procedure for multi-parameter analyses (completed)
- Apply to confined (e.g. no CME) vs. eruptive solar flares in SC24:
 - ~50 X-class flares (Miteva 2021) ⇒ 2 confined
 - ~750 M-class flares (Miteva & Samwel 2022) ⇒ ~350 confined

Acknowledgements:

Bilateral project: Bulgaria-Austria https://astro.bas.bg/project-sun/ 'Joint observations and investigations of solar chromospheric and coronal activity' (2023-2025) Bulgarian National Science Foundation project No. KP-06-Austria/5 (14-08-2023) and Austria's Agency for Education and Internationalisation (OeAD) project No. BG 04/2023

