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5.8 Rotation of Spirals

5.8.1 Rotational Properties of Exponential Disks

Apart from the central bulge, most of the stars in spirals are concentrated in a relatively
thin disk. How does the rotation curve of a thin exponential disk look like?

Outside the disk we have to solve the Laplace equation (in cylindrical coordinates):

1

R

∂

∂R

(
R
∂Φ

∂R

)
+
∂2Φ

∂z2
= 0

By separation of variables:
Φ = I(R)Z(z)

we get:
1

I(R)R

d

dR

(
R
dI

dR

)
= − 1

Z(z)

d2Z

dz2
= −k2
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with a constant k. These two differential equations are solved by:

Z(z) = Z0e
−k|z| Z0 = const.

I(R) = I0(kR)

with I0(kR) being the cylindrical Bessel function of 0th order. The boundary conditions
are chosen such that Φ→ 0 for z →∞ or R→∞ and Φ(z = 0) remains finite.

Consequently:
Φk(R, z) = Z0e

−k|z|I0(kR)

is the solution of ~∇2Φ = 0 outside of an infinitely thin, finite axially symmetric mass
distribution.

dz

{
z = 0

d2~S

d2~S

?

6
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Φk(R, z) is valid everywhere except at z = 0, because of the discontinuity of ~∇Φk at this
surface. The mass surface density Σ corresponding to this discontinuity can be deter-
mined from Gauss’s theorem :

∫
~∇2Φkd

3x = 4πG

∫
ρd3x

 
∫
~∇Φkd

2S = 4πG

∫ (∫
ρdz

)
︸ ︷︷ ︸ d2S contribution of

other surface elements
→ 0 for d3x→ 0

 (
∂Φ+

∂z
− ∂Φ−

∂z

)
d2S = 4πGΣkd

2S

with Σk the mass surface density, and:
∂Φ±
∂z

= lim
z→0+

−

∂Φk

∂z
= ∓ kI0(kR)

The surface density corresponding to the solution Φk(z, R) therefore is:

Σk(R) = − k

2πG
I0(kR)
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Due to the linearity of Poisson’s equation in Φ and ρ, we can use superposition to
obtain more general solutions:

Σ(R) =

∞∫
0

S(k)Σk(R)dk

and

Φ(R, z) =

∞∫
0

S(k)Φk(R, z)dk

to derive the potential of an arbitrary very thin density distribution. If Σ(R) is given, we
have to invert:

Σ(R) = − 1

2πG

∞∫
0

S(k)I0(kR)kdk

The integral equals a Hankel transformation, with its inversion given by:

S(k) = −2πG

∞∫
0

I0(kR)Σ(R)RdR

Galaxies, Cosmology and Dark Matter Summer 2000



CHAPTER 5. SPIRAL GALAXIES Page 169

Setting

Σ(R) = Σ0e
− R
R0 ,

we can deduce Φ and v2
c = R∂Φ

∂R of the exponential disk (I0, I1, K0, K1 are modified
Bessel functions):

R
∂Φ

∂R
= v2

c (R) = 4πGΣ0R0y
2 (I0(y)K0(y)− I1(y)K1(y))

with y = 1
2
R
R0

and, as usual: Σ(R) = Σ(0)e
− R
R0

Approximation: vc ' 0.876

√
GM

R0
·
√

r̃1.3

1 + r̃2.3
(for R < 4R0)

with r̃ = 0.533 R
R0

Maximum at Rmax ' 2.2R0

Kepler fall-off at RKepler ' 3Rmax
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Rotation curve of the thin exponential disk:

see: Binney, Tremaine (1994) Galactic Dynamics, p. 78
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5.8.2 Experimental Determination of the Rotation of Spiral Galaxies

The circular speed can be approximately determined as a function of the radius
by measuring the redshift of the emission lines of the gas contained in the disk.

hot stars ionize gas:
⇒ hydrogen emission lines , mainly Hα in the optical.

neutral atomic hydrogen gas:
hyperfine structure transition (↑p↑e→↑p↓e) leads to a 21cm radio line . (popu-
lation of the ↑↑ state by radiation or electron collisions)

The dynamical mass of a spiral galaxy within the radius r is:

M(< r) =
α

G
rv2

rot(r)

α is a geometry factor. For the same radial density distribution but different flatten-
ings (disk vs. sphere) one has 0.8 < α < 1.2.
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see: Binney, Tremaine (1994) Galactic Dynamics p.600
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HI-rotation curves of spiral galaxies:

see: Bosma (1979) PhD Thesis
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Rotation Curve of the Galaxy:

see: Fich et al. (1991) ARAA, 29, 409
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5.8.3 The Tully-Fisher Relation

Relation between circular speed vcirc and luminosity of spiral galaxies:

L ∼ v3...4
circ

(The power depends on the wavelength of L, because of changing M/L, star for-
mation, etc.)

