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13.1 The Big Bang Scenario:
basic observations and assumptions

Galaxies are observed to move away from each other with their recessional velocity
increasing with distance (observation).

On large scales the universe is close to isotropic (distribution of faint galaxies,
radio sources, microwave background) though on small scales it evidently is highly
anisotropic (observation).

Our location in the universe and the observations we make are not unique but
typical (cosmological principle = assumption). Together with the previous item
this implies that the universe is homogeneous on large scales.

Gravitation and in turn the dynamics of the universe are governed by the field
equations of Einstein’s Theory of General Relativity (assumption).
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The Hubble diagram for first–
ranked cluster galaxies:

log of redshift vs.
apparent V-magnitude

(Sandage (1972) ApJ, 178, 1)
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Angular distribution of the
∼ 31 000 brightest 6cm
radio sources in the sky

(Peebles 1993)
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Temperature fluctuations in the Cosmic Microwave Background as measured by the
COBE satellite. The amplitude of the fluctuations is only ∆T/T ' 10−5 and reflects

density inhomogeneities in the baryons of the same order about 100 000 years after
the big bang.
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General Relativity

The basic equations of General Relativity are Einstein’s Field Equations :

Rij −
1

2
gijR = 8πGTij + Λ gij (13.1)

Rij: Ricci tensor (Rij = Rij(gij)) ↔ space–time curvature
gij: metric tensor ↔ space–time distances ds2 = gijdx

idxj

R: Ricci scalar (R = gikRik) ↔ space–time curvature
G: gravitational constant
Tij: energy–momentum tensor ↔ mass, energy, . . .
Λ: cosmological constant

The Field Equations connect the energy (and thus mass) distribution in space to its
geometrical properties (curvature).

For details see e.g. Weinberg, Gravitation and Cosmology, J. Wiley 1972, or Misner,
Thorne, & Wheeler, Gravitation, Freeman 1970.
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Experimental Tests of General Relativity

Perihelion shift. Orbits of planets around a star (e.g. in the solar system) ex-
perience a precession of their perihelia. This was first observed for Mercury and
cannot be explained in Newtonian theory. Predictions from General Relativity are
in very good agreement with observations:

Planet a [106 km] e φ [arcsec per century]
Observed Theory

Mercury 57.91 0.2056 43.11± 0.45 43.03
Venus 108.21 0.0068 8.4± 4.8 8.6
Earth 149.60 0.0167 5.0± 1.2 3.8
Icarus 161.00 0.8270 9.8± 0.8 10.3

(From Berry, Principles of Cosmology and Gravitation, Bristol 1989.)

Time delay of signals from Venus. Radar signals reflected by a planet (e.g.
Venus) are delayed when the light path passes the Sun (see figure). Again, the
experimental results are in perfect agreement with the theoretical prediction.
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(From Berry, Principles of Cosmology and Gravitation, Bristol 1989.)
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Energy loss in binary pulsar.
According to General Relativity, a
system of masses orbiting each
other loses orbital energy due to
the emission of gravitational waves.
This loss of orbital energy has been
measured accurately for the case
of a binary pulsar. (from Longair
1993, QJRAS, 34, 157.)
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13.2 The Robertson–Walker Metric

For a homogeneous universe the most general metric for the space–time distance
between two points is the Robertson–Walker metric :

ds2 = c2 dt2 − R(t)2

[
dr2 + R2

c,0 sin2

(
r

Rc,0

) (
sin2 θ dϕ2 + dθ2

)]
(13.2)

with:
(r, θ, ϕ): co-moving coordinates
R(t): cosmic scale factor
Rc,0 : curvature radius of the universe today

The normalization of r and R(t) can be chosen such that R(t0) = 1 (today!). Then
dr describes real distances today, i.e. the co-moving coordinate system preserves
present-day distances.
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Other versions of the Robertson–Walker Metric

Equation (13.2) is not the only way to write the Robertson–Walker metric. The follow-
ing form

ds2 = c2 dt2 − R(t)2

[
dr2

1

1− k1r2
1

+ r2
1

(
sin2 θ dϕ2 + dθ2

)]
(13.3)

can be obtained from (13.2) by setting

r1 ≡ Rc,0 sin

(
r

Rc,0

)
and k1 ≡

1

R2
c,0

Yet another possibility to write the Robertson–Walker metric is:

ds2 = c2 dt2 − a(t)2

[
dr2

2

1− k2r2
2

+ r2
2

(
sin2 θ dϕ2 + dθ2

)]
(13.4)

which follows by setting

a(t) ≡ Rc,0R(t) and r2 ≡
r1

Rc,0
=
√
k1 r1.