From the virial theorem, v2
circ ∼ M

r , and the identity L ∼ Σr2 (with Σ: surface bright-
ness) one obtains:

L ∼
(
M

L

)−2

v4
circΣ

−1

Evidently the observed Tully-Fisher relation implies:
(
M
L

)−2 · Σ−1 ' const. Indeed,
most bright spirals have similar mass-to-light ratios and surface brightnesses:
M
L ∼ const and Σ ∼ const (the latter is called the “Freeman law”).

The Tully-Fisher relation is of fundamental importance for the distance determina-
tion of spiral galaxies.
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see: Jacoby et al. (1992) PASP, 104, 599

W i
R = 2vcirc

vcirc can be deduced from HI ob-
servations;
correction for inclination adopting
flattening of optical image.
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5.9 Dark Matter in Spiral Galaxies

5.9.1 Dark Matter from Rotation Curves

Important paper:

see: van Albada et al. (1985) ApJ, 295, 305
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see: van Albada et al. (1985) ApJ, 295, 305

NGC 3198 (optical and radio
emission)
HI measured using 21cm transi-
tion
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see: van Albada et al. (1985) ApJ, 295, 305

Φ = Φhalo + Φdisc ⇒ v2
circ = v2

c,halo + v2
c,disc

(
v2
circ = r

∂Φ

∂r

)
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Simple Model for Dark Matter Haloes:

Assume: ρ = ρ0
a2

r2 + a2

(
r � a→ ρ ∼ r−2

)
M(r) =

r∫
0

4πρr2dr (Bronstein No. 65)

= 4πρ0a
3
(r
a
− arctan

r

a

)

circular velocity (from virial theorem): vcirc(r) =

√
GM(r)

r

vcirc(r) =
[
4πGρ0a

2
(

1− a

r
arctan

r

a

)]1
2

r � a : vcirc →
√

4πGρ0a2 ' const

r � a : vcirc →
√

4πGρ0a2

3
· r
a
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Summary on Rotation Curves and Dark Matter:

Main observational fact:

Rotation curves remain flat out to radii much larger than the extent of the optical disk!

From vcirc(R) ' constant and centrifugal equilibrium GM(R)
R2 =

v2
circ
R , it follows:

M(R) ∼ R (divergent!)

For the majority of spiral galaxies no decrease in the circular velocity has been
measured even beyond radii of 50 kpc to 100 kpc.

⇒ M

LB
& 30

M�
LB,�

for spirals
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M
LB

of the observable matter in the galactic disk only:

M

LB
(stars and gas) ' 5

M�
LB,�

In general: at least 5 times more dark matter then Mstars + Mgas!
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5.9.2 Dark Matter concentrated in the Milky Way disk?

Historically important and first discussed by Oort in the thirties. Nowadays, the e-
vidence is weak. The dark matter content of the Galactic disk is determined by the
following procedure:

(1) count stars to determine the local luminosity density,
(2) measure the velocities of stars perpendicular to the disk to determine the velocity
dispersion in z-direction,
(3) derive the mass density from the velocity dispersion using the Jeans equation for
vertical equilibrium,
(4) compare local luminosity and mass density and check whether dark mass is
needed.
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In order to solve the Jeans equations, one generally makes a few simplifying assump-
tions:

(a) the radial dependencies and gradients are small compared to the ones in the z-
direction.
(b) the disk is isothermal in in z-direction: σ2

z := v2
z = const.

This is the simplest reasonable model for the vertical structure of spiral disks.

Relevant equations within the approximation:

σ2
z

∂ρ

∂z
= −ρ∂Φ

∂z
Jeans equation in z-direction (5.1)

∂2Φ

∂z2
= 4πGρ(z) Poisson equation in z-direction (5.2)

inserting (5.1) in (5.2):

− ∂

∂z

(
σ2
z

ρ

∂ρ

∂z

)
= 4πGρ (5.3)
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Now substitute ξ = z
z0

with:

z0 =

√
σ2
z

8πGρ0
(5.4)

and ρ0 being a suitably chosen free factor. This yields:

∂

∂ξ

1

ρ

∂ρ

∂ξ
= − ρ

2ρ0
(5.5)

which has the following solution:

ρ = ρ0 sech2

(
ξ

2

)
= ρ0 sech2

(
z

2z0

)
with sech(x) =

2

exp(x) + exp(−x)
(5.6)

i.e. ρ0 = ρ(z = 0).
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The derived density profile matches the observations in the optical.

This apparently confirms the assumption: σz ∼ const perpendicular to the equatorial
plane. Equation (5.4) shows directly how the mass density in the disk is related to
the scale height z0 and the velocity dispersion σz. Therefore, by measuring σz and z0

one can obtain ρ0. Comparison with the density of stars and gas allows to conclude
whether the disk contains dark matter or not. The result is ambiguous at present.
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But:

Due to dust absorption in the equatorial plane of spirals the optical determination
of the vertical density profile is rather uncertain.

Observations in the near IR (e.g. λ = 2µm) indicate, that the vertical density profiles
of spiral disks are probably closer to an exponential than an isothermal profile :

ρ(z) = ρ0 exp

(
− z
z0

)
(5.7)

What are the properties of disks with vertically exponential profiles?
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NGC 5907
courtesy: C. Gössl, Wendelstein Observatory, USM
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σz profiles for disks with exponential z-profiles: ρ(z) = ρ0e
−z/z0:

First, we determine the potential from Poisson’s equation:

∂2

∂z2
Φz = 4πGρ(z)

which yields:

Φz = 4πGρ0z
2
0

(
e
− z
z0 + c1z + c0

)
Since the acceleration in the equatorial plane must vanish, i.e. ∂Φz

∂z

∣∣
z=0

= 0, we
conclude that c1 = 1

z0
. Furthermore, c0 = 0 can be adopted. Thus:

Φ0(z) = 4πGρ0z
2
0

(
e
− z
z0 +

z

z0

)
Note that in this way, for z � z0, the asymptotic behaviour is identical to the one of
the isothermal disk: Φ(z) ∝ z

z0
.
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The dynamics of the system can be determined from the Jeans equation:

1

ρ

∂

∂z

(
ρσ2

z

)
= −∂Φ

∂z

with the solution (exercise!):

σ2
z = 4πGρ0z

2
0

(
1− 1

2
e
− z
z0

)

⇒ vertically exponential disks are in the equatorial plane ∼
√

2 times cooler than
in some scale heights distance from the equatorial plane .
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This is plausible! In the Milky Way we observe:

young stars in the galactic disk are heavily concentrated around the equatorial
plane and have relatively low velocity dispersions (< 20km

s ), just like the gas (mole-
cular clouds) they are formed from.

older stars (like the sun) show higher dispersions (& 30km
s ) and are less concen-

trated around the equatorial plane. The likely reason is that the velocity dispersion
of stars in the Milky Way grows with age due to scattering at molecular clouds,
spiral arms etc.

⇒ The galactic disk is cooler near the equatorial plane (this can also be described
by the superposition of several isothermal components).
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5.9.3 Mass Determination of the Milky Way at Large Radii:

The mass of the Galaxy can be determined by measuring the distance and velocity
of objects that are far away from the Galaxy (> 30 kpc), yet still gravitationally bound.
Approximating the Galaxy as a point mass, these objects move on elliptical orbits with
the Galaxy center in one of the focal points.

To describe the dynamics of the ‘test particles’, we use the spherical Jeans equation:

dnv2
r

dr
+ 2βn

v2
r

r
= −ndΦ

dr
= −nGM

r2

where M is the mass of the Galaxy and n(r) the radial density distribution of the test
particles.

Multiplication with 4πr4 and integration yields:
∞∫

0

dnv2
r

dr
r44πdr +

∞∫
0

2βnv2
rr

34πdr = −GM
∞∫

0

n4πr2dr (5.8)
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Partial integration of the first integral on the left side results in:

4πnv2
rr

4

∣∣∣∣∞
0

−
∞∫

0

4nv2
rr4πr

2dr

The first term vanishes for r →∞ because of n = 0 and at r = 0 because of r4.