In this case, k2 = −1, 0,+1 correspond to open, flat, or closed universes, respectively.
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13.3 The Friedmann Equations

The geometry of a homogeneous and isotropic universe is described by the gij of the
Robertson–Walker metric (13.2). In order to obtain a solution for the dynamics of the
universe, the Ricci tensor needs to be calculated from the gij and the field equations
have to be solved for an energy momentum tensor reflecting a homogeneous distribu-
tion of mass. For a perfect homogeneous fluid Tij takes the simple form:

Tij =
1

c2


%c2 0 0 0

0 −p 0 0
0 0 −p 0
0 0 0 −p


with the density % and the pressure p.
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Inserting gij, Rij and Tij in the field equations (13.1) yields the two Friedmann equa-
tions :

R̈ = − 4πGR

3

(
% + 3

p

c

)
+

1

3
ΛR (13.5)

Ṙ2 =
8πG%

3
R2 +

1

3
ΛR2 − c2

R2
c,0

(13.6)

These equations govern the dynamical evolution of the universe (i.e. the time evolu-
tion of the scale factor R(t)). The Friedmann equations connect this evolution to the
intrinsic properties (density %, pressure p, cosmological constant Λ, curvature radius
Rc,0 today) of the universe.
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13.4 Basic Cosmological Parameters

The Hubble Constant

The Hubble constantH(t) can be defined in terms of the physical distance x(t) ≡ R(t)r
(r: co-moving distance, R: scale factor):

H ≡ H(t) ≡ ẋ

x
=

Ṙ

R
(13.7)

The value of the Hubble constant today (t = t0) is usually written as H0 ≡ H(t0). Note
that the Hubble “constant” is not constant in time! Since the true value of H0 is not yet
accurately known, it is often parametrized using h:

H0 ≡ h 100 km s−1 Mpc−1

The current value (based on several methods) is:

H0 = 70± 10 km s−1 Mpc−1
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The Density Parameter

The density parameter Ωm,0 is a measure for the matter density %0 of the universe today
and is defined via:

Ωm,0 ≡
%0

%c,0
≡ 8πG%0

3H2
0

(13.8)

i.e. Ωm,0 is the ratio of the present day matter density to the critical density %c,0.
From various dynamical measurements (galaxies, groups, clusters, large scale galaxy
motions) the likely value for Ωm,0 is:

Ωm,0 ' 0.3

The meaning of Ωm can be seen after inserting its definition into the Friedmann equa-
tion (13.6) and using Rc = Rc,0R :(

Ṙ

R

)2

=
8πG%

3
−
(
c

Rc

)2

(assuming Λ = 0), for which we obtain:(
Ωm(t) − 1

)
H(t)2 =

(
c

Rc

)2
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Thus the different values of Ωm,0 imply:

Ωm,0 < 1 R2
c < 0 negative curvature open universe

Ωm,0 > 1 R2
c > 0 positive curvature closed universe

Ωm,0 → 1 R2
c →∞ no curvature flat (Euclidean) universe

The Deceleration Parameter

The deceleration parameter is defined in the following way:

q0 ≡ −

(
R̈ R

Ṙ2

)
0

(13.9)
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Relations between the Cosmological Parameters

The Friedmann equation (13.5) reads for zero pressure (p = 0):

R̈ = − 4πGR

3
% +

1

3
ΛR.

Multiplying by R2/Ṙ2 yields

R̈R

Ṙ2
= −Ωm

H2

2

R

Ṙ2
+

1

3
Λ
R2

Ṙ2

Using the definition of q and Ωm and defining ΩΛ = 1
3Λ/H2 results in:

q =
Ωm

2
− ΩΛ (p = 0)

Dividing the second Friedmann equation (13.6) by R2 leads to:

c2

H2R2
c

= Ωm + ΩΛ − 1

where we have used the definition of the Hubble constant.
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13.5 The Redshift

The cosmological redshift z is defined as:

z ≡ λo − λe
λe

(13.10)

where λe is the rest-frame wavelength of the emitted radiation, and λo is the observed
wavelength.

The redshift z can be related to the scale factor R(t) by the following considerations.

Assume that a source at co-moving coordinates (re, ϕe, θe) = const emits two signals
(e.g. two maxima of an electromagnetic wave) at times te and te + τe, and that these
signals are observed by an observer at (ro, ϕo, θo = const) at times to and to + τo.

The propagation of light is described by ds2 = 0, i.e. the Robertson–Walker metric
reads:

c dt

R(t)
= dr

where we have chosen our coordinate system such that ro = 0 and dΩ = 0.
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Integrating along the trajectories of both signals yields:
to∫
te

c dt

R(t)
=

0∫
re

dr =

to+τo∫
te+τe

c dt

R(t)
.

The integrals in time can be re-written in the following way:
te+τe∫
te

c dt

R(t)
+

to∫
te+τe

c dt

R(t)
=

to∫
te+τe

c dt

R(t)
+

to+τo∫
to

c dt

R(t)
,

where two of the integrals cancel. For short time intervals τe and τo we can assume
R(t) ' const. Thus:

τe
R(te)

=
τo

R(to)
,

If we choose τ to be the period of a light wave: λ = cτ , we finally obtain:

R(to)

R(te)
=

λo
λe

= 1 + z
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13.6 Dynamics of Homogeneous Universes

Universes with p = 0 and Λ = 0

In this case, the Friedmann equations read:

R̈ = − 4πGR

3
%

Ṙ2 =
8πGR2

3
% − c2

R2
c,0

From the conservation of mass we have

% = %(t) = %0

(
R0

R

)3

= %0
1

R3

(remember that R0 = 1!), and thus:

R̈ = − 4πG%0

3

1

R2

Ṙ2 =
8πG%0

3

1

R
− c

R2
c,0
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(Note: the second equation is just the integral of the first one. This also means that
the conservation of mass follows from the two Friedmann equations).

Interestingly, these relations are identical to those derived in classical mechanics for a
homogeneous, expanding sphere:

............

............

.............
.............
.............
..............
...............

................
.................

....................
.........................

..................................................


.........................
....................

.................
................
...............
..............
.............
.............
.............
............
............
... - v�v

?
v

6

v

y
%

m
�
�	
ẍ

In this case, the equation of motion has the form:

mẍ = − GMm

x2
= − 4πG%

3
x
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Using a co-moving coordinate system: % = %0R
−3, x = x0R, we can rewrite this equa-

tion as:
R̈ = − 4πG%0

3

1

R2

which is identical to the Friedmann equation. This result which has been derived
locally with Newtonian dynamics turns out to be the same as the one which is valid
for the universe as a whole. The reason lies in the homogeneity of the Universe. As
each part will expand in the same way, it is sufficient to consider the dynamics of a
small volume only to derive the equation of motion. For a small volume, however,
space becomes flat and the finite velocity of light can be neglected, which means that
a Newtonian approach gives the same equations of motion as the Friedmann model.

Galaxies, Cosmology and Dark Matter Summer 2000



CHAPTER 13. THE HOMOGENEOUS UNIVERSE Page 481

Einstein–de-Sitter Universe
This is a universe with Ωm = 1, ΩΛ = 0, i.e. the universe is Euclidean:

Ṙ2 =
8πG%

3
R2

which can be integrated and yields:

R1/2 dR =

(
8πG%0

3

)1/2

dt

Using the definition of Ωm (13.8) and considering that we assumed Ωm = 1, we have
H2

0 = (8πG%0)/3 and thus:

R =

(
3

2
H0 t

)2/3

(p = 0,Λ = 0,Ωm = 1)

From R0 = 1 today, we can solve this equation for the age of universe t0:

t0 =
2

3

1

H0
(p = 0,Λ = 0,Ωm = 1)

Thus, for p = 0, Λ = 0, and Ωm = 1, we have
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H0 = 50 km s−1 Mpc−1  t0 ' 13 Gyr
H0 = 100 km s−1 Mpc−1  t0 ' 7 Gyr