So for equation (5.8) follows:
∞∫

0

(
4nv2

rr − 2βnv2
rr
)

4πr2dr = GM

∞∫
0

n4πr2dr

To simplify the problem we assume that β does not vary with radius:

(4− 2β)

+∞∫
−∞

(
nv2

rr
)
d3r = GM

+∞∫
−∞

nd3r
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Now, we switch from a quasi continuous distribution of test particles to a finite number
of objects via:

n =

N∑
i=1

δ (~r − ~ri)

which yields:

(4− 2β)

N∑
i=1

(
v2
rr
)
i

= GMN

or:

M =
4− 2β

G

〈
v2
rr
〉

Lynden-Bell et al. (1983) used this equation to estimate the mass of the Galaxy from
satellite galaxies or globular clusters (his paper had the title: ‘Slippery evidence on the
Galaxy’s invisible heavy halo’, MNRAS, 204, 87).

Depending on the objects and the choice of β:

MGalaxy ' 0.2 . . . 2 · 1012M�

(note that LGalaxy ' 2 · 1010LB,�).
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see: Trimble V. (1987) ARAA, 25, 425
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5.10 The Orbits of Stars in Disks: The Epicycle Approximation

In the disks of spiral or S0 galaxies many stars are on nearly circular orbits. Therefore,
to describe their dynamics, it is sufficient to derive approximate solutions based on
perturbed circular orbits.

We define variables x, θ describing the deviations of the coordinates of the stars from
their coordinates on a circular orbit, i.e.

x (t) ≡ r (t) − R, (5.9)
θ (t) ≡ ϕ (t) − Ωt, (5.10)

where R and Ω are the radius and angular velocity of a star on a circular orbit.

The solution for the circular orbit yields(
∂Φ

∂R

)
(R,0)

=
v2
circ

R
= Ω2R (5.11)

with the circular velocity vcirc.
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The Newtonian equations of motion in cylindrical coordinates read:

r̈ − ϕ̇2 r = −∂Φ

∂r
, (5.12)

r ϕ̈ + 2 ṙ ϕ̇ = 0, (5.13)

z̈ = −∂Φ

∂z
. (5.14)

Expanding the potential Φ in a Taylor series about (R, 0) yields:

∂Φ

∂r
=
∂Φ

∂r
(R, 0) + x

∂2Φ

∂r2
(R, 0) +O

(
x2, θ2, z2

)
(5.15)

[Remark: All other terms vanish because of(
∂2Φ

∂r∂ϕ

)
= 0 due to

(
∂Φ

∂ϕ

)
(R,0)

= 0 (5.16)

(
∂2Φ

∂r∂z

)
= 0 due to

(
∂Φ

∂z

)
(R,0)

= 0 (5.17)

(axisymmetry and symmetry about z = 0).]
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The equations of motion then have the following form:

ẍ − 2 Ω θ̇ R − Ω2 x = −x
(
∂2Φ

∂r2

)
(R,0)

(5.18)

R θ̈ + 2 ẋΩ = 0 (5.19)

z̈ = −z
(
∂2Φ

∂z2

)
(R,0)

(5.20)

This approximation of the equations of motion is called epicycle approximation .

The second of the epicycle equations has the solution

R θ̇ + 2xΩ = const. !
= 0 (5.21)

(without loss of generality we can choose the constant to be zero).

With this solution the first epicycle equation can be rewritten as

ẍ = −

[(
∂2Φ

∂r2

)
(R,0)

+ 3 Ω2

]
x ≡ −κ2 x (5.22)

which is the equation of motion for the harmonic oscillator .
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Using (
∂Φ

∂r

)
(R,0)

= Ω2 r (5.23)

and
(
∂2Φ

∂r2

)
(R,0)

= Ω2 + r

(
∂Ω2

∂r

)
(R,0)

(5.24)

we find
ẍ = −κ2 x,

κ2 = R dΩ2

dR + 4 Ω2

which simply shows that in our approximation the star performs radial oscillations with
frequency κ around the circular orbit.

What is a plausible range of values for κ?

To answer this question, let us investigate some special cases:
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1. Limit: Rotation of a rigid body (i.e. Ω (R) = const.), which is the rotational
behaviour we observe for the central regions of galaxies. In this case we find

κ = 2 Ω

2. Limit: Constant rotational velocity (i.e. Ω (R) ∝ R−1), for which the definition
of κ yields

κ =
√

2 Ω

3. Limit: Keplerian rotation (i.e. Ω (R) ∝ R−3/2) which is the steepest decrease
possible. Then:

κ = Ω

Thus in almost all cases:
Ω ≤ κ ≤ 2 Ω
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This means that stars oscillate only slowly around the circular orbit. The orbits
are generally not closed.