Empty Universe
For Ωm → 0 and Λ = 0 we have %0 → 0, and the Friedmann equation (13.6) becomes:

c2

R2
c

= −H2 ⇔ Ṙ2 = H2
0

and thus:

R = H0 t and t0 =
1

H0

from which we obtain for the age of the universe:

H0 = 50 km s−1 Mpc−1  t0 ' 20 Gyr
H0 = 100 km s−1 Mpc−1  t0 ' 10 Gyr

Since the cosmological parameters can be restricted to the ranges 0.1 ≤ Ωm ≤ 1 and
50 km s−1 Mpc−1 ≤ H0 ≤ 100 km s−1 Mpc−1 we can constrain:

7 Gyr ≤ age of the universe t0 ≤ 20 Gyr
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Universes Dominated by the Cosmological Constant
In this case, we can neglect the matter density: % ' 0. Then the second Friedmann
equation (13.6) reads

Ṙ2 =
1

3
ΛR2 − c2

R2
c,0

. (13.11)

This equation has the solution:

R =
c

|Rc,0|
√

Λ/3
sinh

(√
Λ

3
t

)
.

Since sinhx = 1/2(ex− e−x) this is equivalent to exponential expansion of the universe:

R ∝ exp

(√
Λ

3
t

)
(Λ dominated universe)

In this case, we will have ΛR2/3 � c2/R2
c,0 after a short period of time, and thus

equation (13.11) reduces to

Ṙ2 =
1

3
ΛR2.

This means that the curvature of space becomes negligible, and space–time becomes
Euclidean.
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In the following figure, taken from Carroll, Press, & Turner, 1992, ARAA, 30, 499, we
show the dynamical history of five cosmological models with the following parameters:

Model Ωtot Ωm ΩΛ Description
A 1 1 0 flat, matter dominated, no Λ
B 0.1 0.1 0 open, plausible matter, no Λ
C 1 0.1 0.9 flat, Λ plus plausible matter
D 0.01 0.01 0 open, minimal matter, no Λ
E 1 0.01 0.99 flat, Λ plus minimal matter

where the symbols are defined as follows:

Ωtot ≡ Ωm + ΩΛ with ΩΛ ≡
Λ

3H2
0
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13.7 Evolution of Physical Properties

13.7.1 Intrinsic Luminosity and Observed Flux

To relate the intrinsic luminosity of an object (e.g. a galaxy) at redshift z to its observed
flux, we use the fact that ds2 = 0 for the propagation of light. Then the Robertson–
Walker metric (13.4) reads

0 = ds2 = c2 dt2 − a(t)2 dr2

1− kr2
,

where we have set k2 = k, r2 = r (co-moving), and dΩ = 0. This equation can be
integrated to give

t0∫
t1

c dt

a(t)
=

0∫
r1

dr

(1− kr2)1/2
(13.12)

where we have assumed that the object emits its radiation at r1 and time t1. For small
distances, a(t) can be expanded in a series:
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a(t) = a(t0)

{
1 +

(
ȧ

a

)
t0

(t− t0) +
1

2

(
ä

a

)
t0

(t− t0)2 + . . .

}
= a(t0)

{
1 + H0(t− t0) +

1

2
q0H

2
0(t− t0)2 + . . .

}
Using 1 + z = a(t0)/a(t) we can write this as

t− t0 =
1

H0

{
z − (1 +

q0

2
) z2 + . . .

}
The expression t − t0 is called the look–back time . Its redshift evolution for the five
cosmological models defined on page 484 is shown in the following figure:
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(From Carroll, Press, & Turner (1992) ARAA, 30, 499)
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Then integration of (13.12) yields:

x1 = a0 r1 =
c

H0

{
z − 1

2
(1 + q0)z2 + . . .

}
This, of course, is the present-day distance of the galaxy which emitted the light at a
redshift z , i.e. when the Universe was a factor (1 + z) smaller.

To derive an expression for the observed flux of the galaxy, we have to consider three
effects:

1. Time intervals δt1 (e.g. between subsequent maxima of an electromagnetic wave)
arrive at the observer in an interval δto = a0/a(t1)δt1 due to the redshift (time–
dilation) effect.

2. The spatial distance between subsequent photons is increased by a factor of (1+z).

3. The photons are distributed on a surface of area 4πx2
1 = 4πa2

0r
2
1.
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Thus the observed flux ` from a source with intrinsic luminosity L at a redshift z is

` =
L

4πa2
0r

2
1(1 + z)2

=
L

4π
{
cH−1

0

[
z + 1

2(1− q0)z2 + . . .
]}2

If we now define the luminosity distance dL such that the simple relation

` ≡ L

4πd2
L

(13.13)

is valid, we can write dL as

dL =
c

H0

[
z +

1

2
(1− q0)z2 + . . .

]
(13.14)

Mattig (1958!) derived a closed analytic expression for the luminosity distance dL (in
the case of Λ = 0):
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dL =
c

H0

q0z + (q0 − 1)
(√

1 + 2q0z − 1
)

q2
0

=
cz

H0

{
1 + z +

√
1 + 2q0z

1 + q0z +
√

1 + 2q0z

} (13.15)

Measuring q0 using dL:

The first measurements of q0 were based on cluster galaxies assumed to be standard
candles, e.g. the first–ranked cluster galaxies (Sandage 1972). The problem with this
approach is that galaxies evolve with redshift and that it is extremely difficult to disen-
tangle evolution effects from different world models. Modern determinations of q0 use
Type Ia Supernovae as standard candles. Very likely, these are true standard candles
(but this has not been demonstrated rigorously either). The following figures, taken
from Riess et al., 1998, AJ, 116, 1009, show the Supernova Ia Hubble diagram and
the confidence ranges for the cosmological parameters. There are strong indications
that the Universe is flat and that the cosmological constant may be non-zero.
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Supernova Ia Hubble diagram

(Riess et al. 1998)
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Supernova Ia: Resulting parameters

(Riess et al. 1998)
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13.7.2 Physical Sizes and Angular Diameters

The angular diameter δ of a source with physical diameterD at redshift z is determined
by the distance between source and observer at the time t1 of light emission. Thus:

δ =
D

x1
=

D

a(t1)r1
.

Using a(t1) = a0/(1 + z) we can define the angular diameter δ in terms of the angular
diameter distance dA:

δ ≡ D

dA

dA =
dL

(1 + z)2

(13.16)

with the luminosity distance dL defined from (13.15).
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(From Carroll, Press, & Turner, 1992, ARAA, 30, 499
models defined on page 484)
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Measuring q0 using dA:

To use these relations to determine q0, one needs so-called standard rods. These must
have the same physical diameter at all redshifts, or, it must be possible to calculate
their physical diameter without knowing their distance.

In the past, several classes of objects have been used as standard rods, e.g. com-
pact radio sources. The following figure shows an example. (Note: there exist many
reasons why the physical diameter of compact radio sources is probably not constant
with redshift!!)
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(Kellermann 1993. In: Observational Cosmology. ASP Conference Series, 51, 50)
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A comparison of physical
effective radii of elliptical
galaxies in the z = 0.375
galaxy cluster Abell 370
and the local Coma clus-
ter. The required dis-
tance to match the distant
objects to the local ones
constrains the geometry
of the universe.
Bender et al. 1998,
ApJ, 493, 529
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Bender et al. 1998,
ApJ, 493, 529
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13.7.3 Surface Brightness

In a Newtonian, non-expanding universe, surface brightnesses are independent of
distance. The surface brightness Σ in an expanding Friedmann model is given by:

Σ =
`

πδ2
=

observed flux
square arcsec

for a circular source of constant surface brightness. Inserting the definitions for the
luminosity distance dL and the angular diameter distance dA yields:

Σ =
L/4πd2

L

πD2

d2
L

(1 + z)4
,

satisfying Σ(z = 0) = L/(4π2D2).

Thus the surface brightness of an object at redshift z obeys the so-called Tolman
relation:

Σ(z) =
Σ(z = 0)

(1 + z)4
(13.17)

Note that the surface brightness does not depend on q0 and thus on the dynamical
evolution of the universe!
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µK = surface brightness
in the K-band (2.2µm)
Pahre et al., 1996,
ApJ, 456, L79
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