Interesting consequences arise if the disk is not fully axisymmetric. E.g., assume
that the potential is disturbed by spiral structure or a bar which rotates with a pattern
speed Ωp and corresponds to typically a 10% disturbance in mass or potential. Then
resonances can occur. If for integer m

m(Ω− Ωp) = ±κ

then the star encounters successive crests of the potential at a frequency which co-
incides with the frequency of its natural radial oscillations (see Binney & Tremaine,
Galactic Dynamics). The resonances are named after the Swedish astronomer Bertil
Lindblad and occur at the so-called Lindblad radii . They play an important role in the
study of bars and spiral structure.
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5.11 Stability of Disks

Disks are relatively fragile objects. Generally, disks with a higher velocity dispersion
are more stable against perturbations. From dynamical analysis, Toomre (1964) ob-
tained the following criterion:

Disks are stable if:

Q ≡ σr

3.4GΣ(r)
κ

> 1 Toomre’s Q parameter

with the mass surface density Σ(r), the epicycle frequency κ and the radial dispersion
σr

Example: Galactic disk in solar neighborhood:

Σ(R�) ' 80± 10 M�
pc2

κ ' 35 km
s kpc

σr ' 40 km
s

 Q� ' 1.2  marginally stable

If Q < 1: the disk is unstable: ⇒ formation of bars . . .
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5.12 Spiral Structure in Disks

Spiral arms cannot rotate with the local circular velocity in the disk, because then
they would wind up. (The revolution time is much shorter at small radii than at large
ones: Ω is not constant, in general: Ω ∝ 1/r)

⇒ Spiral arms are made up of different stars at different times !
⇒ Spiral arms are a wave phenomenon !
This can be described in a plausible way by the density wave theory.
(Lindblad (1963), Lin & Shu (1964-70))
Hypothesis: The spiral structure is a stationary or quasi-stationary phenomenon.

The density wave theory cannot always provide a satisfactory description, espe-
cially in the case of ”stochastic” spirals , e.g. NGC2841. Self-propagating star
formation and differential rotation can result in a structure similar to spiral arms.

Bars seem to favour the formation of spiral arms.

Very prominent spiral arms seem to form in interacting spiral galaxies (M51, M81).
The interaction can trigger the density wave or amplify it.
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NGC 2841
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Numerical simulations of stochastic self-propagating star formation in spirals
(Gerola & Seiden (1978) ApJ, 223, 129). Numbers give the time in units of 15 Mio.

years, the upper panel is for the rotation curve of M101, the lower for M81.
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courtesy: C. Gössl, Wendelstein Observatory, USM

Interacting spiral galaxy M51
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5.12.1 Spiral Structure and Star Formation

Spiral structure and star formation are closely linked via the following sequence of
events:

→ the spiral density wave compresses the gas in the disk (which en-
hances the strength of the density wave)

→ molecular clouds collide and collapse
→ star formation sets in

Spiral arms are very prominent in the blue light and the Hα line, because of the short-
lived massive blue stars forming in the wake of the density wave.
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5.13 Simulations of the Spiral Structure

5.13.1 Spontaneous Spiral Structure

Swing amplification of particle noise can bring forth trailing multi-armed spiral pat-
terns. Shown here is an N-body experiment with a central bulge (yellow), an expo-
nential disk (blue), and a dark halo (red). Apart from Poissonian fluctuations due to
particle noise, this disk is initially featureless. Later frames, separated by about half a
rotation period at three exponential scale lengths, show the development of transient
spiral patterns.
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see: Barnes, J. E.: Institute for Astronomy, University of Hawaii
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see: Barnes, J. E.: Institute for Astronomy, University of Hawaii
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see: Barnes, J. E.: Institute for Astronomy, University of Hawaii
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see: Barnes, J. E.: Institute for Astronomy, University of Hawaii
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5.13.2 Tidal Spiral Structure

Tides between galaxies provoke a two-sided response. Such perturbations, if further
swing-amplified in differentially-rotating disks, may produce striking ‘grand-design’ spi-
ral patterns. In the experiment shown here, an artificial tide was applied by taking the
unperturbed disk above and instantaneously replacing each x velocity with

vx ← vx + kx

where k is a constant used to adjust the strength of the perturbation. No perturbation
was applied to the y and z velocities. Frames made after 1.5 rotation periods show
the development of an open, two-armed spiral pattern which becomes more tightly
wound with time.
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